LTM8060IY [ADI]

Quad 40VIN, Silent Switcher μModule Regulator with Configurable 3A Output Array;
LTM8060IY
型号: LTM8060IY
厂家: ADI    ADI
描述:

Quad 40VIN, Silent Switcher μModule Regulator with Configurable 3A Output Array

文件: 总28页 (文件大小:2696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8060  
Quad 40V , Silent Switcher μModule Regulator  
IN  
with Configurable 3A Output Array  
FEATURES  
DESCRIPTION  
The LTM®8060 is quad 40VIN, 3A step-down Silent  
n
Four Complete Step-Down Switching Power Supplies  
Low Noise Silent Switcher® Architecture  
CISPR22 Class B Compliant  
Switcher μModule® regulator. The Silent Switcher archi-  
tecture minimizes EMI while delivering high efficiency at  
frequencies up to 3MHz. Included in the package are the  
controllers, power switches, inductors, and support com-  
ponents. Operating over a wide input voltage range, the  
LTM8060 supports output voltages from 0.8V to 8V, and  
a switching frequency range of 200kHz to 3MHz, each set  
by a single resistor. Only the bulk input and output filter  
capacitors, are needed to finish the design. The LTM8060  
product video is available on website.  
n
n
n
n
n
n
CISPR25 Class 5 Compliant  
Wide Input Voltage Range: 3V to 40V  
Wide Output Voltage Range: 0.8V to 8V  
3A Continuous Output Current per Channel at 12V ,  
IN  
3.3V , T = 80°C  
OUT  
A
n
n
n
4A Continuous Output Current per Channel at 12V ,  
IN  
3.3V , f = 2MHz, T = 60°C  
OUT SW  
A
Multiphase or Multi-μModule Parallelable for  
Increased Output Current  
The LTM8060 is packaged in a compact (11.9mm ×  
16mm × 3.32mm) over-molded Ball Grid Array (BGA)  
package suitable for automated assembly by standard  
surface mount equipment. The LTM8060 is available with  
SnPb (BGA) or RoHS compliant.  
Low Thermal Resistance, θ = 9°C/W,  
JA  
θ
= 4.2°C/W, θ  
= 1.6°C/W  
JCtop  
JCbot  
n
n
Selectable Switching Frequency: 200kHz to 3MHz  
Compact Package  
Configurable Output Array  
APPLICATIONS  
The LTM8060 outputs can be paralleled in an array for up  
to 12A capability.  
n
Automated Test Equipment  
n
Industrial Supplies  
Medical Equipment  
ꢀꢁ  
n
ꢂꢁ  
ꢃꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢄꢅꢁ  
All registered trademarks and trademarks are the property of their respective owners.  
ꢂꢁ  
ꢀꢁ  
Click to view associated Video Design Idea.  
TYPICAL APPLICATION  
Quad 3A Output from 8.5V to 40V Input  
Efficiency, VIN = 24V, BIAS = 5V  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅ0ꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀ.ꢀꢁ  
ꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
PINS NOT USED:  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅꢄ ꢆRꢇꢇꢈꢄ  
ꢆRꢇꢇꢃꢄ ꢆRꢇꢇꢅꢄ  
ꢆRꢇꢇꢉꢄ ꢇꢊꢀRꢋꢈꢄ  
ꢇꢊꢀRꢋꢃꢄ ꢇꢊꢀRꢋꢅꢄ  
ꢇꢊꢀRꢋꢉꢄ ꢌꢍꢈꢄ  
ꢌꢍꢃꢄ ꢌꢍꢅꢄ ꢌꢍꢉꢄ  
ꢎꢏꢐꢑꢁꢆꢈꢃꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢀRꢃꢄꢅ ꢆꢇ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢃꢄ  
ꢀ.ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
0
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢎꢏꢐꢑꢁꢆꢅꢉ  
ꢀꢁ  
ꢂꢃ  
ꢀ0ꢁ0 ꢂꢃ0ꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃ0ꢄꢅ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTM8060  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
SYNCn .......................................................................6V  
Maximum Internal Temperature (Note 2).............. 125°C  
Storage Temperature ............................. –55°C to 125°C  
Peak Solder Reflow Package Body Temperature .. 245°C  
V
V
, RUNn, PGn ......................................................42V  
OUTn  
INn  
, BIASn, AUXn ................................................10V  
FBn, TRSSn, SHAREn, RTn .......................................4V  
PIN CONFIGURATION  
ꢓꢩꢃ ꢥꢡꢆꢛ  
ꢧꢭꢨꢄꢇꢑ Rꢦꢨꢑ Rꢦꢨꢇ  
ꢬꢀꢇ  
ꢬꢀꢑ ꢂꢦꢖꢑ ꢀꢡꢂꢧꢇꢑ ꢂꢦꢖꢇ  
ꢧꢢꢂRꢆꢑ  
ꢧꢢꢂRꢆꢇ  
Rꢓꢇꢑ ꢓRꢧꢧꢑ ꢓRꢧꢧꢇ  
ꢇꢇ  
ꢇ0  
ꢀꢂꢨꢅꢟ  
ꢡꢨꢑ  
ꢀꢂꢨꢅꢈ  
ꢡꢨꢇ  
ꢄꢋꢅꢩꢦꢓꢇꢑ ꢃꢁꢑ  
ꢌꢨꢄ  
ꢃꢁꢇ  
ꢀꢂꢨꢅꢐ  
ꢩꢦꢓꢑ  
ꢀꢂꢨꢅꢣ  
ꢩꢦꢓꢇ  
ꢀꢂꢨꢅꢑ  
ꢁꢨꢌ  
ꢧꢢꢂRꢆꢐ  
ꢧꢢꢂRꢆꢟ  
ꢃꢁꢐ  
ꢌꢨꢄ  
ꢀꢂꢨꢅꢇ  
ꢩꢦꢓꢐ  
ꢀꢂꢨꢅꢫ  
ꢂꢦꢖꢐ ꢀꢡꢂꢧꢐꢟ ꢂꢦꢖꢟ ꢬꢀꢟ  
ꢓRꢧꢧꢐ ꢓRꢧꢧꢟ Rꢓꢐꢟ ꢬꢀꢐ  
ꢃꢁꢟ ꢄꢋꢅꢩꢦꢓꢐꢟ  
ꢩꢦꢓꢟ  
ꢀꢂꢨꢅꢉ  
ꢡꢨꢐꢟ  
Rꢦꢨꢐ Rꢦꢨꢟ ꢧꢭꢨꢄꢐꢟ  
R
ꢀꢁꢂ ꢃꢂꢄꢅꢂꢁꢆ  
ꢇꢈꢉꢊꢋꢆꢂꢌ ꢍꢇꢇ.ꢎꢏꢏ × ꢇꢈꢏꢏ × ꢐ.ꢐꢑꢏꢏꢒ  
ꢗ ꢇꢑꢉꢘꢄꢙ θ ꢗ ꢎꢘꢄꢚθ  
ꢔꢄꢠꢝꢜ  
ꢗ ꢟ.ꢑꢘꢄꢚꢙ  
ꢔꢄꢜꢝꢞ  
ꢔꢕꢂꢖ  
ꢔꢂ  
ꢗ ꢇ.ꢈꢘꢄꢚꢆꢡꢁꢢꢓ ꢗ ꢇ.ꢎꢣꢤ  
θ
θ ꢥꢂꢋꢦꢆꢧ ꢌꢆꢓꢆRꢕꢡꢨꢆꢌ ꢃꢆR ꢔꢆꢌꢆꢄ ꢉꢇ ꢄꢩꢨꢌꢡꢓꢡꢩꢨꢧꢪ  
θ
ꢥꢂꢋꢦꢆ ꢡꢧ ꢩꢀꢓꢂꢡꢨꢆꢌ ꢛꢡꢓꢢ ꢌꢆꢕꢩ ꢀꢩꢂRꢌ  
ꢔꢂ  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM8060IY#PBF  
LTM8060IY  
BALL FINISH  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
e1  
e0  
–40°C to 125°C  
–40°C to 125°C  
LTM8060Y  
BGA  
3
• Device temperature grade is indicated by a label on the shipping container. This product is not recommended for second side reflow.  
This product is moisture sensitive. For more information, go to  
Recommended BGA PCB Assembly and Manufacturing Procedures.  
• Pad code is per IPC/JEDEC J-STD-609.  
BGA Package and Tray Drawings  
Rev. 0  
2
For more information www.analog.com  
LTM8060  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
internal temperature range, otherwise specifications are at TA = 25°C. VINn = 12V, RUNn = 2V unless otherwise noted (Notes 2, 3).  
PARAMETER  
Minimum V Input Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
3.0  
3.0  
2.0  
V
V
V
IN1  
Minimum V  
Input Voltage  
IN34  
Minimum V Input Voltage  
V
IN1  
= 3V  
IN2  
Output DC Voltage  
FBn open  
FBn = 21.5kΩ  
0.8  
10  
V
V
Maximum Output DC Current  
(Note 4)  
6
8
A
Quiescent Current into V  
RUNn = 0  
BIASn = 5V, SYNCn = 3.3V, No load  
μA  
mA  
INn  
7
Current into BIAS  
RUNn = 0, BIASn = 5V  
0.5  
μA  
n
BIASn = 5V, SYNCn = 3.3V, No load  
18  
0.05  
0.1  
10  
mA  
Line Regulation  
Load Regulation  
Output RMS Ripple  
FBn Voltage  
5V < V < 40V, I  
= 1A  
OUTn  
%
%
INn  
12V , 0.1A < I  
< 4A  
INn  
OUTn  
3.3V  
, I  
= 4A  
mV  
OUTn OUTn  
792  
784  
800  
800  
808  
816  
mV  
mV  
l
Current out of FBn  
V n = 1V, FBn = 0V  
OUT  
4
μA  
V
Minimum BIASn for Proper Operation  
3.2  
Switching Frequency  
RTn = 200kΩ  
RTn = 35.7kΩ  
RTn = 8.06kΩ  
200  
1
3
kHz  
MHz  
MHz  
RUNn Threshold  
0.74  
V
RUNn Input Current  
PGn Threshold at FBn  
RUNn = 0V  
100  
nA  
Lower Threshold  
Upper Threshold  
740  
860  
mV  
mV  
PGn Output Sink Current  
PGn = 0.1V  
100  
μA  
V
CLKOUTn V  
CLKOUTn V  
0.2  
3.2  
OL  
OH  
V
SYNCn Input High Threshold  
SYNCn Input Low Threshold  
SYNCn Threshold to Enable Spread Spectrum  
SYNCn Current  
1.5  
2.8  
V
0.8  
4.0  
V
V
SYNCn = 6V  
TRSSn = 0V  
60  
2
μA  
μA  
Ω
TRSSn Source Current  
TRSSn Pull-Down Resistance  
Fault Condition, TRSSn = 0.1V  
200  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8060E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
The LTM8060I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. Note that the maximum  
internal temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 3: n Represents each individual channel. Four outputs are tested  
separately and the same testing condition is applied to each output.  
Note 4: The maximum current out of any channel may be limited by the  
internal temperature of the LTM8060. See output current derating curves  
for different V , V  
and T .  
IN OUT  
A
Rev. 0  
3
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
Efficiency and Power Loss  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency and Power Loss  
Efficiency and Power Loss  
VOUT = 0.8V, BIAS = 5V, Burst Mode  
VOUT = 1V, BIAS = 5V, Burst Mode  
VOUT = 1.2V, BIAS = 5V, Burst Mode  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ0ꢁ0 ꢂ0ꢃ  
Efficiency and Power Loss  
Efficiency and Power Loss  
VOUT = 1.8V, BIAS = 5V, Burst Mode  
Efficiency and Power Loss  
V
OUT = 1.5V, BIAS = 5V, Burst Mode  
VOUT = 2V, BIAS = 5V, Burst Mode  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
0
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ0ꢁ0 ꢂ0ꢁ  
Efficiency and Power Loss  
VOUT = 2.5V, BIAS = 5V, Burst Mode  
Efficiency and Power Loss  
Efficiency and Power Loss  
VOUT = 3.3V, BIAS = 5V, Burst Mode  
VOUT = 5V, BIAS = 5V, Burst Mode  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ00  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ0ꢁ0 ꢂ0ꢀ  
ꢀ0ꢁ0 ꢂ0ꢃ  
Rev. 0  
4
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency and Power Loss  
VOUT = 8V, BIAS = 5V, Burst Mode  
Input vs Load Current, VOUT = 0.8V  
BIAS = 5V Burst Mode  
Input vs Load Current, VOUT = 1V  
BIAS = 5V, Burst Mode  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃ0  
ꢀ0ꢁ0 ꢂꢃꢃ  
Input vs Load Current, VOUT = 1.2V  
BIAS = 5V, Burst Mode  
Input vs Load Current, VOUT = 1.5V  
BIAS = 5V, Burst Mode  
Input vs Load Current, VOUT = 1.8V  
BIAS = 5V, Burst Mode  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Input vs Load Current, VOUT = 2V  
BIAS = 5V, Burst Mode  
Input vs Load Current, VOUT = 2.5V  
BIAS = 5V, Burst Mode  
Input vs Load Current, VOUT = 3.3V  
BIAS = 5V, Burst Mode  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
0
0
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢁ  
ꢀ0ꢁ0 ꢂꢃꢀ  
Rev. 0  
5
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating, VOUT = 0.8V  
BIAS = 5V, DC2820A Demo Board  
Input vs Load Current, VOUT = 5V  
BIAS = 5V, Burst Mode  
TJ = 120°C, Burst Mode  
Input vs Load Current, VOUT = 8V  
BIAS = 5V, Burst Mode  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.0  
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
0
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃ0  
Derating, VOUT = 1V  
Derating, VOUT = 1.2V  
Derating, VOUT = 1.5V  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
All Channels at Same Load  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.0  
ꢀꢁꢂ  
ꢀ.0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.0  
ꢀꢁꢂ  
ꢀ.0  
ꢀꢁꢂ  
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢃ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Derating, VOUT = 2V  
Derating, VOUT = 2.5V  
Derating, VOUT = 1.8V  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
All Channels at Same Load  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Rev. 0  
6
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating, VOUT = 3.3V  
Derating, VOUT = 3.3V, fSW = 2MHz  
Derating, VOUT = 5V  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
All Channels at Same Load  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃ0  
ꢀ0ꢁ0 ꢂꢃꢀ  
Derating with Airflow  
Derating, VOUT = 5V, fSW = 2MHz  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
Derating, VOUT = 8V  
12VIN to 1.5VOUT, TJ = 120°C  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
All Channels at Same Load  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂ  
0
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢃ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Derating with Airflow  
Derating with Airflow  
Derating with Airflow  
12VIN to 1.5VOUT, TJ = 120°C  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
36VIN to 1.5VOUT, TJ = 120°C  
12VIN to 3.3VOUT, TJ = 120°C  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
All Channels at Same Load  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Rev. 0  
7
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating with Airflow  
Derating with Airflow  
Derating with Airflow  
24VIN to 3.3VOUT, TJ = 120°C  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
All Channels at Same Load  
36VIN to 3.3VOUT, TJ = 120°C  
12VIN to 5VOUT, TJ = 120°C  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
All Channels at Same Load  
All Channels at Same Load  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢀ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Derating with Airflow  
Derating with Airflow  
36VIN to 5VOUT, TJ = 120°C  
24VIN to 5VOUT, TJ = 120°C  
CISPR22 Class B Emissions  
DC2820A Demo Board  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
All Channels at Same Load  
BIAS = 5V, DC2820A Demo Board  
Forced Continuous Mode  
V
IN = 24V, VOUT = 5V, fSW = 1.2MHz  
All Channels at Same Load  
All Channels Paralleled, IOUT = 10A  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀꢁ.0  
ꢀ0.0  
ꢀ.0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀꢁꢂꢃe ꢄꢅꢁꢁꢆ  
ꢀ.0  
ꢀ.0  
ꢀꢁꢂeꢃ ꢀꢄeꢅꢆeꢇꢈꢉ  
ꢀꢁꢂeꢃꢄ ꢀꢁeꢅꢆꢂꢇꢈ  
ꢀꢁꢂꢃꢃ ꢄ ꢅeꢂꢆ ꢇꢈꢉꢈꢊ  
0
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁ  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ000  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃ0  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Output Voltage Ripple  
DC2820A Demo Board  
VIN = 12V, VOUT = 3.3V  
IOUT = 3A, fSW = 1MHz  
CISPR25 Radiated Emission with Class 5  
Peak Limit DC2820A Demo Board  
Output Noise Spectrum  
DC2820A Demo Board  
VIN = 24V, VOUT = 5V  
V
IN = 14V, VOUT = 5V, fSW = 1.2MHz  
All Channels Paralleled, IOUT = 12A  
IOUT = 3A, fSW = 1.2MHz  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢁꢁR  
ꢀꢁRꢂꢃꢄꢅꢆꢇꢈ ꢁꢉꢊꢋꢉꢊ ꢀꢁꢅꢌꢇ  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ0ꢁ0 ꢂꢃꢃ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂeꢃꢄ ꢀꢁeꢅꢆꢂꢇꢈ  
ꢀꢁꢂeꢃ ꢀꢄeꢅꢆeꢇꢈꢉ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ000  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ000  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Rev. 0  
8
For more information www.analog.com  
LTM8060  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
BIAS Current vs Frequency  
12VIN to 3.3VOUT  
Forced Continuous Mode  
Input Current vs VIN  
VOUT Short Circuited  
Dropout Voltage vs Load Current  
ꢀ000  
ꢀꢁ00  
ꢀ000  
ꢀ00  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂꢃeꢄ ꢅꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢄe  
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ0  
ꢀꢁ  
ꢀ0  
0
0
ꢀꢁꢂꢃꢄꢅꢂꢆꢇ ꢈRꢉꢊꢋꢉꢆꢄꢌ ꢍꢎꢅꢏꢐ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢀ  
ꢀ0ꢁ0 ꢂꢃꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Single Channel Derating, VOUT  
=
Single Channel Derating, VOUT  
=
Single Channel Derating, VOUT  
5V CH1 ON, CH2/CH3/CH4 OFF  
=
1.5V CH1 ON, CH2/CH3/CH4 OFF  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
3.3V CH1 ON, CH2/CH3/CH4 OFF  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
0
0
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃ0  
ꢀ0ꢁ0 ꢂꢃꢄ  
Dual Channel Derating, VOUT  
=
Dual Channel Derating, VOUT  
=
Dual Channel Derating, VOUT = 5V  
CH1/CH3 ON, CH2/CH4 OFF  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
3.3V CH1/CH3 ON, CH2/CH4 OFF  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
1.5V CH1/CH3 ON, CH2/CH4 OFF  
BIAS = 5V, DC2820A Demo Board  
TJ = 120°C, Burst Mode  
0
0
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
ꢀ0ꢁ0 ꢂꢃꢄ  
Rev. 0  
9
For more information www.analog.com  
LTM8060  
PIN FUNCTIONS  
V
(Bank 6): Input power for the channel 1 regulator. The  
voltages of 3.3V and above these pins should be tied to  
V . If these pins are tied to a supply other than V  
OUTn  
VIN1 powers the internal control circuitry for channel 1/2  
IN1  
OUTn  
and is monitored by undervoltage lockout circuitry. The  
VIN1 voltage must be greater than 3V for either chan-  
nel 1/2 of the LTM8060 to operate. Decouple VIN1 to  
ground with an external, low ESR capacitor. See Table 1  
for recommended values.  
use a local bypass capacitor on these pins.  
SYNC12/34 (Pins C11/N1): External Clock Synchronization  
Input. Ground these pins for low ripple Burst Mode®  
operation at low output loads; this will also disable the  
CLKOUT function. Apply a DC voltage between 2.8V and  
4V for forced continuous mode operation with spread  
spectrum modulation. Float the SYNCn pin for forced  
continuous mode operation without spread spectrum  
V
(Bank 4): Input power for the channel 2 regulator.  
IN2  
Decouple VIN2 to ground with an external, low ESR capaci-  
tor. See Table 1 for recommended values.  
modulation. Apply a clock source to the SYNC pin for  
n
V
(Bank 5): Input power for the channel 3/4 regulator.  
IN34  
IN34  
The V  
synchronization to an external frequency. The LTM8060  
will be in forced continuous mode when an external fre-  
quency is applied.  
bank powers the internal control circuitry for  
both channel 3/4 and is monitored by undervoltage lock-  
out circuitry. The VIN34 voltage must be greater than 3V for  
either channel 3/4 of the LTM8060 to operate. Decouple  
CLKOUT12/34 (Pins C10/N2): Synchronization Output.  
When SYNC12/34 > 2.8V, the CLKOUT12/34 pins pro-  
vide a waveform about 90 degrees out-of-phase with  
Channel 1/3, respectively. This allows synchronization with  
other regulators with up to four phases. When an external  
clock is applied to the SYNC12/34 pins, the CLKOUT12/34  
pins will output a waveform with about the same phase,  
duty cycle, and frequency as the SYNC12/34 waveform.  
In Burst Mode operation, the CLKOUT12/34 pins will be  
internally grounded. Float these pin if the CLKOUT12/34  
function is not used. Do not drive these pins.  
V
to ground with an external, low ESR capacitor. See  
IN34  
Table 1 for recommended values.  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8060 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8060  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
more details. Return the feedback divider (R ) to this net.  
FB  
VOUT1/2/3/4 (Banks 8/3/1/7): Power Output for  
Channel 1/2/3/4, Respectively. Apply the output filter  
capacitor and the output load between these pins and  
GND plane.  
FB1/2/3/4 (Pins K11/K10/F1/F2): The LTM8060 regulates  
the FB pin to 800mV. Connect the feedback resistor to  
n
this pin to set the output voltage.  
RT12/34 (Pins L11/E1): Connect a resistor between RT  
n
AUX1/2/3/4 (Pins N10/L10/C2/E2): Low Current Voltage  
Source for BIAS. In many designs, the BIAS pin is simply  
and ground to set the switching frequency. Do not drive  
these pins.  
connected to V  
by way of the AUX pin. The AUX pins  
OUT  
n
are internally connected to VOUTn and placed adjacent  
RUN1/2/3/4 (Pins E11/D11/L1/M1): The corresponding  
to the BIAS pins to ease printed circuit board routing.  
channel of the LTM8060 is shutdown when these pins  
n
Although these pins are internally connected to V , it  
are low and active when these pins are high. Tie to V if  
OUT  
INn  
is not intended to deliver a higher current, so do NOT  
connect these pins to the load. If thess pins are not tied  
to BIAS, leave it floating.  
shutdown feature is not used. An external resistor divider  
from V can be used to program a V threshold below  
INn  
which ItNhne corresponding channel of the LTM8060 will  
shut down. Do not float these pins.  
BIAS12/34 (Pins M10/D2): The internal regulator will  
draw current from BIAS instead of V or V when  
n
IN1  
IN34  
BIAS is tied to a voltage higher than 3.2V. For output  
n
Rev. 0  
10  
For more information www.analog.com  
LTM8060  
PIN FUNCTIONS  
TRSS1/2/3/4 (Pins N11/M11): Output Tracking and Soft-  
PG1/2/3/4 (Pins E9/D10/L3/M2): The PGn pind str the  
open-drain output of an internal comparator. PGn remains  
low until the FB pin is within 7.5% of the final regulation  
Start Pins. These pins allow user control of output volt-  
age ramp rate during start-up. A TRSS voltage below  
n
0.8V forces the LTM8060 to regulate the FB pin to equal  
voltage, and thnere are no fault conditions. PG is pulled  
n
n
the TRSS pin voltage. When TRSS is above 0.8V, the  
low during V UVLO, thermal shutdown, or when the  
tracking fnunction is disabled and the internal reference  
resumes control of the error amplifier. An internal 2μA  
pull-up current on these pins allow a capacitor to pro-  
gram output voltage slew rate. These pins are pulled to  
ground during shutdown and fault conditions; use a series  
resistor if driving from a low impedance output. These  
pins may be left floating if the soft-start feature is not  
being used.  
RUN pins are low.  
n
INn  
n
SHARE1/2/3/4 (Pind K8/K9/F4/F3): Channel 1/2/3/4  
Current Sharing Control. Tie SHAREn together when  
paralleling outputs. LTM8060 can also share current  
between modules. See Typical Application section for  
current sharing between channels and current sharing  
between modules.  
DNC (Pind E10/L2): Do not connect.  
BLOCK DIAGRAM  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢄꢄꢆꢇꢈꢉ  
ꢀ0ꢁꢂ  
ꢀꢁRꢀꢂꢁꢃRꢄ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀRꢁꢁꢂ  
ꢀ0ꢁꢂ  
0.ꢀꢁꢂ  
0.ꢀꢁꢂ  
0.ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀRꢁꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢄꢄꢆꢇꢈꢉ  
ꢀꢁRꢀꢂꢁꢃRꢄ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀRꢁꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀRꢁꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ0ꢁ0 ꢂꢃ  
Rev. 0  
11  
For more information www.analog.com  
LTM8060  
OPERATION  
The LTM8060 is a quad standalone nonisolated step-  
down switching DC/DC power supply that can deliver a  
peak current of up to 6A per channel. The continuous cur-  
rent is determined by the internal operating temperature.  
It provides a precisely regulated output voltage program-  
mable via one external resistor from 0.8V to 8V. The input  
To enhance efficiency, the LTM8060 automatically  
switches to Burst Mode operation in light or no load  
situations. Between bursts, all circuitry associated with  
controlling the output switch is shut down reducing the  
input supply current to just a few µA.  
The TRSSn node acts as an auxiliary input to the error  
amplifier. The voltage at FBn servos to the TRSSn voltage  
until TRSSn goes above 0.8V. Soft-start is implemented  
by generating a voltage ramp at the TRSSn pin using an  
external capacitor which is charged by an internal 2μA  
constant current. Alternatively, driving the TRSSn pin with  
a signal source or resistive network provides a tracking  
function. Do not drive the TRSSn pin with a low imped-  
ance voltage source. See the Applications Information  
section for more details.  
voltage range for V and V  
is 3V to 40V, while the  
IN1  
IN34  
input voltage range for V is 2V to 40V.  
IN2  
Given that the LTM8060 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desired output voltage and load current. See simplified  
Block Diagram.  
The LTM8060 contains current mode controllers, power  
switching elements, power inductors and a modest  
amount of input and output capacitance. The LTM8060 is  
a fixed frequency PWM regulator. The switching frequency  
is set by simply connecting the appropriate resistor value  
from the RTn pin to GND.  
The LTM8060 contains power good comparators which  
trip when the FBn pin is at about ±8% of its regulated  
value. The PGn output is an open-drain transistor that is  
off when the output is in regulation, allowing an external  
resistor to pull the PGn pin high.  
Internal regulators provide power to the control circuit-  
ries. Bias regulators normally draw power from the V  
INn  
pin, but if the BIASn pin is connected to an external volt-  
age higher than 3.2V, bias power is drawn from the exter-  
nal source (typically the regulated output voltage). This  
improves efficiency. Tie BIASn to GND if it is not used.  
The LTM8060 is equipped with a thermal shutdown that  
inhibits power switching at high junction temperatures.  
The activation threshold of this function is above the max-  
imum temperature rating to avoid interfering with normal  
operation, so prolonged or repetitive operation under a  
condition in which the thermal shutdown activates may  
damage or impair the reliability of the device.  
Rev. 0  
12  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
For most applications, the design process is straight-  
forward, summarized as follows:  
Set Output Voltage  
The Output Voltage is programmed with a FB resistor  
as shown in the Figure below. Choose the resistor value  
according to Equation 1.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
249kΩ  
2. Apply the recommended CIN, COUT, RFB and RT values.  
3. Connect BIAS as indicated.  
RFB  
=
(2)  
V
OUT 1  
0.8V  
When using the LTM8060 with different output voltages,  
the higher frequency recommended by Table 1 will usu-  
ally result in the best operation. While these component  
combinations have been tested for proper operation, it is  
incumbent upon the user to verify proper operation over  
the intended system’s line, load and environmental condi-  
tions. Bear in mind that the maximum output current is  
limited by junction temperature, the relationship between  
the input and output voltage magnitude and other fac-  
tors. Please refer to the graphs in the Typical Performance  
Characteristics section for guidance.  
1% resistor is recommended to maintain output voltage  
accuracy.  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
0.ꢀꢁ  
0.ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
R
ꢀꢁ  
ꢀ0ꢁ0 ꢂ0ꢃ  
The maximum frequency (and attendant RT value) at  
which the LTM8060 should be allowed to switch is given  
Figure 1. Set Output Voltage with a FB Resistor  
in Table 1 in the Maximum f column, while the recom-  
SW  
mended frequency (and R value) for optimal efficiency  
T
over the given input condition is given in the f column.  
SW  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Rev. 0  
13  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
Capacitor Selection Considerations  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8060’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8060 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
The C and C  
capacitor values in Table 1 are the mini-  
OUT  
mumIrNecommended values for the associated operating  
conditions. Applying capacitor values below those indi-  
cated in Table 1 is not recommended and may result in  
undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response,  
if it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable. X5R  
and X7R types are stable over temperature and applied  
voltage and give dependable service. Other types, includ-  
ing Y5V and Z5U have very large temperature and voltage  
coefficients of capacitance. In an application circuit they  
may have only a small fraction of their nominal capaci-  
tance resulting in much higher output voltage ripple  
than expected.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8060. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high-Q (underdamped) tank circuit.  
If the LTM8060 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
R
f
R
MAX f  
MIN R  
(Ω)  
FB  
SW  
T
SW  
T
1
2
V
V
(Ω)  
0.8V Open 4.7µF 50V X5R 1206 2 × 100µF 4V X5R 0805 3.2V to 10V 100pF  
1V 1M 4.7µF 50V X5R 1206 2 × 100µF 4V X5R 0805 3.2V to 10V 100pF  
C
C
BIAS  
CFF  
(Hz)  
400k  
400k  
(Ω)  
(Hz)  
600k  
725k  
IN  
OUT  
IN  
OUT  
3V to 40V  
3V to 40V  
100k  
100k  
64.9k  
52.3k  
3V to 40V  
3.2V to 40V  
3.5V to 40V  
3.5V to 40V  
4.2V to 40V  
5.5V to 40V  
8.5V to 40V  
11V to 40V  
1.2V 499k 4.7µF 50V X5R 1206 2 × 100µF 4V X5R 0805 3.2V to 10V  
1.5V 287k 4.7µF 50V X5R 1206 2 × 100µF 4V X5R 0805 3.2V to 10V  
1.8V 200k 4.7µF 50V X5R 1206 1 × 100µF 4V X5R 0805 3.2V to 10V  
68pF  
500k  
600k  
650k  
700k  
800k  
1M  
76.8k  
64.9k  
59k  
875k  
1M  
42.2k  
35.7k  
25.5k  
23.2k  
18.2k  
12.7k  
8.06k  
8.06k  
1.3M  
1.4M  
1.7M  
2.2M  
3M  
2V  
2.5V 118k 4.7µF 50V X5R 1206 1 × 47µF 4V X5R 0805  
3.3V 78.7k 4.7µF 50V X5R 1206 1 × 47µF 6.3V X5R 0805 3.2V to 10V  
165k 4.7µF 50V X5R 1206 1 × 100µF 4V X5R 0805 3.2V to 10V  
54.9k  
46.4k  
35.7k  
27.4k  
19.6k  
3.2V to 10V  
5V  
8V  
47.5k 4.7µF 50V X5R 1206 1 × 47µF 6.3V X5R 1206 3.2V to 10V  
27.4k 4.7µF 50V X5R 1206 1 × 47µF 10V X5R 1206 3.2V to 10V  
1.2M  
1.6M  
3M  
Note 1: The LTM8060 may be capable of the operating at lower input voltages but may skip switching cycles.  
Note 2: A bulk input capacitor is required.  
Rev. 0  
14  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
Frequency Selection  
excessive heat or even damage the LTM8060 if the output  
is overloaded or short-circuited. A frequency that is too  
low can result in a final design that has too much output  
ripple or too large of an output capacitor.  
The LTM8060 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 200kHz to  
3MHz by using a resistor tied from the RT pin to ground.  
Table 2 provides a list of R resistor values and their resul-  
T
BIASn Pin Considerations  
tant frequencies. The resistors in the table are standard  
The BIASn pin is used to provide drive power for the  
internal power switching stage and operate other internal  
circuitry. For proper operation, it must be powered by at  
least 3.2V. If the output voltage is programmed to 3.2V  
1% E96 values.  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal RT value  
given in Table 1 for the input and output operating condi-  
tion. When using the LTM8060 with different output volt-  
ages, the higher frequency recommended by Table 1 will  
usually result in the best operation. System level or other  
considerations, however, may necessitate another operat-  
ing frequency. While the LTM8060 is flexible enough to  
accommodate a wide range of operating frequencies, a  
haphazardly chosen one may result in undesirable opera-  
tion under certain operating or fault conditions. A fre-  
quency that is too high can reduce efficiency, generate  
or higher, BIASn may be simply tied to V  
. If V  
is less than 3.2V, BIASn can be tied to OVUINTnn or sOoUmTen  
other voltage source. If the BIASn pin voltage is too high,  
the efficiency of the LTM8060 may suffer. The optimum  
BIASn voltage is dependent upon many factors, such as  
load current, input voltage, output voltage and switching  
frequency. In all cases, ensure that the maximum volt-  
age at the BIASn pin is less than 10V. If BIASn power is  
applied from a remote or noisy voltage source, it may be  
necessary to apply a decoupling capacitor locally to the  
pin. A 1µF ceramic capacitor works well. The BIASn pin  
may also be tied to GND at the cost of a small degrada-  
tion in efficiency.  
Table 2. Switching Frequency vs RT Value  
f
(MHz)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
R (kΩ)  
T
SW  
200  
137  
Maximum Load  
The maximum practical continuous load that the LTM8060  
can drive per channel, while rated at 3A, actually depends  
upon both the internal current limit and the internal tem-  
perature. The internal current limit is designed to prevent  
damage to the LTM8060 in the case of overload or short-  
circuit. The internal temperature of the LTM8060 depends  
upon operating conditions such as the ambient tempera-  
ture, the power delivered, and the heat sinking capabil-  
100  
76.8  
64.9  
54.9  
46.4  
41.2  
35.7  
27.4  
23.2  
19.6  
16.9  
14.7  
12.7  
11.3  
10.2  
9.09  
8.06  
ity of the system. For example, if V  
configured to regulate at 1.5V, and the other 3 channels  
are turned off, V may continuously deliver 6A from  
of LTM8060 is  
OUT1  
OUT1  
24VIN if the ambient temperature is controlled to less  
than 60°C. This is quite a bit higher than the 3A continu-  
ous rating. Please see graphs in the Typical Performance  
Characteristics section. Similarly, if all 4 channels of the  
LTM8060 are delivering 3.3V  
and the ambient tem-  
OUT  
perature is 100°C, each channel will deliver at most 1.5A  
from 24V , which is less than the 3A continuous rating.  
IN  
Rev. 0  
15  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
Power Derating  
resistance. Thermal models are derived from several  
temperature measurements in a controlled temperature  
chamber along with thermal FEA modeling.  
The 12V , 24V and 36V power loss curves can be  
IN  
IN  
IN  
used in coordination with the load current derating curves  
for calculating an approximate θ thermal resistance for  
The junction temperatures are monitored while ambient  
temperature is increased with and without airflow. The  
power loss increase with ambient temperature change  
is factored into the derating curves. The junctions are  
maintained at ~120°C maximum while lowering output  
current or power while increasing ambient temperature.  
The decreased output current will decrease the internal  
module loss as ambient temperature is increased.  
JA  
the LTM8060 with airflow conditions. The power loss  
curves are taken at room temperature, and are increased  
with a 1.35 to 1.4 multiplicative factor at 125°C. These  
factors come from the fact that the power loss of the  
regulator increases about 45% from 25°C to 150°C, thus  
a 45% spread over 125°C delta equates to ~0.35%/°C loss  
increase. A 125°C maximum junction minus 25°C room  
temperature equates to a 100°C increase. This 100°C  
increase multiplied by 0.35%/°C equals a 35% power loss  
increase at the 125°C junction, thus the 1.35 multiplier.  
The derived thermal resistances in Table 3 through Table 5  
for the various conditions can be multiplied by the calcu-  
lated power loss as a function of ambient temperature to  
derive temperature rise above ambient, thus maximum  
junction temperature. Room temperature power loss can  
be derived from the power loss curves and adjusted with  
the above ambient temperature multiplicative factors. The  
printed circuit board is a 1.6mm thick 6-layer board with  
two ounce copper (50μm) for all the layers.  
The derating curves are plotted with four V  
at the  
same operating condition starting at 16A oOf UtoTntal load  
current and low ambient temperature. The derating curves  
with airflow are measured at output voltages of 1.5V,  
3.3V and 5V. These are chosen to include the lower and  
higher output voltage ranges for correlating the thermal  
Table 3. 1.5V Output  
DERATING CURVE  
8060 G33-35  
8060 G33-35  
8060 G33-35  
V
(V)  
POWER LOSS CURVE  
8060 G04  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
θ
JA  
θ
JA  
(°C/W)  
9
IN  
12, 24, 36  
12, 24, 36  
12, 24, 36  
0
8060 G04  
200  
400  
None  
7.5  
8060 G04  
None  
6.5  
Table 4. 3.3V Output  
DERATING CURVE  
8060 G36-38  
V
(V)  
POWER LOSS CURVE  
8060 G08  
AIRFLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
9
IN  
12, 24, 36  
12, 24, 36  
12, 24, 36  
0
8060 G36-38  
8060 G08  
200  
400  
None  
7.5  
8060 G36-38  
8060 G08  
None  
6.5  
Table 5. 5V Output  
DERATING CURVE  
8060 G39-41  
V
(V)  
POWER LOSS CURVE  
8060 G09  
AIRFLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
9
IN  
12, 24, 36  
12, 24, 36  
12, 24, 36  
0
8060 G39-41  
8060 G09  
200  
400  
None  
7.5  
8060 G39-41  
8060 G09  
None  
6.5  
Rev. 0  
16  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
Load Sharing  
VIN1 must be above 3V for channel 1 and channel 2 to  
operate. If VIN1 is above 3V, channel 2 will operate as long  
The four LTM8060 channels may be paralleled to produce  
higher currents. To do this on two or more LTM8060, tie  
as V is above 2V.  
IN2  
the V , V  
, FBn and SHAREn pins of all the paral-  
VIN34 must be above 3V for channel 3 and channel 4  
to operate.  
INn OUTn  
leled channels/modules together. To ensure that paralleled  
channels start up together, the TRSSn pins may be tied  
together, as well. If it is inconvenient to tie the TRSSn  
pins together, make sure that the same value soft-start  
capacitors are used for each µModule regulator. When  
Output Voltage Tracking and Soft-Start  
The LTM8060 allows the user to adjust its output voltage  
ramp rate by means of the TRSSn pin. An internal 2μA  
pulls up the TRSSn pin to about 2.4V. Putting an external  
capacitor on TRSSn enables soft starting the output to  
reduce current surges on the input supply. During the  
soft-start ramp the output voltage will proportionally track  
the TRSSn pin voltage. For output tracking applications,  
TRSSn can be externally driven by another voltage source.  
From 0V to 0.8V, the TRSSn voltage will override the  
internal 0.8V reference input to the error amplifier, thus  
regulating the FBn pin voltage to that of the TRSSn pin.  
When TRSSn is above 0.8V, tracking is disabled and the  
feedback voltage will regulate to the internal reference  
voltage. The TRSSn pin may be left floating if the function  
is not needed.  
load sharing among n units and using a single R resis-  
FB  
tor, the value of the resistor is given by Equation 1.  
199.2  
n(VOUT 0.8)  
(1)  
RFB =  
,where RFB is in kΩ  
Examples of load sharing applications are given in Figure 6  
through Figure 9.  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8060  
automatically switches to Burst Mode operation which  
keeps the output capacitor charged to the proper volt-  
age while minimizing the input quiescent current. During  
Burst Mode operation, the LTM8060 delivers single cycle  
bursts of current to the output capacitor followed by sleep  
periods where most of the internal circuitry is powered off  
and energy is delivered to the load by the output capacitor.  
During the sleep time, VINn and BIASn quiescent currents  
are greatly reduced, so, as the load current decreases  
towards a no load condition, the percentage of time that  
the LTM8060 operates in sleep mode increases and the  
average input current is greatly reduced, resulting in  
higher light load efficiency.  
An active pull-down circuit is connected to the TRSSn  
pin which will discharge the external soft-start capacitor  
in the case of fault conditions and restart the ramp when  
the faults are cleared. Fault conditions that clear the soft-  
start capacitor are the RUNn pin transitioning low, V  
INn  
voltage falling too low, or thermal shutdown.  
Pre-Biased Output  
As discussed in the Output Voltage Tracking and Soft-Start  
section, the LTM8060 regulates the output to the FBn volt-  
age determined by the TRSSn pin whenever TRSSn is less  
than 0.8V. If the LTM8060 output is higher than the target  
output voltage, and SYNCn is not held below 0.8V, the  
LTM8060 will attempt to regulate the output to the target  
voltage by returning a small amount of energy back to the  
input supply. If there is nothing loading the input supply,  
its voltage may rise. Take care that it does not rise so high  
that the input voltage exceeds the absolute maximum rat-  
ing of the LTM8060. If SYNC is grounded, the LTM8060  
will not return current to the input.  
Burst Mode operation is enabled by tying SYNC to GND.  
Minimum Input Voltage  
The LTM8060 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. Keep the input above 3V to ensure proper  
operation. Voltage transients or ripple valleys that cause  
the input to fall below 3V may turn off the LTM8060.  
Rev. 0  
17  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
Frequency Foldback  
Shorted Input Protection  
The LTM8060 is equipped with frequency foldback which  
acts to reduce the thermal and energy stress on the inter-  
nal power elements during a short circuit or output over-  
load condition. If the LTM8060 detects that the output  
has fallen out of regulation, the switching frequency is  
reduced as a function of how far the output is below the  
target voltage. This in turn limits the amount of energy  
that can be delivered to the load under fault. During the  
start-up time, frequency foldback is also active to limit  
the energy delivered to the potentially large output capaci-  
Care needs to be taken in systems where the output is  
held high when the input to the LTM8060 is absent. This  
may occur in battery charging applications or in battery  
backup systems where a battery or some other supply  
is diode OR’ed with the LTM8060’s output. If the V  
INn  
pin is allowed to float and the RUNn pin is held high  
(either by a logic signal or because it is tied to VINn),  
then the LTM8060’s internal circuitry pulls its quiescent  
current through its internal power switch. This is fine if  
your system can tolerate a few milliamps in this state.  
If you ground the RUNn pin, the internal current drops  
tance of the load. When a clock is applied to the SYNC  
n
pin, the SYNC pin is floated or held high, the frequency  
foldback is dinsabled, and the switching frequency will  
slow down only during overcurrent conditions.  
to essentially zero. However, if the V pin is grounded  
INn  
while the output is held high, parasitic diodes inside the  
LTM8060 can pull large currents from the output through  
the V pin. Figure 2 shows a circuit that runs only when  
INn  
Synchronization  
the input voltage is present and that protects against a  
shorted or reversed input.  
To select low ripple Burst Mode operation, tie the SYNC  
n
pin below about 0.8V (this can be ground or a logic low  
output). To synchronize the LTM8060 oscillator to an  
external frequency, connect a square wave (with about  
ꢁꢂ  
ꢁꢂ  
20% to 80% duty cycle) to the SYNC pin. The square  
n
ꢂꢃ0ꢄ0  
wave amplitude should have valleys that are below 0.8V  
and peaks above 1.5V.  
Rꢀꢁ  
ꢀ0ꢁ0 ꢂ0ꢃ  
The LTM8060 may be synchronized over a 200kHz to  
3MHz range. The LTM8060 will not enter Burst Mode  
operation at light output loads while synchronized to an  
Figure 2. The Input Diode Prevents a Shorted Input from  
Discharging a Backup Battery Tied to the Output. It Also Protects  
the Circuit from a Reversed Input. The LTM8060 Runs Only  
When the Input Is Present.  
external clock. The R resistor should be chosen to set  
T
the switching frequency equal to or below the lowest  
synchronization input. For example, if the synchroniza-  
tion signal will be 500kHz and higher, the R should be  
PCB Layout  
T
selected for 500kHz or lower.  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8060. The LTM8060 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
The LTM8060 features spread spectrum operation to fur-  
ther reduce EMI/EMC emissions. To enable spread spec-  
trum operation, apply between 2.8V and 4V to the SYNC  
n
pin. In this mode, triangular frequency modulation is used  
to vary the switching frequency between the value pro-  
grammed by R to about 20% higher than that value. The  
T
modulation frequency is about 7kHz. For example, when  
the LTM8060 is programmed to 2MHz, the frequency will  
vary from 2MHz to 2.4MHz at a 7kHz rate. When spread  
spectrum operation is selected, Burst Mode operation is  
disabled, and the part may run in discontinuous mode.  
Rev. 0  
18  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
A few rules to keep in mind are:  
ꢇꢈꢉ  
ꢇꢈꢄ  
Rꢃꢉꢄ  
1. Place the R and R resistors as close as possible to  
FB  
T
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
ꢁꢂꢃꢅ  
ꢁꢂꢃꢄ  
and GND connection of the LTM8060.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8060.  
OUT  
ꢁꢂꢃꢅ  
ꢁꢂꢃꢆ  
4. Place the CIN and COUT capacitors such that their  
ground current flow directly adjacent to or underneath  
the LTM8060.  
ꢇꢈꢅꢆ  
ꢇꢈꢅꢆ  
Rꢃꢅꢆ  
5. Connect all of the GND connections to as large a cop-  
per pour or plane area as possible on the top layer.  
Avoid breaking the ground connection between the  
external components and the LTM8060.  
ꢊ0ꢋ0 ꢌ0ꢅ  
Figure 3. Layout Showing Suggested External Components,  
GND Plane and Thermal Vias  
6. Use vias to connect the GND copper area to the  
board’s internal ground planes. Liberally distribute  
these GND vias to provide both a good ground con-  
nection and thermal path to the internal planes of the  
printed circuit board. Pay attention to the location and  
density of the thermal vias in Figure 3. The LTM8060  
can benefit from the heat sinking afforded by vias that  
connect to internal GND planes at these locations,  
due to their proximity to internal power handling  
components. The optimum number of thermal vias  
depends upon the printed circuit board design. For  
example, a board might use very small via holes. It  
should employ more thermal vias than a board that  
uses larger holes.  
of the LTM8060 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8060’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the LTM8060 is hot-plugged into an energized  
supply, the input network should be designed to prevent  
this overshoot. This can be accomplished by installing  
a small resistor in series to V , but the most popular  
INn  
method of controlling input voltage overshoot is add an  
electrolytic bulk cap to the V net. This capacitor’s rela-  
INn  
tively high equivalent series resistance damps the circuit  
and eliminates the voltage overshoot. The extra capacitor  
improves low frequency ripple filtering and can slightly  
improve the efficiency of the circuit, though it is likely to  
be the largest component in the circuit.  
Hot-Plugging Safely  
Thermal Considerations  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8060. However, these capacitors  
can cause problems if the LTM8060 is plugged into a  
live supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
The LTM8060 output current may need to be derated if  
it is required to operate in a high ambient temperature.  
The amount of current derating is dependent upon the  
input voltage, output power and ambient temperature.  
The derating curves given in the Typical Performance  
Characteristics section can be used as a guide. These  
underdamped tank circuit, and the voltage at the V pin  
INn  
Rev. 0  
19  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
curves were generated by the LTM8060 mounted to a  
104cm2 6-layer FR4 printed circuit board. Boards of  
other sizes and layer count can exhibit different thermal  
behavior, so it is incumbent upon the user to verify proper  
operation over the intended system’s line, load and envi-  
ronmental operating conditions.  
3. θJCtop is determined with nearly all of the compo-  
nent power dissipation flowing through the top of the  
package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package,  
it is rare for an application to operate such that most  
of the heat flows from the junction to the top of the  
part. As in the case of θJCbot, this value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use FEA (Finite Element Analysis) or  
CFD (Computational Fluid Dynamics) to predict thermal  
performance. To that end, the Pin Configuration typically  
gives three dominant thermal coefficients:  
Given these definitions, it should now be apparent that  
none of these thermal coefficients reflects an actual physi-  
cal operating condition of a µModule regulator. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
1. θ – Thermal resistance from junction to ambient  
JA  
2. θ  
– Thermal resistance from junction to the bot-  
JCbot  
tom of the product case  
3. θ  
– Thermal resistance from junction to top of  
JCtop  
the product case  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
A graphical approximation of these dominant thermal  
resistances is given in Figure 4. Some thermal resis-  
tance elements, such as heat flow out the side of the  
package, are not defined by the JEDEC standard, and are  
not shown. The blue resistances are contained within the  
µModule regulator, and the green are outside.  
1. θJA is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD 51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
The die temperature of the LTM8060 must be lower than  
the maximum rating, so care should be taken in the layout  
of the circuit to ensure good heat sinking of the LTM8060.  
The bulk of the heat flow out of the LTM8060 is through  
the bottom of the package and the pads into the printed  
circuit board. Consequently a poor printed circuit board  
design can cause excessive heating, resulting in impaired  
performance or reliability. Please refer to the PCB Layout  
section for printed circuit board design suggestions.  
2. θJCbot is the junction-to-board thermal resistance  
with all of the component power dissipation flow-  
ing through the bottom of the package. In the typical  
µModule regulator, the bulk of the heat flows out the  
bottom of the package, but there is always heat flow  
out into the ambient environment. As a result, this  
thermal resistance value may be useful for compar-  
ing packages but the test conditions don’t generally  
match the user’s application.  
Rev. 0  
20  
For more information www.analog.com  
LTM8060  
APPLICATIONS INFORMATION  
ꢄꢅꢆꢇꢈꢉe ꢊꢋꢌꢍꢎꢋ  
θ
ꢏꢒꢓꢎꢔꢍꢕꢓꢖꢔꢕꢖꢗꢅꢜꢍꢋꢓꢔ Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
ꢏꢗ  
θ
ꢏꢒꢓꢎꢔꢍꢕꢓꢖꢔꢕꢖꢎꢗꢘꢋ  
ꢎꢗꢘꢋ ꢙꢔꢕꢚꢛꢖꢔꢕꢖꢗꢅꢜꢍꢋꢓꢔ  
ꢏꢎꢐꢆꢑ  
ꢙꢔꢕꢚꢛ Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
ꢏꢒꢓꢎꢔꢍꢕꢓ  
ꢗꢅꢜꢍꢋꢓꢔ  
θ
ꢏꢎꢝꢆꢐ  
ꢏꢒꢓꢎꢔꢍꢕꢓꢖꢔꢕꢖꢎꢗꢘꢋ  
ꢎꢗꢘꢋ ꢙꢜꢕꢔꢔꢕꢅꢛꢖꢔꢕꢖꢜꢕꢗRꢊ  
Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
ꢜꢕꢗRꢊꢖꢔꢕꢖꢗꢅꢜꢍꢋꢓꢔ  
Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
ꢙꢜꢕꢔꢔꢕꢅꢛ Rꢋꢘꢍꢘꢔꢗꢓꢎꢋ  
ꢀ0ꢁ0 ꢂ0ꢃ  
Figure 4. Graphical Representation of Thermal Coefficients, Including JESD51-12 Terms  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅ0ꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ  
PINS NOT USED:  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅꢄ ꢆRꢇꢇꢈꢄ  
ꢆRꢇꢇꢃꢄ ꢆRꢇꢇꢉꢄ ꢆRꢇꢇꢅꢄ  
ꢇꢊꢀRꢋꢈꢄ ꢇꢊꢀRꢋꢃꢄ  
ꢇꢊꢀRꢋꢉꢄ ꢇꢊꢀRꢋꢅꢄ  
ꢌꢍꢈꢄ ꢌꢍꢃꢄ ꢌꢍꢉꢄ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀꢁ  
ꢌꢍꢅꢄ ꢎꢏꢐꢑꢁꢆꢈꢃꢄ  
ꢎꢏꢐꢑꢁꢆꢉꢅ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ.ꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0ꢁ0 ꢂ0ꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
Figure 5. 8.5V to 40V Input to 5V at 3A, 3.3V at 3A, 5V at 3A, and 3.3V at 3A  
Rev. 0  
21  
For more information www.analog.com  
LTM8060  
TYPICAL APPLICATIONS  
ꢀꢁꢂ  
ꢀRꢁꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂ  
ꢀRꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ.ꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂRꢃꢄ  
ꢀ.ꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀRꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢃꢄ ꢅ0ꢂ  
ꢀRꢁꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢄꢅ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁꢂ  
PINS NOT USED:  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅꢄ ꢀꢁꢂꢆꢄ ꢀꢁꢂꢇꢄ  
ꢈꢉꢀꢊꢃꢅꢄ ꢈꢉꢀꢊꢆꢇ  
ꢋꢌꢃꢄ ꢋꢌꢅꢄ ꢋꢌꢆꢄ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂRꢃꢄ  
ꢀ0ꢁ0 ꢂ0ꢁ  
ꢋꢌꢇꢄ ꢍꢎꢏꢐꢁꢑꢃꢅꢄ  
Figure 6. 5.5V to 40V Input to Paralleled 3.3V at 6A; 3.2V to 40V Input to Paralleled 1.5V at 6A  
Rev. 0  
22  
For more information www.analog.com  
LTM8060  
TYPICAL APPLICATIONS  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ00ꢁ  
Rꢀꢁꢂ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
Rꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢄꢀ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀ00ꢁ  
Rꢀꢁꢂ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁꢂ  
PINS NOT USED:  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅꢄ ꢀꢁꢂꢆꢄ ꢀꢁꢂꢇꢄ  
ꢈꢉꢀꢊꢃꢅꢄ ꢈꢉꢀꢊꢆꢇꢄ  
ꢀꢁꢂ  
ꢋꢌꢃꢄ ꢋꢌꢅꢄ ꢋꢌꢆꢄ ꢋꢌꢇꢄ  
ꢍꢎꢏꢐꢁꢑꢆꢇ  
ꢀ0ꢁ0 ꢂ0ꢃ  
Figure 7. 3V to 40V Input to Paralleled 1V at 12A  
Rev. 0  
23  
For more information www.analog.com  
LTM8060  
TYPICAL APPLICATIONS  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ  
ꢄ0ꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀ00ꢁ  
ꢀ ꢁ00ꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢄꢀ  
ꢀ.ꢁꢂꢃ  
ꢄꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀ00ꢁ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀ00ꢁ  
ꢀ ꢁ00ꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
PINS NOT USED:  
0
0 0  
ꢀꢁꢂꢃ ꢀꢁꢂꢄꢃ ꢀꢁꢂꢅꢃ ꢀꢁꢂꢆꢃ  
ꢇꢈꢀꢉꢊꢄꢃ ꢇꢈꢀꢉꢅꢆ  
ꢋꢌꢊꢃ ꢋꢌꢄꢃ ꢋꢌꢅꢃ ꢋꢌꢆ  
Figure 8. Two LTM8060 are Paralleled to Supply 1V/24A Output in Forced Continuous Mode  
Rev. 0  
24  
For more information www.analog.com  
LTM8060  
TYPICAL APPLICATIONS  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁ  
ꢀ00ꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢂꢃꢄ0ꢄ  
ꢀꢁꢂꢃ  
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢄꢀ  
ꢀ.ꢁꢂꢃ  
ꢄꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁ  
ꢀ00ꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
0
0 0  
PINS NOT USED:  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅ. ꢀꢁꢂꢆꢄ ꢀꢁꢂꢇꢄ  
ꢈꢉꢀꢊꢃꢅꢄ ꢈꢉꢀꢊꢆꢇꢄ  
ꢋꢌꢃꢄ ꢋꢌꢅꢄ ꢋꢌꢆꢄ ꢋꢌꢇꢄ  
ꢍꢎꢏꢐꢁꢑꢃꢅꢄ ꢍꢎꢏꢐꢁꢑꢆꢇ  
Figure 9. Two LTM8060 are Paralleled to Supply 1V/24A Output with 45° Phase Shift Interleaving Through All Eight Channels  
Rev. 0  
25  
For more information www.analog.com  
LTM8060  
PACKAGE DESCRIPTION  
Table 6. LTM8060 Pinout (Sorted by Pin Number)  
Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name  
A1  
A2  
V
V
V
V
B1  
B2  
V
V
V
V
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
TRSS3  
AUX3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
TRSS4  
BIAS34  
GND  
E1  
E2  
RT34  
AUX4  
GND  
GND  
GND  
GND  
GND  
GND  
PG1  
F1  
F2  
FB3  
FB4  
G1  
G2  
V
V
H1  
H2  
V
V
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
IN34  
IN34  
IN34  
IN34  
A3  
B3  
E3  
F3  
SHARE4 G3  
SHARE3 G4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A4  
B4  
GND  
E4  
F4  
H4  
A5  
GND  
GND  
GND  
B5  
GND  
GND  
GND  
GND  
E5  
F5  
GND  
GND  
GND  
GND  
GND  
G5  
G6  
H5  
A6  
B6  
GND  
E6  
F6  
H6  
A7  
B7  
GND  
E7  
F7  
G7  
H7  
A8  
V
B8  
V
GND  
E8  
F8  
G8  
H8  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
A9  
V
V
V
B9  
V
V
V
GND  
E9  
F9  
G9  
H9  
A10  
A11  
B10  
B11  
C10 CLKOUT12 D10  
C11 SYNC12 D11  
PG2  
E10  
E11  
DNC  
RUN1  
F10  
F11  
V
V
G10  
G11  
V
V
H10  
H11  
V
V
IN2  
IN2  
IN2  
IN2  
IN1  
IN1  
RUN2  
Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name Pin Pin Name  
J1  
J2  
V
V
K1  
K2  
K3  
K4  
K5  
K6  
K7  
V
V
L1  
L2  
L3  
L4  
L5  
L6  
L7  
RUN3  
DNC  
PG3  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
RUN4  
PG4  
N1 SYNC34  
P1  
V
V
V
V
R1  
R2  
V
V
V
V
IN34  
IN34  
IN34  
IN34  
OUT4  
OUT4  
OUT4  
OUT4  
OUT4  
OUT4  
OUT4  
OUT4  
N2 CLKOUT34 P2  
J3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
GND  
GND  
P3  
P4  
R3  
J4  
GND  
GND  
GND  
GND  
GND  
GND  
AUX2  
RT12  
R4  
J5  
GND  
P5  
GND  
GND  
GND  
R5  
GND  
GND  
GND  
J6  
GND  
P6  
R6  
J7  
GND  
P7  
R7  
J8  
K8 SHARE1 L8  
K9 SHARE2 L9  
GND  
P8  
V
R8  
V
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
J9  
GND  
P9  
V
V
V
R9  
V
V
V
J10  
J11  
V
V
K10  
K11  
FB2  
FB1  
L10  
L11  
M10 BIAS12 N10  
M11 TRSS2 N11  
AUX1  
TRSS1  
P10  
P11  
R10  
R11  
IN1  
IN1  
Rev. 0  
26  
For more information www.analog.com  
LTM8060  
PACKAGE DESCRIPTION  
ꢴ ꢴ ꢭ ꢭ ꢭ  
ꢒ . 0 0 0  
ꢑ . 0 0 0  
ꢐ . 0 0 0  
ꢏ . 0 0 0  
ꢎ . 0 0 0  
0 . 0 0 0  
ꢎ . 0 0 0  
ꢏ . 0 0 0  
ꢐ . 0 0 0  
ꢑ . 0 0 0  
ꢒ . 0 0 0  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM8060  
PACKAGE PHOTO  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4613  
36V, 8A Low EMI Step-Down µModule Regulator  
5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, EN55022B Compliant, 15mm × 15mm  
IN  
OUT  
× 4.32mm LGA, 15mm × 15mm × 4.92mm BGA Packages  
LTM8063  
LTM8065  
40V, 2A Step-Down Silent Switcher µModule Regulator  
40V, 2.5A Step-Down Silent Switcher µModule Regulator  
3.2V ≤ V ≤ 40V, 0.8V ≤ V ≤ 15V, 4mm × 6.25mm × 2.22mm BGA Package  
IN  
OUT  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 18V, 6.25mm × 6.25mm × 2.32mm  
≤ 15V, 6.25mm × 9mm × 3.32mm  
IN  
OUT  
BGA Package  
LTM8053  
LTM8078  
LTM8024  
LTM8073  
LTM8071  
LTM8051  
LTM4643  
LTM4644  
40V, 3.5A Step-Down Silent Switcher µModule Regulator  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
IN  
OUT  
BGA Package  
40V, Dual 1.4A Step-Down Silent Switcher µModule  
Regulator  
3V ≤ V ≤ 40V, 0.8V ≤ V  
≤ 10V, 6.25mm × 6.25mm × 2.32mm  
≤ 8V, 9mm × 11.25mm × 3.32mm  
IN  
OUT  
BGA Package  
40V, Dual 3.5A Step-Down Silent Switcher µModule Regulator 3V ≤ V ≤ 40V, 0.8V ≤ V  
IN  
OUT  
BGA Package  
60V, 3A Step-Down µModule Regulator  
3.4V ≤ V ≤ 60V, 0.85V ≤ V  
≤ 15V, 6.25mm × 9mm × 3.32mm  
≤ 15V, 9mm × 11.25mm × 3.32mm  
IN  
OUT  
BGA Package  
60V, 5A Step-Down Silent Switcher µModule Regulator  
3.6V ≤ V ≤ 60V, 0.97V ≤ V  
IN  
OUT  
BGA Package  
40V, Quad 1.2A Step-Down Silent Switcher µModule Regulator 3V ≤ V ≤ 40V, 0.8V ≤ V  
≤ 8V, 6.25mm × 11.25mm × 2.32mm  
IN  
OUT  
BGA Package  
Quad 3A, 20V Step-Down µModule Regulator  
Quad 4A, 14V Step-Down µModule Regulator  
4V ≤ V ≤ 20V, 0.6V ≤ V  
IN  
≤ 3.3V, 9mm × 15mm × 1.82mm  
OUT  
LGA, 9mm × 15mm × 2.42mm BGA Packages  
4V ≤ V ≤ 14V, 0.6V ≤ V ≤ 5.5V, 9mm × 15mm × 5.01mm BGA Package  
IN  
OUT  
Rev. 0  
04/21  
www.analog.com  
28  
ANALOG DEVICES, INC. 2021  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY