LTM4656EY [ADI]

Synchronous Boost μModule Regulator with Input-Output Short Protection;
LTM4656EY
型号: LTM4656EY
厂家: ADI    ADI
描述:

Synchronous Boost μModule Regulator with Input-Output Short Protection

文件: 总28页 (文件大小:2696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4656/LTM4656-1  
Synchronous Boost µModule Regulator  
with Input-Output Short Protection  
FEATURES  
DESCRIPTION  
The LTM®4656 is a complete high efficiency boost  
µModule® (power module) regulator with the switch-  
ing controller, power FETs, inductor, and all supporting  
components. Only a few input and output capacitors are  
needed. Operating over an input voltage range of 4.5V to  
28V, the LTM4656 supports an output voltage range of 6V  
to 36V, set by a single external resistor. Its high efficiency  
design delivers up to 5A continuous output current. An  
in-line protection circuit sets the maximum input current,  
and will trip off the input power if exceeded and retry (see  
Typical Applications section).  
n
Complete Boost Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 28V  
Output Voltage Range: 6V to 36V  
n
n
n
n
4A Continuous Output Current (12V , 24V  
)
IN  
OUT  
2% Maximum Total Output Voltage Regulation  
Over Load, Line and Temperature  
Input Disconnect in Shutdown  
n
n
n
n
n
n
n
n
n
n
n
Inrush Current Limit  
External Frequency Synchronization  
Programmable Frequency (350kHz to 780kHz)  
Parallel Current Sharing  
Up to 98% Efficiency  
The high density boost design can convert up to 180W  
of output power.  
Selectable Burst Mode® Operation  
In-Line Overcurrent Protection  
Fault protection features include overtemperature pro-  
tection, and overcurrent protection input referred with  
auto-retry. The µmodule is offered in a space saving  
and thermally enhanced 16mm × 16mm × 7.07mm BGA  
package. The LTM4656 is Pb-free and RoHS compliant.  
Overtemperature Protection  
LTM4656-1 Adjustable Compensation Version  
16mm × 16mm × 7.07mm BGA Package  
APPLICATIONS  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U. S. Patents, including 5408150, 5481178, 5705919, 5929620, 6177787, 6498466,  
6580258, 6611131.  
n
Telecom and Networking Equipment  
Electronic Test Equipment  
n
TYPICAL APPLICATION  
12VIN, 24VOUT at 4A  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
24V Output Efficiency at 550kHz  
ꢀ00  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢃꢄꢀ  
ꢁꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀ ꢁ  
ꢂꢃRꢄ ꢅꢄ  
ꢀꢁꢂꢂꢃ  
ꢀ0ꢁ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ ꢂꢃꢄꢁꢀꢅꢀ  
ꢀ00ꢁꢂ  
ꢂꢃꢄꢅꢄ  
FLT  
ꢀꢁꢂ ꢃꢄ ꢁꢃ  
ꢄꢅꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁ0ꢂꢃ  
Rꢀ  
ꢁꢁ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂꢃ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢁ ꢃꢄ0ꢅꢆ  
ꢀꢁꢂꢁ ꢃꢄ0ꢅꢆ  
PINS UNUSED IN THIS APPLICATION:  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢃꢇRꢈ Rꢉꢊꢈ ꢋꢌꢇꢏꢊꢎꢏꢅꢈ ꢎꢐ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTM4656/LTM4656-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
(See Capacitor Matrix, Pin Configuration Table)  
V , SENSE1, BV , SW, V ,  
OUT  
IN  
IN  
ꢆꢄꢙ ꢀꢁꢋꢚ  
SHDN, UV, FLT, V  
................................. –0.3V to 36V  
ꢇ0  
ꢇꢇ  
ꢇꢓ  
BIAS  
INTV , MODE_PLLIN, PGOOD ................... –0.3V to 6V  
CC  
ꢫꢋꢂꢫꢋꢇ  
FREQ, SS, COMP, V ...........................–0.3V to INTV  
FB  
CC  
RUN ............................................................. –0.3V to 5V  
ꢍꢂꢊ  
ꢃꢀ  
ꢁꢂ  
ꢁꢂ  
TMR......................................................................0.5mA  
+
TEMP , TEMP ................... <0.7V Across Pins, No More  
than 5mA (Current Source)  
ꢌꢃ  
ꢍꢂꢊ  
ꢍꢂꢊ  
ꢂꢉ  
Operating Junction Temperature (Note 2)..40 to 125°C  
Storage Temperature Range ...................... –55 to 125°C  
Peak Solder Reflow Body Temperature................. 245°C  
ꢍꢂꢊ  
ꢍꢂꢊ  
ꢉꢄꢒꢙ ꢫꢫ ꢙꢍꢄꢄꢊ  
ꢃꢁꢈꢫ  
SHDN  
ꢒꢄꢊꢋꢯꢙꢑꢑꢁꢂ  
ꢍꢂꢊ  
ꢅꢀ  
ꢁꢂꢆꢀ  
ꢆꢒR  
ꢉꢉ  
ꢆꢋꢒꢙ  
ꢌRꢋꢮ Rꢅꢂ  
FLT  
ꢆꢋꢒꢙ  
Note: Not recommended for upside-down reflow.  
ꢫꢚ  
ꢍꢂꢊ  
ꢄꢅꢆ  
ꢍꢂꢊ  
ꢃꢍꢈ ꢙꢈꢉꢐꢈꢍꢋ  
ꢇꢕꢕꢝꢑꢋꢈꢊ ꢞꢇꢗꢟꢟ × ꢇꢗꢟꢟ × ꢘ.0ꢘꢟꢟꢠ  
ꢢ ꢇꢓꢖꢣꢉꢤ θ ꢢ ꢇꢇ.ꢛꢣꢉꢥꢤ  
ꢏꢒꢈꢡ  
ꢏꢈ  
θ
ꢢ ꢘ.ꢇꢣꢉꢥθ  
ꢢ ꢕ.ꢕꢣꢉꢥꢚ ꢞꢂꢧꢦe ꢘꢠ  
ꢏꢉꢦꢧꢨ  
ꢏꢉꢩꢧꢦ  
ꢚꢋꢁꢍꢎꢆ ꢢ ꢕ.ꢓꢓꢪ  
ORDER INFORMATION  
PART MARKING*  
TEMPERATURE  
MSL RATING RANGE (Note 2)  
PART NUMBER  
LTM4656EY#PBF  
LTM4656IY#PBF  
LTM4656IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
PACKAGE TYPE  
e1  
e1  
e0  
e1  
e1  
e0  
−40°C to 125°C  
−40°C to 125°C  
−40°C to 125°C  
LTM4656Y  
BGA  
4
LTM4656EY-1#PBF  
LTM4656IY-1#PBF  
LTM4656IY-1  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
−40°C to 125°C  
−40°C to 125°C  
−40°C to 125°C  
• Contact the factory for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures  
LGA and BGA Package and Tray Drawings  
Rev. 0  
2
For more information www.analog.com  
LTM4656/LTM4656-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VIN = 12, VBIAS = BVIN, SHDN = VIN per the typical application.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Input/Output Section  
l
l
l
V
V
V
Input DC Voltage  
Note 4  
4.5  
6
28  
36  
V
V
V
IN  
Output Voltage Range  
Note 4, V = 5V for 6V output  
IN  
OUT(RANGE)  
OUT(DC)  
Output Voltage, Total Variation  
with Line and Load  
R
= 11.5k, MODE_PLLIN = INTV  
= 12V, I  
23.52  
24  
24.48  
FB  
IN  
CC  
V
= 0A to 4A  
OUT  
I
Input Supply Bias Current  
V
V
= 12V, V  
= 24V, MODE_PLLIN = INTV  
CC  
1.7  
76  
230  
mA  
mA  
µA  
Q(VIN)  
IN  
IN  
OUT  
OUT  
= 12V, V  
= 24V, MODE/PLLIN = GND  
Shutdown, SDHN = 0, V = 12V  
IN  
I
I
Input Supply Current  
V
= 12V, V  
= 24V, I = 4A  
OUT  
8
A
S(VIN)  
IN  
OUT  
Input Inrush Current at Startup  
C
IN  
V
IN  
= 10µF × 2, 150µF; C  
= 10µF × 2 Ceramic, 150µF  
INRUSH(VIN)  
OUT  
= 12V, V  
= 24V, TRACK/SS = 0.1µF  
0.5  
A
OUT  
I
I
Output Continuous Current Range  
Note 4  
V
V
= 5V, V  
OUT  
= 12V (Note 4)  
= 24V  
0
0
3.5  
4
A
A
OUT(DC)  
IN  
IN  
=12V, V  
OUT  
Limit Range  
Input Current Limit  
See Typical Applications  
Based on Internal 0.004 R  
IN  
and 50mV Trip Typical  
10.6  
12.5  
0.1  
14  
0.2  
0.6  
A
%/V  
%
SENSE  
l
l
∆V  
∆V  
/V  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
V
V
= 24V, V = 5 to 12V, I  
= 0A  
OUT(LINE) OUT  
OUT  
IN  
OUT  
/V  
= 12V, V  
= 24V, I = 0A to 4.0A  
OUT  
0.3  
OUT(LOAD) OUT  
IN  
OUT  
V
I
= 0A, C = 10µF Ceramic × 2, 150µF Aluminum,  
OUT  
200  
mV  
OUT(AC)  
OUT  
IN  
V
= 12V, V  
= 24V  
OUT  
∆V  
)
Turn-On Overshoot  
I
= 0A, C = 10µF Ceramic × 2, 150µF Aluminum,  
OUT  
100  
1
mV  
ms  
mV  
OUT(START  
OUT  
SS = 0.1µF, V = 12V, V  
= 24V  
IN  
OUT  
t
Turn-On Time  
I
= 0A, C  
= 10µF Ceramic × 2, 150µF Aluminum,  
START  
OUT  
OUT  
SS = 0.01µF, V = 12V, V  
= 24V  
IN  
OUT  
∆V  
OUTLS  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load  
C
V
200  
= 10µF Ceramic × 2, 150µF Aluminum,  
OUT  
= 12V, V  
= 24V  
IN  
OUT  
t
Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load  
200  
µs  
SETTLE  
C
V
= 10µF Ceramic × 2, 150µF Aluminum,  
OUT  
= 12V, V  
= 24V  
IN  
OUT  
Regulator Specifics  
l
V
Voltage at V Pin  
I
= 0A, V = 12V, V = 24V  
OUT  
1.180 1.200 1.220  
V
nA  
kΩ  
µA  
%
FB  
FB  
OUT  
IN  
I
FB  
Current at V Pin  
(Note 6)  
5
221  
10  
50  
FB  
R
Resistor Between V  
and V Pins  
FBHI  
OUT FB  
SS (I)  
Track Pin Soft-Start Pull-Up Current  
Maximum Duty Cycle  
V
= 0V  
7
13  
96  
5.6  
2
SS  
DC  
FB = 1.0V (Note 6)  
6V < V < 20V  
MAX  
V
V
Internal V Voltage  
5.2  
5.4  
0.5  
V
INTVCC  
CC  
IN  
I
Load Regulation  
I = 0mA to 50mA  
CC  
%
INTVCC(LOAD)  
NTVCC  
UVLO  
INTV UVLO Thresholds  
V
V
Ramping Up  
4.3  
3.8  
4.5  
V
V
CC  
INTVCC  
INTVCC  
Ramping Down (Note 6)  
3.6  
350  
350  
f
f
f
f
f
t
Typical Output Ripple Voltage Frequency  
SYNC Frequency Range  
Lowest Frequency  
V
= 12V, V  
= 24V, R = Selectable  
500  
780  
kHz  
kHz  
kHz  
kHz  
kHz  
ns  
S
IN  
OUT  
fSET  
SYNC  
LOW  
NOM  
HIGH  
ON(MIN)  
R
R
R
= 47.5k  
350  
500  
750  
110  
fSET  
fSET  
fSET  
Nominal Frequency  
=68.1k  
= 95.3k  
Highest Frequency  
Minimum On-Time  
Note 3  
Rev. 0  
3
For more information www.analog.com  
LTM4656/LTM4656-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2), VIN = 12, VBIAS = BVIN, SHDN = VIN per the typical application,  
or otherwise specified in the table.  
SYMBOL  
PARAMETER  
CONDITIONS  
Rising  
MIN  
TYP  
1.28  
100  
MAX UNITS  
V
V
RUN Pin ON Threshold  
RUN Pin ON Hysteresis  
V
1.18  
1.38  
V
RUN  
RUN  
mV  
RUNHYS  
In-Line Protection Control Section  
SHDN  
Active Low Shutdown  
4V to 36V Input  
Threshold  
0.6  
1.4  
1.7  
2.1  
V
V
l
l
l
0.385  
SHDN Reset  
UV Threshold  
UV Hysteresis  
SHDN Reset Time  
SHDN = 0.4V (Note 6)  
100  
µs  
V
Undervoltage Lockout  
UV Input Hysteresis  
UV Lockout Threshold, V =12V  
1.24 1.275 1.31  
12  
IN  
V
IN  
> 4.5V, Nominal 12V (Note 6)  
mV  
µA  
V
UV  
UV Input Current  
UV =1 .275V (Note 6)  
TMR Rising (Note 6)  
TMR Rising  
0.3  
1.275  
1.375  
4.3  
1
IN  
V
V
V
TMR Fault Threshold  
TMR Gate Off Threshold  
TMR Cooldown High Threshold  
TMR(F)  
)
V
TMR(G  
V
IN  
= 12V to 24V, TMR Rising  
V
TMR(H)  
TMR OVER I (5V)  
TMR OVER I (12V)  
TMR OVER I (24V)  
TMR Overcurrent t  
TMR Overcurrent t  
TMR Overcurrent t  
FLT Pin Leak  
= 5V  
V , SHDN, UV = 5V, V = 24.3k, 12V V  
Shorted  
Shorted  
800  
220  
150  
2.5  
µs  
µs  
µs  
µA  
V
VDS  
VDS  
VDS  
IN  
FB  
OUT  
= 12V  
= 24V  
V , SHDN, UV =12V, V = 11.5k, 24V V  
IN FB  
OUT  
V , SHDN, UV = 24V, V = 7.5k, 36V V  
Shorted  
IN  
FB  
OUT  
l
l
I
FLT = 36V  
LEAK(FLT)  
V
IN  
– BV Rising Delta Path Fully Enhanced  
Delta V – BV Enhancing, Boost RUN Pin Enabled  
0.25  
0.5  
0.75  
IN  
IN  
IN  
V
IN  
– BV Falling Delta Path Being Opened  
Delta V – BV Opening, Boost RUN Pin Pulled Low  
2.7  
V
IN  
IN  
IN  
DC  
Retry Duty Cycle, Shorted Output  
V
= 12V, V  
= 0V, Referenced to BV  
IN  
1
%
µs  
V
IN  
OUT  
l
l
t
Undervoltage Turn-Off Propagation Delay UV Steps from 1.5V to 1V (Note 6)  
2
5
OFF(UV)  
V
FLT Output Low  
I
=100µA  
0.3  
0.8  
OL(FLT)  
SINK  
PGOOD Output  
V
PGOOD Voltage Low  
PGOOD Leakage Current  
PGOOD Trip Level  
I
= 2mA  
= 6V  
0.3  
1
V
PGL  
PGOOD  
I
V
V
μA  
PGOOD(LEAK)  
PGOOD  
V
PG  
with Respect to Set Regulated Voltage  
Ramping Negative  
Ramping Positive  
FB  
V
FB  
V
FB  
–12  
8
–10  
10  
–8  
12  
%
%
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The minimum on-time condition is specified for a peak-to-  
peak inductor ripple current of ~40% of I  
Information section)  
Load. (See Applications  
MAX  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
Note 2: The LTM4656 is tested under pulsed load conditions such  
Note 5: Guaranteed by design.  
Note 6: 100% tested at wafer level.  
that T ≈ T . The LTM4656E is guaranteed to meet performance  
J
A
specifications over the 0°C to 125°C internal operating temperature  
range. Specifications over the full –40°C to 125°C internal operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4656I is guaranteed to meet  
specifications over the full –40°C to 125°C internal operating temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 7: JEDEC board θ values are determined by simulation per JESD51  
conditions. Demo board θ values are obtained with demo board. Refer  
to Figure 9 to Figure 17 and Table 2 to Table 5 for lab ameasurement and  
derating information.  
Rev. 0  
4
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
5VIN Efficiency  
12VIN Efficiency  
24VIN Efficiency  
ꢀ00  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ00  
ꢀ00  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢅꢆꢉ0ꢊꢋꢌ  
ꢂꢃꢄ  
ꢀ0ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅꢆꢆ ꢇꢇ0ꢈꢉꢊ  
ꢆꢇꢇ ꢈꢈ0ꢉꢊꢋ  
ꢆꢇꢇ ꢁꢈ0ꢉꢊꢋ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢆꢇ00ꢊꢋꢌ  
ꢂꢃꢄ  
ꢃꢄꢅ  
ꢃꢄꢅ  
ꢃꢄꢅ  
ꢃꢄꢅ  
ꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢆꢇꢊ0ꢋꢌꢍ  
ꢆꢇꢉ0ꢊꢋꢌ  
ꢃꢄꢅ  
ꢃꢄꢅ  
ꢆꢇꢉ0ꢊꢋꢌ  
ꢆꢇ00ꢊꢋꢌ  
ꢀꢁ  
ꢀ0  
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢁ ꢃ0ꢄ  
ꢀꢁꢂꢁ ꢃ0ꢄ  
ꢀꢁꢂꢁ ꢃ0ꢄ  
12V to 24V at 4A Switch and Ripple  
5V to 12V Boost Load Step  
5V to 24V Boost Load Step  
ꢇ0ꢆꢃꢄꢅꢆ  
200mV/DIV  
0.5A/DIV  
200mV/DIV  
0.5A/DIV  
ꢀ00ꢈꢆꢃꢄꢅꢆ  
ꢉꢊꢋꢊ ꢌ0ꢉ  
4656 G05  
4656 G06  
ꢀꢁꢂꢃꢄꢅꢆ  
200µs/DIV  
200µs/DIV  
ꢇꢀꢆ ꢍꢎ ꢀꢉꢆ ꢏꢍ ꢉꢏ  
C
= 100µF ×2, 6.8µF ×2 CERAMIC,  
C
= 100µF ×2, 6.8µF ×2 CERAMIC  
OUT  
OUT  
ꢒ ꢇ00ꢁꢓ ꢔꢀꢕ ꢊ.ꢖꢁꢓ ꢔꢀ ꢐꢗRꢏꢘꢅꢐ  
ꢎꢑꢍ  
28mΩ ESR  
28mΩ ESR  
12V to 24V Boost Load Step  
12V to 36V Boost Load Step  
24V to 36V Boost Load Step  
200mV/DIV  
0.5A/DIV  
200mV/DIV  
0.5A/DIV  
200mV/DIV  
0.5A/DIV  
4656 G07  
4656 G08  
4656 G09  
500µs/DIV  
500µs/DIV  
500µs/DIV  
C
= 100µF ×2, 6.8µF ×2 CERAMIC  
C
= 100µF ×2, 6.8µF ×2 CERAMIC  
C
= 100µF ×2, 6.8µF ×2 CERAMIC  
OUT  
28mΩ ESR  
OUT  
28mΩ ESR  
OUT  
28mΩ ESR  
Rev. 0  
5
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
5V to 12V Boost HOT Plugged  
12V to 24V Boost HOT Plugged  
Start-Up Into 4A Load  
24V to 36V Boost HOT Plugged  
Start-Up Into 5A Load  
Start-Up Into 3.5A Load,  
ꢅꢇ  
ꢀꢆꢃꢄꢅꢆ  
ꢅꢇ  
ꢀꢆꢃꢄꢅꢆ  
ꢅꢌ  
ꢀꢆꢃꢄꢅꢆ  
ꢍꢎꢏ  
ꢊ0ꢆꢃꢄꢅꢆ  
ꢈꢉꢊ  
ꢋ0ꢆꢃꢄꢅꢆ  
ꢈꢉꢊ  
ꢋ0ꢆꢃꢄꢅꢆ  
ꢅꢌ  
ꢀꢐꢃꢄꢅꢆ  
ꢅꢇ  
ꢅꢇ  
ꢀꢌꢃꢄꢅꢆ  
ꢀꢌꢃꢄꢅꢆ  
ꢏꢅꢑꢒR ꢓꢅꢌ  
0.ꢀꢆꢃꢄꢅꢆ  
ꢊꢅꢍꢎR ꢏꢅꢇ  
0.ꢀꢆꢃꢄꢅꢆ  
ꢊꢅꢍꢎR ꢏꢅꢇ  
0.ꢀꢆꢃꢄꢅꢆ  
ꢇꢈꢀꢈ ꢉꢊꢋ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢐꢑꢀꢑ ꢒꢋ0  
ꢐꢑꢀꢑ ꢒꢋꢋ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
PIN FUNCTIONS  
V (A9–A12, B9–B12, C9–C12, D10–D12): Power Input  
operation when the pin is floated. Tying this pin to less  
IN  
Pins to Protection Path. Apply main input voltage between  
than INTV –1.3V selects pulse-skipping operation.  
CC  
these pins and GND pins. Recommend placing minimum  
This can be done by adding a 100k resistor between the  
1µF input decoupling capacitance directly between V  
pins and GND pins.  
MODE_PLLIN pin and INTV . Forced continuous opera-  
IN  
CC  
tion can be selected by tying this pin to INTV .  
CC  
BV (A1–A4, B1–B4, C1–C4, D1–D3):BoostPowerInput  
FREQ (H6): The Frequency Control Pin for the Internal  
IN  
Pins. Recommend placing input decoupling capacitance  
VCO. Connecting the pin to GND forces the VCO to a fixed  
directly between BV pins and GND pins.  
low frequency of 350kHz. Connecting the pin to INTV  
IN  
CC  
forces the VCO to a fixed high frequency of 535kHz. The  
frequency can be programmed from 300kHz to 780kHz  
by connecting a resistor from the FREQ pin to GND. The  
resistor and an internal 20µA source current create a volt-  
age used by the internal oscillator to set the frequency.  
Alternatively, this pin can be driven with a DC voltage to  
vary the frequency of the internal oscillator. See Typical  
Applications section.  
V
(J1–J6, K1–K6, L1–L6, M1–M6): Power Output  
OUT  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capacitance  
directly between these pins and GND pins.  
GND (A5–A6, B5–B6, C5–C6, D4–D9, E1–E7, E9–E12,  
F2–F5, F10–F12, G1–G3, G5, G7–G8, G10–G12, H1,  
H8–H12, J7–J11, K7–K11, L7–L12, M7–M12): Ground  
Pins for the Input and Output Capacitors and Small Signal  
Component Connection.  
SS (F7): Output Soft-Start Input. A capacitor to ground  
at this pin sets the ramp rate of the output voltage during  
start-up.  
SW (J12, K12): Switching node that is used for testing  
purposes.  
V
(E8): The Negative Input of the Error Amplifier for  
FB  
MODE_PLLIN (G6): External Synchronization Input to  
Phase Detector and Mode Operation Input. When an ex-  
ternal clock is applied to this pin, it will force the converter  
into forced continuous mode of operation and the phase-  
locked loop will force the rising boost switch signal to be  
synchronized with the rising edge of the external clock.  
When not synchronizing to an external clock, this input  
determineshowtheLTM4656operatesatlightloads.Pull-  
ing this pin to ground selects Burst Mode operation. An  
internal 100k resistor to ground also invokes Burst Mode  
Each Channel. Internally, this pin is connected to V  
OUT  
with a 221k precision resistor. Different output voltages  
can be programmed with an additional resistor between  
V and GND pins. In PolyPhase® operation, tying the V  
FB  
FB  
pins together allows for parallel operation. See Typical  
Applications section for details.  
COMP(F6):CurrentControlThresholdandErrorAmplifier  
Compensation Point for the Regulator. The current com-  
parator threshold increases with this control voltage. Tie  
Rev. 0  
6
For more information www.analog.com  
LTM4656/LTM4656-1  
PIN FUNCTIONS  
allCOMPpinstogetherforparalleloperation. Thedeviceis  
internal compensated. The LTM4656-1 offers an External  
Compensation option.  
turnsoffwhenTMRreachesthethresholdof1.375V.A2µA  
current source then continues to pull the TMR up. When  
TMR reaches 4.3V, the 2µA current reverses direction and  
startstopulltheTMRpinlow. WhenTMRreachestheretry  
threshold of 0.5V, the GATE pin pulls high turning back  
on the pass transistor. See Typical Applications section.  
SENSE1 (A7–A8, B7–B8, C7–C8): These pins are the  
output side of the input protection power MOSFET, and  
the input to the onboard 4mΩ current sense resistor that  
sets maximum input current limit to trip off and retry  
in a output short. Measuring the voltage drop between  
NC (E3): Float Pin.  
SHDN(F1):TheLTM4656canbeshutdowntoalowcurrent  
modewhenthevoltageattheSHDNpinispulledbelowthe  
shutdown threshold of 0.4V. The quiescent current drops  
downto4Awithinternalcircuitryturnedoff.Thispinwill  
shut down the in-line protection and the boost converter.  
SENSE1 and BV , and dividing by the 4mΩ resistance  
IN  
gives the input current for a given operating condition in  
the boost converter.  
RUN (H7): RUN Pin Monitor. The threshold level of 1.28V  
The SHDN pin can be pulled up to V MAX or below GND  
IN  
will turn on the boost converter. An internal 75k resistor is  
by up to V MAX without damage. The SHDN pin is pulled  
IN  
connected from this pin to BV , and a 5.1V Zener diode to  
IN  
up to V with an internal 100k resistor for active on. An  
IN  
GNDisinternaltothemoduleforlimitingthevoltageonthe  
RUN pin to 5V. The RUN pin is allowed to turn on from an  
open-collector control coming from the in-line protection  
V rated open collector can be used to controlled this pin  
IN  
for enabling the in-line protection and the boost converter,  
or a Zener diode can be placed from this pin to ground to  
interface to lower voltage rated pull downs.  
control when the voltage at the BV pin is within 0.5V of  
IN  
V and 3V above GND, indicating the protection MOSFET  
IN  
is fully on. The state of the pin stays on until the BV pin  
UV (H2): Undervoltage Comparator Input. When UV falls  
below its threshold of1.275V, the GATEpin is pulled down  
with a 1mA current. When UV rises above 1.275V plus  
the hysteresis, the pull-down current disappears and the  
GATE pin is pulled up by the internal charge pump. This is  
used to set up an undervoltage lockout to limit the input  
current during startup. There is an internal 100k resistor  
IN  
voltage drops below 2V. See Block Diagram.  
INTV (G9): Output of Internal 5.4V LDO. Power supply  
CC  
for internal control circuits and gate drivers. There is an  
internal 4.7µF low ESR ceramic capacitor from this pin to  
ground for decoupling.  
V
(F9): Main Control Supply Pin. It is normally tied  
from this pin to V to set up with an external resistor an  
BIAS  
IN  
to the input supply BV or to the output of the boost  
under voltage trip point. If unused, connect to V . See  
IN  
CC  
converter. A bypass capacitor should be tied between this  
pin and the GND pin. The operating voltage range on this  
pin is 4.5V to 36V.  
Typical Applications section.  
FLT (H3): Open Collector Fault Output. This pin pulls low  
after the voltage at the TMR pin has reached the fault  
threshold of 1.275V. It indicates the pass transistor is  
about to turn off because the device is in an overcurrent  
condition (current fault). The internal NPN is capable of  
sinking up to 100µA of current while maintaining a low  
level of 0.8V max.  
PGOOD (F8): Power Good Indicator. Open-drain logic  
output that is pulled to ground when the output voltage is  
more than 10% away from the regulated output voltage.  
To avoid false trips, the output voltage must be outside of  
the range for 25µs before this output is activated.  
+
TEMP (H4): Onboard temperature diode for monitoring  
TMR (G4): Fault Timer Input. An internal 0.01µF capacitor  
to ground sets the times for early fault warning, fault turn-  
off, and cooldown periods. The current charging up this  
pin during fault conditions depends on the voltage differ-  
each channel with differential connections for noise im-  
munity. See Block Diagram.  
TEMP (H5): Onboard temperature diode for monitoring  
ence between the V and BV pins. When TMR reaches  
IN  
IN  
each channel with differential connections for noise im-  
munity. See Block Diagram.  
1.275V, the FLT pin pulls low to indicate the detection of a  
faultcondition.Iftheconditionpersists,thepasstransistor  
Rev. 0  
7
For more information www.analog.com  
LTM4656/LTM4656-1  
BLOCK DIAGRAM  
ꢀꢁꢂꢀꢁꢃ  
ꢀꢁꢂꢃꢁꢂꢄ ꢅ ꢆꢇ ꢉꢊR  
ꢋ ꢈꢃꢌꢍꢎ ꢈ  
ꢈꢃ ꢁꢂꢃꢁꢂ  
ꢀꢁꢂ  
R
ꢀꢁꢂꢀꢁ  
ꢁꢂ  
0.004Ω  
ꢁꢂ  
47Ω  
R
+
ꢀ0ꢁꢂꢃꢄꢀꢁꢂ  
ꢀ00ꢁ  
SHDN  
ꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢂꢄꢉ  
ꢊꢋꢁ ꢌꢀRꢍ ꢃꢍ ꢎ ꢌꢏꢆꢍ  
ꢐ.ꢑꢒꢓꢁ ꢔ ꢃꢍ  
ꢀꢁ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆꢁ  
ꢀꢁ  
FLT  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁꢂꢃꢄꢅꢂꢆ  
SHDN  
FLT  
ꢀ.ꢁꢂꢃꢄ  
ꢁꢂ  
ꢀꢁ  
CONTROL LOGIC  
RꢀꢁRꢂ  
ꢁꢁ  
ꢀꢁꢂꢃꢄꢅꢅ FLT RꢀꢁRꢂ ꢀꢁꢂꢃꢄꢀ  
ꢀ.ꢁꢂꢃꢄ  
ꢁꢂR  
0.ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃꢄ  
ꢀ.ꢁꢂ  
ꢀꢁR  
IN-LINE PROTECTION BLOCK  
0.0ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢂꢃ  
ꢁꢂꢃ  
0.ꢀꢁꢂ  
ꢀ0ꢁ  
ꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢃꢄ  
ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀꢁꢂ  
NTSA545  
ꢀ0ꢁꢂ  
ꢃꢄꢅ  
ꢆꢃ  
ꢀꢁ0ꢂꢃ  
ꢄꢁꢅ  
ꢀ.ꢁꢂ  
ꢃꢄꢅꢄR  
0.ꢀꢁꢂ  
ꢀ0ꢁ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
Rꢀꢁ  
POWER CONTROL  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢀꢁꢂꢃ ꢄRꢅꢆꢇ  
ꢀꢀ  
*BV NEEDS ≥100μF  
IN  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
INPUT CAPACITOR  
TO SERVICE CURRENT  
DURING SHORT FOR  
PROPER CURRENT  
LIMIT TIMEOUT.  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁRRꢂꢃꢄ ꢅꢂꢃꢅꢂ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃꢄ  
ꢀꢁ0ꢂꢃ  
ꢀꢁꢂꢂꢃꢄ ꢅRꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢀLLꢁN ꢀꢁꢂ ꢀRꢁꢂ  
ꢄꢄ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢁꢂ  
Rꢀꢁ ꢀꢀ  
ꢀꢁꢂꢂꢃ ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢀLLꢁN ꢀRꢁꢂ  
ꢁꢂꢃꢄ  
ꢄꢄ  
ꢁꢂ  
4656 BD  
0.ꢀꢁꢂ  
ꢀꢀ.ꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ  
ꢂꢃ  
ꢀ0ꢁ  
*LTM4656-1 Optional External Compensation  
Rev. 0  
8
For more information www.analog.com  
LTM4656/LTM4656-1  
OPERATION  
The LTM4656 contains an integrated fixed frequency,  
current mode boost controller, power MOSFETs, induc-  
tor, in-line protect circuitry and other supporting discrete  
components. The default switching frequency is 500kHz.  
For noise-sensitive applications, the switching frequency  
can be adjusted by an external resistor and the µModule  
regulator can be externally synchronized to a clock.  
The LTM4656 is a single output standalone non-isolated  
step-up switching mode DC/DC power supply with input  
currentlimitprotectionduringanoutputshort.Thismodule  
provides a precisely regulated output voltage program-  
mable via one external resistor from 6V to 36V and deliv-  
ers up to 5A output current with few external input and  
output capacitors. During normal operation the LTM4656  
sensesinputcurrentthroughaninputprotectedfrontend.  
The LTM4656 softly turns on with a controlled inrush and  
will perform a low duty cycle auto-retry during an output  
short circuit. The output short trip time is controlled by  
how much short-circuit current is applied and the amount  
of voltage across the in-line protection switch. The typical  
application schematic is shown in Figure 17. See Typical  
Applications section for explanation and curves.  
With current mode control and internal feedback loop  
compensation, the LTM4656 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
Current mode control allows the LTM4656 to parallel for  
increase power delivery.  
Rev. 0  
9
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
IN-LINE PROTECTION SECTION  
assure the MOSFET can handle this power dissipation for  
that period of time. When TMR reaches 1.275V, the FLT  
pin pulls low to indicate the detection of a fault condition.  
Iftheconditionpersists, thepasstransistorturnsoffwhen  
TMRreachesthethresholdof1.375V.A2µAcurrentsource  
then continues to pull the TMR up. When TMR reaches  
4.3V, the 2µA current reverses direction and starts to pull  
the TMR pin low. When TMR reaches the retry threshold  
of 0.5V, the GATE pin pulls high turning back on the pass  
transistor. See overcurrent fault diagram in Figure 2.  
ReferringtotheBlockDiagram,theinputvoltageisapplied  
to V . The power MOSFET MIN is controlled by a charge  
IN  
pump high side drive that is slowly turned on after the  
SHDN pin is either pulled up to V or driven from an open  
IN  
collectordriveratedtoV .TheUVpinhasaninternal100k  
IN  
resistor to V that can be used with an external resistor  
IN  
to ground to set a UVLO trip point for V . This is valuable  
IN  
to limit turn-on to a specific input voltage level. When  
both the SHDN and UV pin thresholds are met, then the  
gate voltage begins to ramp up at a control rate and the  
MIN source pin will follow. Gate turn-on time is ~10ms.  
ꢃꢒꢓ0  
ꢉꢊR ꢚ ꢆꢀ  
The R  
in series with this path monitors the current  
SENSE  
ꢃꢒꢒ0  
ꢃꢆꢓ0  
ꢃꢆꢒ0  
ꢃꢔ0  
ꢃꢕ0  
0
going to the boost converter. The LTM4656 monitors the  
voltagedropbetweentheSENSE1andBV pinstoprotect  
IN  
against overcurrent faults. An internal amplifier limits the  
voltage across the internal 4mΩ current sense resistor  
to 50mV. This is reduced to 25mV in a severe fault when  
BV is below 2V. In this fault condition, a timer is started  
IN  
inversely proportional to MOSFET stress. Before the timer  
expires,theFLT pinpullslowtowarnofanimpendingpower  
down. If the condition persists, the MOSFET is turned off,  
0
ꢆ0 ꢒ0 ꢙ0 ꢕ0 ꢖ0 ꢓ0 ꢘ0 ꢔ0  
ꢃ ꢄꢅꢂꢄꢅꢆ ꢇꢀꢈ  
ꢁꢂ  
ꢕꢓꢖꢓ ꢗ0ꢆ  
and restarts after a cooldown period. BV needs at least  
IN  
Figure 1. Overcurrent TMR Current  
vs VIN – SENSE1 Voltage  
100µF capacitance to service proper current limit level to  
eliminate any overtemperature timeout oscillations.  
ꢃꢌRꢖꢕꢗ  
FAULT TIMER SECTION  
ꢓ.ꢚꢝꢛ  
ꢓ.ꢒꢝꢛ  
A 0.01µF capacitor is connected internal to the TMR pin  
and ground to set the times for early fault warning, fault  
turn-off, and cooldown periods. This capacitor is selected  
to assure the MIN MOSFET is turn-off fast enough. The  
ꢃꢌR  
ꢃꢌR  
ꢄ ꢒꢔꢕ  
ꢄ ꢓꢒ0ꢆꢉ  
ꢄ 0.0ꢓꢆꢁ  
ꢘꢙ  
ꢃꢌR  
ꢃꢌR  
ꢄ ꢓꢒꢕ  
ꢄ ꢚꢛꢆꢉ  
ꢄ 0.0ꢓꢆꢁ  
ꢘꢙ  
TMRchargingcurrentincreaseslinearlyfrom8µAwithV  
DS  
< 0.5V to 120µA with V = 40V. V is inferred from the  
DS  
DS  
drop across V and SENSE1. See Figure 1. The current  
IN  
0.ꢛ0  
ꢃꢋꢌꢍ  
ꢏꢉRꢐꢋꢐꢑ  
ꢄ ꢔꢆꢇ  
charging up this TMR pin during fault conditions depends  
ꢁꢂꢃ  
ꢄ ꢅ0ꢆꢇ  
on the voltage difference across MIN MOSFET between  
ꢄ ꢒꢒꢓꢆꢇ  
ꢁꢂꢃ  
the V and SENSE1 pins. This increase in TMR current is  
ꢏꢉRꢐꢋꢐꢑ  
ꢄ ꢒ0ꢆꢇ  
IN  
ꢞꢟꢛꢟ ꢁ0ꢒ  
ꢃꢈꢃꢉꢂ ꢁꢉꢊꢂꢃ ꢃꢋꢌꢍR ꢄ ꢀ  
ꢎ ꢀ  
ꢁꢂꢃ  
ꢏꢉRꢐꢋꢐꢑ  
to assure a faster turn off during an overcurrent fault with  
substantial voltage across the MIN MOSFET. This turn-off  
time is correlated with the MIN MOSFET SOA capability to  
Figure 2. Overcurrent Fault Time with 0.01µF  
Rev. 0  
10  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
When the TMR pin reaches 1.275V, the FLT pin is latched  
low as an early warning of impending shutdown, then it  
continues unabated until the TMR reaches 1.375V, pro-  
ducing an early warning period given by:  
Brief overcurrent conditions interrupt the operation of  
the timer. If the TMR pin has not yet reached 1.275V  
when fault drops out of current limit, the timer capacitor  
is discharged back to 0.5V with a 2µA current sink. If the  
TMR voltage crosses 1.275V, then FLT is set low. If the  
overcurrent abates before reaching 1.375V, the timer  
capacitor discharges with 2µA back to 0.5V, whereupon  
FLT resets high. If several short overcurrent events occur  
in rapid succession, the timer capacitor will integrate the  
charging and discharging currents. Figure 20 shows an  
overcurrent fault wave from and a retry cycle.  
1.275V 0.5V  
tFLT = 0.01µF •  
ITMR  
1.375V 1.275V  
tWARN = 0.01µF •  
ITMR  
I
taken from Figure 1.  
TMR  
Because I  
is a function of V –SENSE1, the exact time  
IN  
TMR  
in current limit depends upon the input waveform and the  
time required for the output current to come into regula-  
tion. Testing of the overall solution should be verified, and  
compared to the MOSFET SOA curves.  
MIN MOSFET SOA CURVE  
Figure 3 shows the MIN MOSFET SOA curve. This curve  
can be compared to the period of time the MIN Power  
MOSFET stays on during a fault condition with an over-  
current flowing through MIN, and the worse-case voltage  
across the MIN MOSFET.  
COOLDOWN PHASE  
Cooldown behavior is initiated by overcurrent. During  
the cooldown phase, the timer continues to charge from  
1.375V to 4.3V with 2µA, and then discharges back down  
to 0.5V with 2µA, for a total equivalent voltage swing of  
6.725V. The cooldown time is given by:  
ꢀ00  
ꢀ00  
ꢀ0  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
6.725V  
2µA  
ꢀꢁꢂꢃ ꢄRꢅꢄ ꢂꢃ  
tCOOL = 0.01µF •  
= 33.6ms  
ꢀ00ꢁꢂ  
ꢆꢂꢇꢂꢀꢅꢈ ꢉꢊ  
R
ꢈꢃꢋꢌꢍꢎ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢄꢀꢅ  
0.ꢀ  
ꢀ0ꢁ  
ꢀ ꢂ ꢃꢄꢅ Rꢄꢀꢆꢇ  
This long cool time assures that during retry the MOSFET  
does not overheat.  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
R
θꢀꢁ  
ꢂ ꢃꢄꢅꢆꢇꢈꢉ  
0.0ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0  
ꢀ00 ꢀ00  
The LTM4656 will auto-retry at the end of the cooldown  
phase.Retryisautomaticallyinitiated.Thecooldownphase  
may be interrupted in the LTM4656 by pulling SHDN low  
for at least 10ms.  
ꢀ ꢁRꢂꢃꢄ ꢅꢆ ꢇꢆꢈRꢉꢊ ꢋꢆꢍꢊ ꢎꢋꢏ  
ꢀꢁ  
ꢀꢁꢂꢁ ꢃ0ꢄ  
Figure 3. MIN Internal MOSFET SOA Curves  
The FLT pin goes high in shutdown and is cleared high  
when power is first applied to V .  
IN  
Rev. 0  
11  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
Figure 4 and Figure 5 show the overcurrent fault wave-  
forms, and the timer pin timeout period as a function of the  
amount of voltage across the MIN power MOSFET during  
an overcurrent fault. Figure 4 shows a 10V to 36V boost  
in short-circuit, and Figure 5 shows a 28V to 36V boost in  
a short-circuit. Figure 2 shows that the over current timer  
(TIMER pin) will expire at ~240µs in a short-circuit at the  
1.375V threshold with 10V input, will expire at 73µs at 40V  
input. Figure4timeoutwith10VinputandFigure5timeout  
with 28V input are very close to Figure 2 time out period  
relative to input voltage. These timeout periods across the  
full input range can be checked against the Figure 3 MIN  
MOSFET SOA curves to ensure adequate margin relative  
to voltage across the input protection MOSFET and the  
current flowing through. Adequate guard band is to ensure  
that these conditions are OK overtemperature.  
TURN-ON INRUSH CURRENT CONTROL AND  
POWER-UP INTO LOAD  
TheLTM4656turnsontheMINpowerMOSFETwithatime  
control ramp of 10ms. When the voltage at the SENSE1  
pin is within 0.5V of V and 3V above GND, indicating  
IN  
the external MOSFET is fully on, then the internal ENABLE  
signal goes high impedance to allow the RUN pin to acti-  
vate the boost converter. The state of the internal ENABLE  
signal is latched until the SENSE1 pin voltage drops below  
2V, resetting the latch. Utilizing the UV pin to set a UVLO  
voltage before turn on, then having the boost converter  
turn on after the MIN MOSFET is fully enhanced, and the a  
0.1µF soft-start capacitor will assure no false overcurrent  
trips at start-up.  
SYNCHRONOUS BOOST CONVERTER SECTION  
The LTM4656 has a high power synchronous converter  
downstream of the input protection. A synchronous boost  
converterinherentlyhasdifficultywithoutputshort-circuit  
due to the MOUT output power MOSFET body diode  
conducting.  
V
IN  
5V/DIV  
V
SHORTED  
OUT  
V
OUT  
5V/DIV  
~240μSEC TIME OUT  
INPUT CURRENT FOLDBACK TO 5A  
TIMER PIN  
1V/DIV  
I
The input protection path will control the input current to  
boost converter and auto-retry during an output short.  
IN  
5A/DIV  
4656 F04  
200µs/DIV  
*25mV SENSE IN FOLDBACK  
TIMER (78μs)  
The LTM4656 uses a constant-frequency, current mode  
step-upcontrolarchitecture.Duringnormaloperation,the  
MBOTbottomMOSFETisturnedonwhentheclocksetsthe  
internal RS latch, and is turned off when the main (ICMP)  
current comparator resets the RS latch. The peak induc-  
tor current at which ICMP trips and resets the latch is  
controlled by the voltage on the COMP pin, which is the  
output of the error amplifier. The error amplifier compares  
Figure 4. 10V Input to 36V Output Short Input Current  
Trip Waveform  
V
IN  
20V/DIV  
V
OUT  
SHORTED  
V
OUT  
the output voltage feedback signal at the V pin.  
20V/DIV  
FB  
~100μSEC TIME OUT  
INPUT CURRENT FOLDBACK TO 5A  
TIMER PIN  
1V/DIV  
The LTM4656-1 provides optional External Compensation.  
I
In a boost converter, the required inductor current is de-  
IN  
5A/DIV  
termined by the load current, V and V . When the load  
IN  
OUT  
4656 F05  
100µs/DIV  
currentincreases,itcausesaslightdecreaseinV relative  
FB  
*25mV SENSE IN FOLDBACK  
TIMER (218μs)  
to the reference, which causes the error amp to increase  
the COMP voltage until the average inductor current in  
the channel matches the new requirement based on the  
new load current. After the bottom MOSFET is turned off  
Figure 5. 28V Input to 36V Output Short Input Current  
Trip Waveform  
Rev. 0  
12  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
each cycle, the top MOSFET is turned on until either the  
inductor current starts to reverse, as indicated by the cur-  
rent comparator or the beginning of the next clock cycle.  
Although ceramic capacitors can be relatively tolerant of  
overvoltage conditions, aluminum electrolytic capacitors  
are not. Be sure to characterize the input voltage for any  
possible overvoltage transients that could apply excess  
stress to the input capacitors.  
In a step-up boost converter, the duty cycle can be cal-  
culated at:  
The value of the C is a function of the source impedance,  
IN  
V
VOUT  
IN  
D = 1   
andingeneral,thehigherthesourceimpedance,thehigher  
the required input capacitance. The required amount of  
inputcapacitanceisalsogreatlyaffectedbythedutycycle.  
High output current applications that also experience high  
duty cycles can place great demands on the input supply,  
both in terms of DC current and ripple current.  
Note that at low input voltages, small voltage drops due  
to series resistance become critical and greatly limit the  
power delivery capability of the converter.  
Theboostcontrollerhasaninternal1.2Vreferencevoltage,  
The input I  
current in boost is fairly low since the  
RMS  
and a 221k 1% internal feedback resistor connects V  
OUT  
input current is continuous. Primary input capacitance is  
and V pins together. Adding a resistor R from V pin  
FB  
FB  
FB  
to maintain low input ripple voltage.  
to GND programs the output voltage:  
The input I  
current equation:  
RMS  
1.2V  
VOUT 1.2V  
RFB  
=
221k  
IO 2 +(I)2  
IRMS  
=
12  
Table 1. VFB Resistor Value vs Various Output Voltages  
(V) 6V 8V 10V 12V 20V 24V 30V  
54.9k 39.2k 30.9k 24.3k 14k 11.5k 9.31k  
V
36V  
7.5k  
OUT  
Where I is output current, and  
O
R
FB  
V
•D  
IN  
I =  
ForparalleloperationofN-pieceofLTM4656modules,the  
following equation can be used to solve for R :  
4.7µH FREQ  
FB  
The output capacitor will see discontinuous current, thus  
1.2V  
VOUT 1.2V  
221k  
N
the peak current can be high, and the C is signifi-  
I
RFB  
=
OUT RMS  
current is:  
cant. The equation for the C  
I
OUT RMS  
The V , COMP, SS, RUN and SDHN pins should be con-  
VOUT V  
FB  
IN  
IRMS = IOUT  
nected together.  
V
IN  
The UV pins can be tied together taking into account the  
The output ripple has two components, one that is related  
to output capacitance minimum:  
internal 100k resistor to V will reduce N times when  
IN  
selecting a single resistor to set an UVLO operating point  
for the paralleled modules.  
IOUT D  
FREQ VOUT  
COUT  
=
INPUT DECOUPLING CAPACITORS  
Where ∆V  
is the output ripple based on total output  
OUT  
The LTM4656 module should be connected to a low  
AC-impedance DC source. The input ripple current in a  
boostconverterisrelativelylow(comparedwiththeoutput  
ripplecurrent)becausethiscurrentiscontinuous.Theinput  
capacitance.Thesecondisbasedontotalequivalentoutput  
capacitance ESR:  
I
I  
2
OUT  
VOUTESR = ESR •  
+
capacitor, C , voltage rating should comfortably exceed  
1D  
IN  
the maximum input voltage, and placed on the BV pins.  
IN  
Rev. 0  
13  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
Theoutputcapacitorrecommendationsandinternalcontrol  
loop compensation assure stability over the operating  
ranges. The Analog Devices LTpowerCAD® design tool  
is available to download online for RMS current, output  
ripple, stability and transient response analysis.  
internal1.2Vreference,theLTM4656regulatestheV pin  
FB  
voltage to the voltage on the SS pin instead of 1.2V. Soft-  
start is enabled by simply connecting a capacitor from the  
SSpintoground. Aninternal1Acurrentsourcecharges  
the capacitor, providing a linear ramping voltage at the SS  
pin. The LTM4656 will regulate the V pin (and hence,  
FB  
V
V
) according to the voltage on the SS pin, allowing  
OUT  
OUT  
LOW VOLTAGE OPERATION  
to rise smoothly from V to its final regulated value.  
IN  
The LTM4656 is designed to allow start-up from input  
voltages as low as 4.5V. The limiting factors for the low  
voltage applications become the availability of the power  
source to supply sufficient power to the output at the  
low input voltage, and the maximum duty cycle, which is  
clamped at 96%. Note that at low input voltages, small  
voltage drops due to series resistance become critical and  
greatly limit the power delivery capability of the converter.  
The input current can get large at high boost ratios. The  
input is limited to a minimum of 9A. The below equation  
can be used to calculate the input current need to support  
a particular design.  
The total soft-start time will be approximately:  
1.2V  
10µA  
TSS = CSS  
A0.1µFisagoodvaluetouseforC . Thisprovidesaslow  
SS  
12msrampthatwillslowlyturnontheboostregulatorinto  
load, and eliminate false overcurrent tripping at start-up.  
INTV Power  
CC  
The LTM4656 boost control section features an internal  
P-channellowdropoutlinearregulator(LDO)thatsupplies  
power at the INTV pin from the V  
supply pin. INTV  
CC  
BIAS  
CC  
VOUT IOUT  
IIN =  
powers the gate drivers and much of the boost control’s  
V
IN  
internal circuitry. The V LDO regulates INTV to 5.4V.  
BIAS  
CC  
It can supply at least 50mA and is bypassed to ground  
For example, 5V to 12V at 3.5A output current would  
equate to an input current of ~8.5A.  
with an internal 4.7µF ceramic capacitor.  
Power Good  
SHDN AND RUN PINS  
The PGOOD pin is connected to an open-drain of an  
N-channel MOSFET. The MOSFET turns on and pulls the  
The SHDN pin controls the complete shutdown of the  
LTM4656. When this pin is below 0.4V, the LTM4656  
will be in complete shutdown drawing only 40µA. When  
SHDN goes above 2.1V then the LTM4656 will enable.  
The LTM4656 boost converter can be shut down using  
the RUN pin while the inline overcurrent protection is  
still powered. Pulling this pin below 1.28V shuts down  
the main boost control loop. Pulling this pin below 0.7V  
disables the boost controller and most internal circuits,  
PGOODpinlowwhentheV pinvoltageisnotwithin 10%  
FB  
ofthe1.2Vreferencevoltage.ThePGOODpinisalsopulled  
low when the corresponding RUN pin is low (shutdown).  
When the V pin voltage is within the 10% require-  
FB  
ment, the MOSFET is turned off and the pin is allowed to  
be pulled up by an external resistor to a source of up to  
6V (ABS max).  
including the INTV LDOs. In this state, total current  
Loop Compensation  
CC  
draw is about 50µA.  
The LTM4656 has internal compensation while the  
LTM4656-1 provides for optimized external compen-  
sation. LTpowerCAD can be used to optimize External  
Compensation.  
SOFT-START (SS PIN)  
The start-up of the V  
is controlled by the voltage on the  
OUT  
SS pin. When the voltage on the SS pin is less than the  
Rev. 0  
14  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
Light Load Current Operation—Burst Mode Operation,  
Pulse-Skipping or Continuous Conduction  
(MODE_PLLIN Pin)  
In forced continuous operation or when clocked by an  
external clock source to use the phase-locked loop. See  
the Frequency Selection and Phase-Locked Loop (FREQ  
and MODE_PLLIN Pins) section, the inductor current is  
allowed to reverse at light loads or under large transient  
conditions. The peak inductor current is determined by  
the voltage on the COMP pin, just as in normal operation.  
In this mode, the efficiency at light loads is lower than in  
BurstModeoperation.However,continuousoperationhas  
the advantages of lower output voltage ripple and less  
interference to audio circuitry, as it maintains constant-  
frequency operation independent of load current.  
The LTM4656 boost converter can be enabled to enter  
high efficiencyBurstModeoperation, constant-frequency  
pulse-skipping mode or forced continuous conduction  
mode at low load currents. To select Burst Mode opera-  
tion, tie the MODE_PLLIN pin to ground. To select forced  
continuous operation, tie the MODE_PLLIN pin to INTV .  
CC  
Toselectpulse-skippingmode,tietheMODE_PLLINpinto  
aDCvoltagegreaterthan1.2VandlessthanINTV –1.3V.  
CC  
When the controller is enabled for Burst Mode operation,  
theminimumpeakcurrentintheinductorissettoapproxi-  
mately 30% of the maximum sense voltage even though  
the voltage on the COMP pin indicates a lower value.  
When the MODE_PLLIN pin is connected for pulse-  
skipping mode, the LTM4656 boost converter operates  
in PWM pulse-skipping mode at light loads. In this mode,  
constant-frequency operation is maintained down to ap-  
proximately 1% of designed maximum output current.  
At very light loads, the internal current comparator may  
remain tripped for several cycles and force the external  
bottom MOSFET to stay off for the same number of cycles  
(i.e., skipping pulses). The inductor current is not allowed  
to reverse (discontinuous operation). This mode, like  
forced continuous operation, exhibits low output ripple  
as well as low audio noise and reduced RF interference  
as compared to Burst Mode operation. It provides higher  
low current efficiency than forced continuous mode, but  
not nearly as high as Burst Mode operation.  
If the average inductor current is higher than the required  
current,theinternalerroramplifierwilldecreasethevoltage  
on the COMP pin. When the COMP voltage drops below  
0.425V, an internal sleep signal goes high (enabling sleep  
mode) and both external MOSFETs are turned off. The  
COMP pin is then disconnected from the output of the  
EA and parked at 0.450V.  
In sleep mode, much of the internal boost controller  
circuitry is turned off and the LTM4656 draws only 50µA  
of quiescent current. In sleep mode, the load current is  
supplied by the output capacitor. As the output voltage  
decreases,theinternalerroramplifieroutputbeginstorise.  
When the output voltage drops enough, the COMP pin is  
reconnectedtotheoutputoftheinternalerroramplifier,the  
sleep signal goes low, and the controller resumes normal  
operation by turning on the bottom external MOSFET on  
thenextcycleoftheinternaloscillator. Whenthecontroller  
is enabled for Burst Mode operation, the inductor current  
is not allowed to reverse. The internal reverse current  
comparator (IR) turns off the top external MOSFET just  
before the inductor current reaches zero, preventing it  
from reversing and going negative. Thus, the controller  
operates in discontinuous current operation.  
Frequency Selection and Phase-Locked Loop (FREQ  
and MODE_PLLIN Pins)  
Theselectionofswitchingfrequencyisatrade-offbetween  
efficiency and component size. Low frequency operation  
increasesefficiencybyreducingMOSFETswitchinglosses,  
butrequireslargerinductanceand/orcapacitancetomain-  
tain low output ripple voltage. The switching frequency  
of the LTM4656 boost controllers can be selected using  
the FREQ pin. If the MODE_PLLIN pin is not being driven  
by an external clock source, the FREQ pin can be tied to  
Rev. 0  
15  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
GND, tied to INTV , or programmed through an external  
The typical input clock thresholds on the MODE_PLLIN  
pin are 1.6V (rising) and 1.2V (falling).  
CC  
resistor. Tying FREQ to GND selects 350kHz while tying  
FREQtoINTV selects535kHz.Placingaresistorbetween  
CC  
Overtemperature Protection  
FREQ and GND allows the frequency to be programmed  
between 50kHz and 900kHz, as shown in Figure 6. The  
recommendedoperatingrangefortheLTM4656is300kHz  
to 780kHz based on the internal 4.7µH inductor.  
At higher temperatures, or in cases where the internal  
power dissipation causes excessive self-heating of the  
boost controller (such as an INTV short to ground),  
CC  
the overtemperature shutdown circuitry will shut down  
the boost converter. When the junction temperature ex-  
ceedsapproximately170°C,theovertemperaturecircuitry  
disables the INTV LDO, causing the INTV supply to  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
CC  
CC  
collapse and effectively shut down the entire boost con-  
troller chip. Once the junction temperature drops back  
to approximately 155°C, the INTV LDO turns back on.  
CC  
Long-term overstress (T > 125°C) should be avoided as  
J
it can degrade the performance or shorten life. As explain  
aboveintheinlineprotection,ifanovercurrentshortoccurs  
in the boost converter section, then the inline protection  
will operate in a low duty cycle retry mode.  
0
15 25 35 45 55 65 75 85 95 105 115 125  
FREQ PIN RESISTOR (kΩ)  
4656 F06  
Figure 6. Relationship Between Oscillator  
Frequencies and Resistor Value at the FREQ Pin  
Thermal Performance  
The LTM4656 provides adequate heat sinking utilizing the  
inductor on top of package, and can either be cooled with  
airflow or other heat sinking methods. Figure 7 shows a  
12V to 24V boost at 96W conversion with only ~ 36°C  
rise with 200LFM.  
A phase-locked loop (PLL) is available on the LTM4656’s  
boostconvertertosynchronizetheinternaloscillatortoan  
externalclocksourcethatisconnectedtotheMODE_PLLIN  
pin.TheLTM4656’sboostconverterphasedetectoradjusts  
the voltage (through an internal low pass filter) of the VCO  
input to align the turn-on of the external bottom MOSFET  
to the rising edge of the synchronizing signal.  
The VCO input voltage is pre-biased to the operating fre-  
quency set by the FREQ pin before the external clock is  
applied. If pre-biased near the external clock frequency,  
the PLL loop only needs to make slight changes to the  
VCO input in order to synchronize the rising edge of the  
external clock’s to the rising edge of BG. The ability to  
pre-bias the loop filter allows the PLL to lock-in rapidly  
without deviating far from the desired frequency.  
Figure 7. 12VIN to 24VOUT at 4A (96W),  
200LFM Air Flow Thermal Plot  
TheMODE_PLLINisguaranteedtolocktoanexternalclock  
source whose frequency is between 75kHz and 850kHz.  
Rev. 0  
16  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
Thermal Considerations and Output Current Derating  
This environment is sometimes referred to as “still air”  
although natural convection causes the air to move.  
This value is determined with the part mounted to a  
JESD 51-9 defined test board, which does not reflect an  
actual application or viable operating condition.  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD51-9 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formedonaµModulepackagemountedtoahardwaretest  
board—also defined by JESD51-9 (Test Boards for Area  
Array Surface Mount Package Thermal Measurements).  
The motivation for providing these thermal coefficients is  
found in JESD51-12 (Guidelines for Reporting and Using  
Electronic Package Thermal Information).  
θ ,thethermalresistancefromjunction-to-ambient,  
JCbottom  
is the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclosure.  
This environment is sometimes referred to as “still air”  
although natural convection causes the air to move. This  
value is determined with the part mounted to a JESD 51-9  
defined test board, which does not reflect an actual ap-  
plication or viable operating condition.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the µModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in the data sheet can be used in  
a manner that yields insight and guidance pertaining to  
one’s application usage, and can be adapted to correlate  
thermal performance to one’s own application.  
θ
, the thermal resistance from junction-to-top of the  
JCtop  
productcase,isdeterminedwithnearlyallofthecomponent  
power dissipation flowing through the top of the package.  
As the electrical connections of the typical µModule are  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
tion to the top of the part. As in the case of θ  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
, this  
JCbottom  
θ , the thermal resistance from junction to the printed  
JB  
circuit board, is the junction-to-board thermal resistance  
where almost all of the heat flows through the bottom of  
the µModule and into the board, and is really the sum of  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD 51-12; these coef-  
ficients are quoted or paraphrased below:  
the θ  
and the thermal resistance of the bottom of  
JCbottom  
the part through the solder joints and through a portion  
of the board. The board temperature is measured at a  
specified distance from the package, using a two-sided,  
two-layer board. This board is described in JESD 51-9.  
θ , the thermal resistance from junction-to-ambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistancemeasuredinaonecubicfootsealedenclosure.  
ꢐꢑꢒꢏꢓꢎꢔꢒꢕꢓꢔꢕꢖꢆꢛꢎꢌꢒꢓ Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ ꢘꢐꢌꢗꢋ ꢂꢜꢕꢝ ꢋꢌꢃꢎꢒꢌꢋ ꢛꢔꢖRꢋꢚ  
ꢐꢑꢒꢏꢓꢎꢔꢒꢕꢓꢔꢕꢏꢖꢗꢌ ꢘꢓꢔꢙꢚ  
Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢏꢖꢗꢌ ꢘꢓꢔꢙꢚꢕꢓꢔꢕꢖꢆꢛꢎꢌꢒꢓ  
Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢐꢑꢒꢏꢓꢎꢔꢒꢕꢓꢔꢕꢛꢔꢖRꢋ Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢐꢑꢒꢏꢓꢎꢔꢒ  
ꢐꢑꢒꢏꢓꢎꢔꢒꢕꢓꢔꢕꢏꢖꢗꢌ  
ꢘꢛꢔꢓꢓꢔꢆꢚ Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢏꢖꢗꢌ ꢘꢛꢔꢓꢓꢔꢆꢚꢕꢓꢔꢕꢛꢔꢖRꢋ  
Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢛꢔꢖRꢋꢕꢓꢔꢕꢖꢆꢛꢎꢌꢒꢓ  
Rꢌꢗꢎꢗꢓꢖꢒꢏꢌ  
ꢀꢁꢂꢁ ꢃ0ꢄ  
ꢅꢆꢇꢈꢉꢊe ꢋꢌꢍꢎꢏꢌ  
Figure 8. Graphical Representation of JESD51-12 Thermal Coefficients  
Rev. 0  
17  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 8; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule.  
loss as that which was simulated. An outcome of this  
process and due-diligence yields a set of derating curves  
provided in other sections of this data sheet. After these  
laboratorytestshavebeenperformedandcorrelatedtothe  
µModulemodel,thentheθ andθ aresummedtogether  
JB  
BA  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaµModule.Forexample,innormal  
board-mounted applications, never does 100% of the  
device’s total power loss (heat) thermally conduct exclu-  
sivelythroughthetoporexclusivelythroughbottomofthe  
to correlate quite well with the µModule model with no  
airflow or heat sinking in a properly define chamber. This  
θ
+ θ value is shown in the Pin Configuration section  
BA  
JB  
and should accurately equal the θ value because ap-  
JA  
proximately 100% of power loss flows from the junction  
through the board into ambient with no airflow or top  
mounted heat sink.  
µModule—asthestandarddefinesforθ  
andθ  
,
The 5V, 12V and 24V input power loss curves in Figure 9  
toFigure11canbeusedincoordinationwiththeloadcurrent  
derating curves in Figure 12 to Figure 17 for calculating  
JCtop  
JCbottom  
respectively.Inpractice,powerlossisthermallydissipated  
in bothdirectionsawayfromthepackage—granted, in the  
absence of a heat sink and airflow, a majority of the heat  
flow is into the board.  
an approximate θ thermal resistance for the LTM4656  
JA  
with various heat sinking and airflow conditions. The  
power loss curves are taken at room temperature, and  
are increased with multiplicative factors according to the  
ambient temperature. These approximate factors is 1.4  
assuming the junction temperature at 120°C. The output  
voltages are chosen to include the lower and higher out-  
put voltage ranges for correlating the thermal resistance.  
Thermal models are derived from several temperature  
measurementsinacontrolledtemperaturechamberalong  
withthermalmodelinganalysis.Thejunctiontemperatures  
are monitored while ambient temperature is increased  
with and without airflow. The power loss increase with  
ambient temperature change is factored into the derating  
curves. The junctions are maintained at 120°C maximum  
while lowering output current or power with increasing  
ambient temperature. The decreased output current will  
decrease the internal module loss as ambient temperature  
isincreased.Themonitoredjunctiontemperatureof120°C  
minus the ambient operating temperature specifies how  
much module temperature rise can be allowed. As an  
example in Figure 15, the load current is derated to ~3.2A  
at ~ 80°C with no air or heat sink and the power loss for  
the 12V to 24V at 3.2A output is about 3W. The 4.48W  
loss is calculated with the ~ 3W room temperature loss  
from the 12V to 24V power loss curve at 3.2A, and the  
1.4 multiplying factor. If the 80°C ambient temperature  
is subtracted from the 120°C junction temperature, then  
Within a SIP (system-in-package) module, be aware there  
are multiple power devices and components dissipating  
power, with a consequence that the thermal resistances  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometry of the µModule and the specified PCB with all  
of the correct material coefficients along with accurate  
power loss source definitions; (2) this model simulates  
a software-defined JEDEC environment consistent with  
JESD51-9topredictpowerlossheatflowandtemperature  
readingsatdifferentinterfacesthatenablethecalculationof  
theJEDEC-definedthermalresistancevalues;(3)themodel  
and FEA software is used to evaluate the µModule with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
Rev. 0  
18  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
0
0
ꢀꢁꢂ ꢆ ꢇꢈ0ꢉꢊꢋ  
ꢃꢄꢅ  
ꢀꢁ ꢅ ꢆ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢀꢁꢂ ꢆ ꢁꢇ0ꢈꢉꢊ  
ꢀꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢃꢄꢅ  
0
ꢀꢁꢂ ꢆ ꢁꢇ0ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ0ꢁ ꢅ ꢆ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢀꢁꢂ ꢆ ꢇꢇ0ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀꢁꢂ ꢆ ꢁꢇ0ꢈꢉꢊ  
ꢃꢄꢅ  
0.0  
ꢅ.0  
ꢄ.0  
ꢃ.0  
ꢂ.0  
ꢁ.0  
ꢀ.0  
0.0  
ꢅ.0  
ꢄ.0  
ꢃ.0  
ꢂ.0  
ꢁ.0  
ꢀ.0  
0.0  
ꢅ.0  
ꢄ.0  
ꢃ.0  
ꢂ.0  
ꢁ.0  
ꢀ.0  
ꢈꢉꢊꢋ ꢌꢍRRꢎꢏꢐ ꢑꢊꢒ  
ꢇꢈꢉꢊ ꢋꢌRRꢍꢎꢏ ꢐꢉꢑ  
ꢇꢈꢉꢊ ꢋꢌRRꢍꢎꢏ ꢐꢉꢑ  
ꢂꢀꢁꢀ ꢆ0ꢇ  
ꢂꢀꢁꢀ ꢆꢅ0  
ꢂꢀꢁꢀ ꢆꢅꢅ  
Figure 9. Power Loss vs Load  
Current 5VIN Based on LTM4656  
Figure 10. Power Loss vs Load  
Current 12VIN Based on LTM4656  
Figure 11. Power Loss vs Load  
Current 24VIN Based on LTM4656  
ꢀ.0  
ꢁ.ꢂ  
ꢁ.0  
ꢃ.ꢂ  
ꢃ.0  
ꢋ.ꢂ  
ꢋ.0  
0.ꢂ  
0
ꢀ.ꢁ  
ꢀ.ꢂ  
ꢀ.ꢋ  
ꢀ.0  
0.ꢃ  
0.ꢁ  
0.ꢂ  
0.ꢋ  
0
ꢈ.ꢉ  
ꢈ.0  
0.ꢀ  
0.ꢊ  
0.ꢋ  
0.ꢉ  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢃ0  
ꢀ0  
ꢌ0  
ꢑ0  
ꢋ00  
ꢋꢃ0  
0
ꢋ0  
ꢂ0  
ꢁ0  
ꢃ0  
ꢀ00  
ꢀꢋ0  
0
ꢉ0  
ꢋ0  
ꢊ0  
ꢀ0  
ꢈ00  
ꢈꢉ0  
ꢈꢐꢊ  
ꢈꢑꢊ  
ꢅꢐꢇ  
ꢆꢎꢏ  
ꢉꢎꢏ  
ꢉꢏꢐ  
ꢀꢌꢂꢌ ꢍꢋꢃ  
ꢂꢁꢌꢁ ꢍꢀꢎ  
ꢋꢊꢌꢊ ꢍꢈꢋ  
Figure 12. LTM4656 5VIN 12VOUT  
400kHz no HS  
Figure 13. LTM4656 5VIN 24VOUT  
500kHz no HS  
Figure 14. LTM4656 5VIN 36VOUT  
500kHz no HS  
ꢀ.ꢁ  
ꢀ.0  
ꢂ.ꢁ  
ꢂ.0  
ꢃ.ꢁ  
ꢃ.0  
ꢋ.ꢁ  
ꢋ.0  
0.ꢁ  
0
ꢉ.0  
ꢀ.ꢈ  
ꢀ.0  
ꢊ.ꢈ  
ꢊ.0  
0.ꢈ  
0
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢃ0  
ꢀ0  
ꢌ0  
ꢑ0  
ꢋ00  
ꢋꢃ0  
0
ꢀ0  
ꢋ0  
ꢌ0  
ꢑ0  
ꢊ00  
ꢊꢀ0  
0
ꢋ0  
ꢀ0  
ꢉ0  
ꢒ0  
ꢌ00  
ꢌꢋ0  
ꢈꢐꢊ  
ꢅꢐꢇ  
ꢅꢑꢇ  
ꢆꢏꢐ  
ꢉꢎꢏ  
ꢆꢎꢏ  
ꢀꢌꢁꢌ ꢍꢋꢁ  
ꢋꢌꢈꢌ ꢍꢊꢌ  
ꢀꢉꢈꢉ ꢍꢌꢎ  
Figure 17. LTM4656 24VIN 36VOUT  
650kHz no HS  
Figure 15. LTM4656 12VIN 24VOUT  
550kHz no HS  
Figure 16. LTM4656 12VIN 36VOUT  
650kHz no HS  
Rev. 0  
19  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
Table 2. 12V Output  
DERATING CURVE  
Figure 12  
V (V)  
POWER LOSS CURVE AIRFLOW (LFM)  
HEAT SINK  
None  
θ (°C/W)  
IN  
JA  
5
5
5
Figure 9  
Figure 9  
Figure 9  
0
200  
400  
10  
8
7.5  
Figure 12  
Figure 12  
None  
None  
Table 3. 24V Output  
DERATING CURVE  
Figures 13, 15  
Figures 13, 15  
Figures 13, 15  
V (V)  
POWER LOSS CURVE AIRFLOW (LFM)  
HEAT SINK  
None  
θ (°C/W)  
IN  
JA  
5, 12  
5, 12  
5, 12  
Figure 10  
Figure 10  
Figure 10  
0
200  
400  
10  
8
7.5  
None  
None  
Table 4. 36V Output  
DERATING CURVE  
Figures 14, 16, 17  
Figures 14, 16, 17  
Figures 14, 16, 17  
V (V)  
POWER LOSS CURVE AIRFLOW (LFM)  
HEAT SINK  
None  
θ (°C/W)  
IN  
JA  
5, 12, 24  
5, 12, 24  
5, 12, 24  
Figure 11  
Figure 11  
Figure 11  
0
200  
400  
10  
8
7.5  
None  
None  
Table 5. Capacitor Matrix  
BV  
BV  
MAX IN 8.5A  
C
OUT  
IN  
IN  
(CER)  
(μF)  
(BULK)  
(μF)  
V
FREQ  
(kHz)  
OUT  
(W)  
(CER)  
(μF)  
C
OUT  
OUT  
V
(V)  
(V)  
LOAD  
5
I
IN  
DC  
(Bulk)  
IN  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
22  
22  
22  
22  
22  
22  
22  
22  
10  
10  
5
8
300  
400  
500  
500  
500  
550  
650  
650  
500  
650  
8.65  
9.34  
7.18  
7.83  
8.68  
8.42  
7.95  
8.02  
5.94  
7.70  
0.38  
0.58  
0.79  
0.86  
0.40  
0.50  
0.67  
0.57  
0.14  
0.33  
40  
43.2  
32.4  
36  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
10 ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
100µF, 30mΩ ×2  
5
5
12  
24  
36.  
20  
24  
36  
28  
28  
36  
3.6  
1.35  
1
5
12  
12  
12  
12  
24.  
24  
5
100  
96  
4
2.5  
3.25  
5
90  
91  
140  
180  
5
BV BULK  
Suncon HVA Series  
Suncon HVA Series  
100µF, 10V  
100µF, 16V  
100µF, 25V  
V
V
BULK  
Suncon HVA Series  
100µF, 16V  
100µF, 25V  
150µF, 35V  
82µF, 50V  
10µF, 25V  
10µF, 50V  
IN  
OUT  
Suncon HVPF Series  
Suncon HVPF Series  
Suncon HVT Series  
Suncon HVP Series  
BV CER  
IN  
Murata GRM31CR71A226K  
22µF, 16V  
22µF, 16V  
10µF, 25V  
10µF, 50V  
CER  
Murata GRM32DR71E106KA12L  
Murata GRM32ER71H106KA12L  
OUT  
Murata GRM32ER61C226ME20  
Murata GRM31CR71E106KA12L  
Murata GRM32ER71H106KA12L  
Rev. 0  
20  
For more information www.analog.com  
LTM4656/LTM4656-1  
APPLICATIONS INFORMATION  
the difference of 40°C divided by 4.48W equals a 9°C/W  
JA  
Do not put via directly on the pad, unless they are  
capped or plated over.  
θ
thermal resistance. Table 2 specifies a 10°C/W value  
which is very close. Table 2, Table 3, and Table 4 provide  
equivalent thermal resistances for 12V, 24V and 36V out-  
putswithandwithoutairflowandheatsinking.Thederived  
thermal resistances in Table 2 to Table 4 for the various  
conditions can be multiplied by the calculated power loss  
asafunctionofambienttemperaturetoderivetemperature  
rise above ambient, thus maximum junction temperature.  
Room temperature power loss can be derived from the ef-  
ficiencycurvesintheTypicalPerformanceCharacteristics  
section and adjusted with the above ambient temperature  
multiplicativefactors.Theprintedcircuitboardisa1.6mm  
thick four-layer board with two-ounce copper for the two  
outer layers and one-ounce copper for the two inner lay-  
ers. The PCB dimensions are 95mm × 76mm.  
Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
Forparallelmodules, tietheV , COMP, SS, andSDHN  
FB  
pins together. Use an internal layer to closely connect  
these pins together. The TRACK pin can be tied a com-  
mon capacitor for regulator soft-start.  
Bringouttestpointsonthesignalpinsformonitoring.  
Figure18givesagoodexampleoftherecommendedlayout.  
ꢆꢇꢈꢉꢆꢊꢋꢌ ꢉꢊꢇꢍꢈ ꢎꢋꢇ  
ꢒꢊꢓ  
ꢉꢊ  
SAFETY CONSIDERATIONS  
ꢐꢑꢊꢐꢑ  
ꢒꢊꢓ  
The LTM4656 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. The device  
IN  
OUT  
does support thermal shutdown and overcurrent protec-  
tion with retry. If required, a slow blow fuse with a rating  
twice the maximum input current needs to be provided to  
protect each unit from catastrophic failure.  
ꢔꢏ  
ꢉꢊ  
ꢆꢍꢈ  
ꢔꢏ ꢎꢋꢇꢐ  
ꢉꢊ  
LAYOUT CHECKLIST/EXAMPLE  
ꢒꢊꢓ  
The high integration of LTM4656 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢕꢖꢗ ꢈꢆꢇ ꢌꢋꢘꢑRꢙ ꢚꢀꢁꢂꢁ ꢄꢁꢛꢛ ꢜ ꢄꢁꢛꢛ  
ꢋꢈꢌ  
ꢇꢈ  
Use large PCB copper areas for high current paths,  
includingV ,BV GNDandV .Ithelpstominimize  
IN  
IN  
OUT  
ꢉꢊꢈꢉꢊ  
ꢋꢈꢌ  
the PCB conduction loss and thermal stress.  
Placehighfrequencyceramicinputandoutputcapaci-  
torsnexttotheBV , PGNDandV  
pinstominimize  
IN  
OUT  
ꢐꢆ  
ꢍꢎꢏ  
ꢇꢈ  
high frequency noise.  
Place a dedicated power ground layer underneath  
the unit.  
ꢐꢆ ꢛꢖꢜꢉ  
ꢇꢈ  
ꢋꢈꢌ  
Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢑꢒꢓ ꢐꢍꢏꢏꢍꢔ ꢕꢖꢗꢊRꢘ ꢔꢀꢁꢂꢁ ꢄꢁꢙꢙ ꢚ ꢄꢁꢙꢙ  
Figure 18. Recommended PCB Layout  
Rev. 0  
21  
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL APPLICATIONS  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢄꢅRꢆ ꢇꢆ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢀ00ꢁꢂ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢅ.ꢁꢆꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢁꢂ  
Rꢀ  
ꢁꢀ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
PINS UNUSED IN THIS APPLICATION:  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢆꢇRꢈ Rꢉꢊꢈ ꢋꢌꢇꢏꢊꢎꢏꢄꢈ ꢎꢐ  
Figure 19. 5V Input to 12VOUT at 3.25A Design  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢄꢅRꢆ ꢇꢆ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢂꢃ  
ꢀꢀ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢅ.ꢆꢇꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ0ꢂꢃ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢁꢂ  
Rꢀ  
ꢁꢁ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄ0ꢅ  
PINS UNUSED IN THIS APPLICATION:  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢆꢇRꢈ Rꢉꢊꢈ ꢋꢌꢇꢏꢊꢎꢏꢐꢈ ꢎꢑ  
Retry Cycle  
Short Circuit Trip  
V
ꢅꢇ  
ꢀꢆꢃꢄꢅꢆ  
IN  
5V/DIV  
V
ꢈꢉꢊ  
ꢋ0ꢆꢃꢄꢅꢆ  
OUT  
10V/DIV  
I
IN  
ꢊꢅꢗꢘR ꢙꢅꢇ ꢋꢆꢃꢄꢅꢆ  
ꢁꢂꢃꢄꢅꢆ  
5A/DIV*  
ꢌꢈꢈꢍ  
ꢎꢏꢐꢀꢁꢂꢑ  
TIMER PIN  
1V/DIV  
4656 F20b  
ꢒꢓꢀꢓ ꢔꢕ0ꢖ  
200ms/DIV  
*25mV SENSE IN FOLDBACK  
TIMER (218μs)  
Figure 20. 5V Input to 24VOUT at 1.35A Design  
Rev. 0  
22  
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL APPLICATIONS  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢂꢃRꢄ ꢅꢄ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢂꢃ  
ꢀꢀ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ  
ꢂꢃꢄꢅꢄꢆꢇ  
ꢀꢁꢂ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢁꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂ  
Rꢀ  
ꢁꢁ.ꢂꢃ  
ꢀ0.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
PINS UNUSED IN THIS APPLICATION:  
R R  
ꢀꢁꢂ  
0.0ꢀꢁꢂ  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢀ00ꢁꢂ  
Figure 21. 12V Input to 24VOUT at 4A Design  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈꢉꢀ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄꢅ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀ0ꢁ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈꢉꢀ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢄꢅꢄ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢁꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢁꢂ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢁꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀꢃ ꢄꢅꢆꢀ  
0ꢇꢈꢉꢊꢄꢋ  
ꢀꢁꢂꢃ  
ꢄꢄꢅ  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈꢉꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢀꢁꢂꢀꢃ ꢄꢅꢆꢀ  
ꢇꢈ0ꢉꢊꢋꢌꢄꢍ  
0.ꢀꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢂꢃꢄ0ꢅꢆꢇ  
ꢁꢂꢃꢄ  
ꢀ00ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀ0ꢁ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈꢉꢁ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
0.ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢁꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢁꢂ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢁꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢅ  
PINS UNUSED IN THIS APPLICATION:  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
R R  
Figure 22. 2-Phase 12V Input to 24VOUT at 8A Design  
Rev. 0  
23  
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL APPLICATIONS  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢄꢅRꢆ ꢇꢆ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ ꢂRꢃꢄꢅꢆꢄꢅꢇ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢄꢅꢄ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ 0.ꢅꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀ0ꢁ  
ꢁꢂ  
Rꢀ  
ꢁ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
PINS UNUSED IN THIS APPLICATION:  
ꢆꢇRꢈ Rꢉꢊꢈ ꢋꢌꢇꢏꢊꢎꢏꢐꢈ ꢎꢑ  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢀꢁꢂꢃꢄꢅꢆꢅ  
Figure 23. 5V Input to 36VOUT at 0.8A Design  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃRꢄ ꢅꢄ  
ꢀꢁꢂꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢄꢅꢄ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢅ.ꢆꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀ0ꢁ  
ꢁꢂ  
Rꢀ  
ꢁꢀ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄꢀ  
PINS UNUSED IN THIS APPLICATION:  
ꢅꢆRꢇ Rꢈꢉꢇ ꢊꢋꢆꢎꢉꢍꢎꢏꢇ ꢍꢐ  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢀꢁꢂꢃꢄꢅꢆꢅ  
Figure 24. 12V Input to 36VOUT at 2.5A Design  
Rev. 0  
24  
For more information www.analog.com  
LTM4656/LTM4656-1  
TYPICAL APPLICATIONS  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢄꢄ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂ  
ꢃꢄRꢅ ꢆꢅ  
ꢀ.0ꢁꢂ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇꢅꢆꢈ  
ꢀꢁ  
ꢂꢃ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢄꢅꢄ  
FLT  
FꢀꢁLT  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢄꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ0ꢁꢂ  
ꢀ0ꢁꢂ  
ꢀ0ꢁ  
ꢁꢂ  
Rꢀ  
ꢁ.ꢂꢃ  
ꢀRꢁꢂ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
PINS UNUSED IN THIS APPLICATION:  
ꢅꢆRꢇ Rꢈꢉꢇ ꢊꢋꢆꢎꢉꢍꢎꢏꢇ ꢍꢐ  
ꢀꢁ ꢀꢂꢃꢄ ꢃꢁꢅꢆꢀꢁR  
ꢀꢁꢂꢃꢄꢅꢆꢅ  
Figure 25. 24V Input to 36VOUT at 5A Design  
Rev. 0  
25  
For more information www.analog.com  
LTM4656/LTM4656-1  
PIN CONFIGURATION TABLE  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
LTM4656Y Component BGA Pinout  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID  
FUNCTION  
SHDN  
GND  
BV  
IN  
BV  
IN  
BV  
IN  
BV  
IN  
BV  
BV  
BV  
BV  
BV  
BV  
BV  
BV  
D1  
D2  
BV  
BV  
BV  
E1  
E2  
GND  
GND  
NC  
F1  
F2  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A2  
B2  
C2  
A3  
B3  
C3  
D3  
E3  
F3  
GND  
A4  
B4  
C4  
D4  
GND  
GND  
GND  
GND  
GND  
GND  
E4  
GND  
GND  
GND  
GND  
F4  
GND  
A5  
GND  
GND  
B5  
GND  
GND  
C5  
GND  
GND  
D5  
E5  
F5  
GND  
A6  
B6  
C6  
D6  
E6  
F6  
COMP  
SS  
A7  
SENSE1  
SENSE1  
B7  
SENSE1  
SENSE1  
C7  
SENSE1  
SENSE1  
D7  
E7  
F7  
A8  
B8  
C8  
D8  
E8  
V
F8  
PGOOD  
FB  
A9  
V
IN  
V
IN  
V
IN  
V
IN  
B9  
V
V
V
V
C9  
V
V
V
V
D9  
E9  
GND  
GND  
GND  
GND  
F9  
V
BIAS  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A10  
A11  
A12  
B10  
B11  
B12  
C10  
C11  
C12  
D10  
D11  
D12  
V
IN  
V
IN  
V
IN  
E10  
E11  
E12  
F10  
F11  
F12  
GND  
GND  
GND  
PIN ID  
G1  
FUNCTION  
GND  
PIN ID  
H1  
FUNCTION  
GND  
PIN ID  
J1  
FUNCTION PIN ID FUNCTION PIN ID FUNCTION PIN ID  
FUNCTION  
V
V
V
V
V
V
K1  
K2  
V
V
V
V
V
V
L1  
L2  
V
V
V
V
V
V
M1  
M2  
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G2  
GND  
H2  
UV  
J2  
G3  
GND  
H3  
FLT  
J3  
K3  
L3  
M3  
+
G4  
TMR  
H4  
TEMP  
J4  
K4  
L4  
M4  
G5  
GND  
H5  
TEMP  
J5  
K5  
L5  
M5  
G6  
MODE_PLLIN  
GND  
H6  
FREQ  
RUN  
GND  
GND  
GND  
GND  
GND  
J6  
K6  
L6  
M6  
G7  
H7  
J7  
GND  
GND  
GND  
GND  
GND  
SW  
K7  
GND  
GND  
GND  
GND  
GND  
SW  
L7  
GND  
GND  
GND  
GND  
GND  
GND  
M7  
GND  
GND  
GND  
GND  
GND  
GND  
G8  
GND  
H8  
J8  
K8  
L8  
M8  
G9  
INTV  
H9  
J9  
K9  
L9  
M9  
CC  
G10  
G11  
G12  
GND  
GND  
GND  
H10  
H11  
H12  
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
Rev. 0  
26  
For more information www.analog.com  
LTM4656/LTM4656-1  
PACKAGE DESCRIPTION  
ꢰ ꢰ ꢣ ꢣ ꢣ  
ꢧ . ꢓ ꢮ ꢑ 0  
ꢑ . ꢯ ꢄ ꢑ 0  
ꢀ . ꢀ ꢀ ꢑ 0  
ꢘ . ꢄ ꢯ ꢑ 0  
ꢄ . ꢓ 0 ꢑ 0  
0 . ꢧ ꢘ ꢑ 0  
0 . 0 0 0 0  
0 . ꢧ ꢘ ꢑ 0  
ꢄ . ꢓ 0 ꢑ 0  
ꢘ . ꢄ ꢯ ꢑ 0  
ꢀ . ꢀ ꢀ ꢑ 0  
ꢑ . ꢯ ꢄ ꢑ 0  
ꢧ . ꢓ ꢮ ꢑ 0  
ꢡ ꢡ ꢡ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM4656/LTM4656-1  
PACKAGE PHOTO  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4661  
5.5V , 15V , 4A Boost µModule  
1.8V ≤ V ≤ 5.5V, 2.5V ≤ V  
≤ 15V. 6.25mm × 6.25mm × 2.42mm BGA.  
≤ 16V. 15mm × 15mm × 2.82mm LGA.  
≤ 24V. 15mm × 15mm × 2.82mm LGA.  
≤ 34V. 15mm × 15mm × 2.82mm LGA.  
IN  
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
Regulator.  
LTM4605  
LTM4607  
LTM4609  
LTM8054  
LTM8055  
LTM8056  
20V , 20V , 12A Buck-Boost  
4.5V ≤ V ≤ 20V, 0.8V ≤ V  
IN  
IN  
OUT  
µModule Regulator. External Inductor.  
36V , 24V , 10A Buck-Boost  
4.5V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
OUT  
IN  
µModule Regulator. External Inductor.  
36V , 34V , 10A Buck-Boost  
4.5V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
OUT  
IN  
µModule Regulator. External Inductor.  
15mm × 15mm × 3.42mm BGA.  
36V , 36V , 5.4A Buck-Boost  
5V ≤ Vin ≤ 36V, 1.2V ≤ V  
≤ 36V. 11.25mm × 15mm × 3.42mm BGA.  
≤ 36V. 15mm × 15mm × 4.92mm BGA.  
≤ 48V. 15mm × 15mm × 4.92mm BGA.  
IN  
OUT  
OUT  
OUT  
OUT  
uModule Regulator. Integrated Inductor.  
36V , 36V , 8.5A Buck-Boost  
5V ≤ V ≤ 36V, 1.2V ≤ V  
IN  
OUT  
IN  
uModule Regulator. Integrated Inductor.  
58V , 48V , 5.4A Buck-Boost  
5V ≤ V ≤ 58V, 1.2V ≤ V  
IN  
OUT  
IN  
uModule Regulator. Integrated Inductor.  
Rev. 0  
09/20  
www.analog.com  
28  
© ANALOG DEVICES, INC. 2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY