OP183GSZ-REEL [ADI]

5 MHz Single-Supply Operational Amplifier; 5 MHz的单电源运算放大器
OP183GSZ-REEL
型号: OP183GSZ-REEL
厂家: ADI    ADI
描述:

5 MHz Single-Supply Operational Amplifier
5 MHz的单电源运算放大器

运算放大器
文件: 总16页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 MHz Single-Supply  
Operational Amplifier  
OP183  
FEATURES  
PIN CONNECTION  
Single supply: 3 V to 36 V  
Wide bandwidth: 5 MHz  
Low offset voltage: 1 mV  
High slew rate: 10 V/μs  
Low noise: 10 nV/√Hz  
Unity gain stable  
Input and output range includes GND  
No phase reversal  
1
2
3
4
8
7
6
5
NULL  
–IN  
NC  
OP183  
V+  
+IN  
OUT  
NULL  
TOP VIEW  
(Not to Scale)  
V–  
Figure 1. 8-Lead Narrow Body SOIC  
(S Suffix)  
APPLICATIONS  
Multimedia  
Telecom  
ADC buffers  
Wide band filters  
Microphone preamplifiers  
GENERAL DESCRIPTION  
The OP183 is a single-supply, 5 MHz bandwidth amplifier with  
slew rates of 10 V/μs. It can operate from voltages as low as 3 V  
and up to 36 V. This combination of slew rate and bandwidth  
yields excellent single-supply ac performance, making this  
amplifier ideally suited for telecom and multimedia audio  
applications.  
The OP183 also provides good dc performance with guaranteed  
1 mV offset. Noise is a respectable 10 nV/√Hz. Supply current is  
only 1.2 mA per amplifier.  
This amplifier is well suited for single-supply applications that  
require moderate bandwidth even when used in high gain  
configurations. This makes it useful in filters and instrumenta-  
tion. The output drive capability and very wide full-power  
bandwidth of the OP183 make it a good choice for multimedia  
headphone drivers or microphone input amplifiers.  
The OP183 is available in a SO-8 surface-mount package. It is  
specified over the extended industrial (−40°C to +85°C)  
temperature range.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
OP183  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Direct Access Arrangement ...................................................... 13  
5 V Only Stereo DAC for Multimedia..................................... 13  
Low Voltage Headphone Amplifiers........................................ 14  
Low Noise Microphone Amplifier for Multimedia ............... 14  
3 V 50 Hz/60 Hz Active Notch Filter with False Ground ..... 14  
Electrical Characteristics @ VS = 5 V......................................... 3  
Electrical Characteristics @ VS = 3 V......................................... 4  
Electrical Characteristics @ VS = 15 V.................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Applications..................................................................................... 13  
Offset Adjust ............................................................................... 13  
Phase Reversal............................................................................. 13  
Low Voltage Frequency Synthesizer for Wireless  
Transceiver .................................................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
5/05—Rev. C to Rev. D  
Revision 0: Initial Version  
Updated Format.................................................................. Universal  
Removed OP283 ................................................................. Universal  
Updated Outline Dimensions........................................................16  
Changes to Ordering Guide ...........................................................16  
2/02—Rev. B to Rev. C  
Edits to FEATURES...........................................................................1  
Edits to GENERAL DESCRIPTION...............................................1  
Edits to SPECIFICATIONS......................................................... 2–3  
Edits to Package Type........................................................................4  
Edits to ORDERING GUIDE...........................................................4  
Edits to ABSOLUTE MAXIMUM RATINGS ...............................4  
Edits to OUTLINE DIMENSIONS...............................................12  
Rev. D | Page 2 of 16  
OP183  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS @ VS = 5 V  
TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = 2.5 V, VOUT = 2.5 V,  
−40°C ≤ TA ≤ +85°C  
VCM = 2.5 V, VOUT = 2.5 V,  
−40°C ≤ TA ≤ +85°C  
VCM = 2.5 V, VOUT = 2.5 V,  
−40°C ≤ TA ≤ +85°C  
0.025  
1.0  
mV  
mV  
nA  
nA  
nA  
nA  
V
1.25  
600  
750  
Input Bias Current  
350  
430  
Input Offset Current  
IOS  
11  
50  
3.5  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
VCM = 0 to 3.5 V  
70  
104  
dB  
−40°C ≤ TA +85°C  
RL = 2 kΩ, 0.2 ≤ VO ≤ 3.8 V  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
AVO  
ΔVOS/ΔT  
ΔIB/ΔT  
100  
V/mV  
μV/°C  
nA/°C  
4
−1.6  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
RL = 2 kΩ to GND  
RL = 2 kΩ to GND  
Source  
4.0  
4.22  
50  
25  
V
75  
mV  
mA  
mA  
Sink  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 4 V to 6 V,  
−40°C ≤ TA ≤ +85°C  
VO = 2.5 V,  
70  
104  
1.2  
dB  
Supply Current/Amplifier  
−40°C ≤ TA ≤ +85°C  
1.5  
18  
mA  
V
Supply Voltage Range  
VS  
3
5
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ  
10  
>50  
1.5  
5
V/μs  
kHz  
Full Power Bandwidth  
Settling Time  
BWp  
tS  
1% Distortion  
To 0.01%  
μs  
Gain Bandwidth Product  
Phase Margin  
GBP  
фm  
MHz  
Degrees  
46  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
0.1 Hz to 10 Hz  
2
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz, VCM = 2.5 V  
10  
0.4  
Rev. D | Page 3 of 16  
 
OP183  
ELECTRICAL CHARACTERISTICS @ VS = 3 V  
TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.3  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = 1.5 V, VOUT = 1.5 V,  
−40°C ≤ TA ≤ +85°C  
VCM = 1.5 V, VOUT = 1.5 V,  
−40°C ≤ TA ≤ +85°C  
VCM = 1.5 V, VOUT = 1.5 V,  
−40°C ≤ TA ≤ +85°C  
1.0  
mV  
mV  
nA  
nA  
nA  
nA  
V
1.25  
600  
750  
Input Bias Current  
350  
Input Offset Current  
IOS  
11  
50  
1.5  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 1.5 V,  
−40°C ≤ TA ≤ +85°C  
RL = 2 kΩ, 0.2 ≤ VO ≤ 1.8 V  
70  
100  
103  
260  
dB  
V/mV  
Large Signal Voltage Gain  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 2 kΩ to GND  
RL = 2 kΩ to GND  
Source  
2.0  
2.25  
90  
V
Output Voltage Low  
125  
mV  
mA  
mA  
Short-Circuit Limit  
25  
Sink  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 3.5 V,  
−40°C ≤ TA ≤ +85°C  
60  
113  
1.2  
dB  
Supply Current/Amplifier  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
NOISE PERFORMANCE  
−40°C ≤ TA ≤ +85°C, VO = 1.5 V  
1.5  
mA  
GBP  
en  
5
MHz  
Voltage Noise Density  
f = 1 kHz, VCM = 1.5 V  
10  
nV/√Hz  
Rev. D | Page 4 of 16  
 
OP183  
ELECTRICAL CHARACTERISTICS @ VS = 15 V  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0.01  
1.0  
mV  
mV  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +85°C  
1.25  
600  
750  
50  
Input Bias Current  
IB  
300  
400  
11  
−40°C ≤ TA ≤ +85°C  
−40 ≤ TA ≤ +85°C  
Input Offset Current  
Input Voltage Range  
IOS  
−15  
+13.5  
Common-Mode Rejection Ratio  
CMRR  
VCM = −15 V to +13.5 V,  
–40°C ≤ TA ≤ +85°C  
RL = 2 kΩ  
70  
86  
dB  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
Long-Term Offset Voltage  
OUTPUT CHARACTERISTICS  
AVO  
100  
1000  
3
−1.6  
V/mV  
μV/°C  
nA/°C  
mV  
ΔVOS/ΔT  
ΔIB/ΔT  
VOS  
Note1  
1.5  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
13.9  
14.1  
−14.05  
30  
V
RL = 2 kΩ to GND, −40°C TA +85°C  
RL = 2 kΩ to GND, −40°C TA +85°C  
Source  
−13.9  
V
mA  
mA  
Ω
Sink  
50  
Open-Loop Output Impedance  
POWER SUPPLY  
ZOUT  
PSRR  
ISY  
f = 1 MHz, AV = +1  
15  
Power Supply Rejection Ratio  
VS = 2.5 V to 18 V,  
−40°C ≤ TA ≤ +85°C  
VS = 18 V, VO = 0 V,  
−40°C ≤ TA ≤ +85°C  
70  
112  
1.2  
dB  
Supply Current/Amplifier  
1.75  
18  
mA  
V
Supply Voltage Range  
DYNAMIC PERFORMANCE  
Slew Rate  
VS  
3
SR  
RL = 2 kΩ  
10  
15  
50  
1.5  
5
V/μs  
kHz  
Full Power Bandwidth  
Settling Time  
BWp  
tS  
1% Distortion  
To 0.01%  
μs  
Gain Bandwidth Product  
Phase Margin  
GBP  
фm  
MHz  
Degrees  
56  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
en  
in  
10  
0.4  
1 Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
Rev. D | Page 5 of 16  
 
OP183  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
18 V  
18 V  
7 V  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Indefinite  
S Package  
Operating Temperature Range  
−65°C to +150°C  
−40°C to +85°C  
Absolute maximum ratings apply to packaged parts, unless  
otherwise noted.  
OP183  
Table 5.  
Package Type  
Junction Temperature Range  
1
θJA  
θJC  
Units  
S Package  
−65°C to +150°C  
300°C  
8-Lead SOIC (S)  
158  
43  
°C/W  
Lead Temperature Range (Soldering 60 sec)  
1 θJA is specified for worst-case conditions; in other words, θJA is specified for  
device soldered in circuit board for SOIC packages.  
1 For supply voltages less than 7 V, the absolute maximum input voltage is  
equal to the supply voltage. Maximum input current should not exceed  
2 mA.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page 6 of 16  
 
OP183  
TYPICAL PERFORMANCE CHARACTERISTICS  
160  
140  
80  
–40°C = T +85°C  
A
300X OP AMPS  
PLASTIC PACKAGE  
V
= 5V  
S
70  
60  
50  
300X  
OP AMPS  
120  
100  
80  
40  
30  
20  
60  
40  
20  
0
10  
0
–600  
–400  
–200  
0
200  
400  
600  
0
2
4
6
8
10  
12  
TCV (μV/°C)  
INPUT OFFSET VOLTAGE (μV)  
OS  
Figure 5. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 15 V  
Figure 2. OP183 Input Offset Voltage Distribution @ 5 V  
80  
70  
60  
50  
3
T
R
V
= 25°C  
= 2kΩ  
= 3V  
V
300X  
OP AMPS  
= 5V  
A
S
L
S
2
1
0
40  
30  
20  
10  
0
–600  
–400  
–200  
0
200  
400  
600  
1k  
10k  
100k  
1M  
10M  
INPUT OFFSET VOLTAGE (μV)  
FREQUENCY (Hz)  
Figure 3. OP183 Input Offset Voltage Distribution @ 15 V  
Figure 6. OP183 Maximum Output Swing vs. Frequency @ 3 V  
160  
5
–40°C = T +85°C  
A
300X OP AMPS  
PLASTIC PACKAGE  
T
R
V
= 25°C  
= 2kΩ  
= 5V  
A
140  
L
S
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
1k  
10k  
100k  
1M  
10M  
0
2
4
6
8
10  
12  
TCV (μV/°C)  
FREQUENCY (Hz)  
OS  
Figure 7. OP183 Maximum Output Swing vs. Frequency @ 5 V  
Figure 4. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 5 V  
Rev. D | Page 7 of 16  
 
OP183  
30  
25  
20  
15  
10  
500  
T
R
V
= 25°C  
= 2kΩ  
= 15V  
A
L
S
V
V
= ±15V,  
= +5V  
S
S
400  
300  
200  
V
= +3V  
S
100  
0
5
0
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 8. OP183 Maximum Output Swing vs. Frequency @ 15 V  
Figure 11. Input Bias Current vs. Temperature  
1
1.50  
1.25  
1.00  
V
R
= ±18V  
S
=
L
SINK  
100m  
V
R
= +3V  
V
R
= +5V  
S
S
0.75  
0.50  
0.25  
0
=
=
L
L
SOURCE  
10m  
1m  
1μ  
10μ  
100μ  
1m  
10m  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
LOAD CURRENT (A)  
TEMPERATURE (°C)  
Figure 12. Supply Current per Amplifier vs. Temperature  
Figure 9. Output Voltage vs. Sink & Source Current  
600  
500  
400  
1.50  
1.25  
1.00  
T
= 25°C  
A
T
V
= 25°C  
= ±15V  
A
S
300  
200  
100  
0
0.75  
0.50  
0.25  
0
–15  
–10  
–5  
0
5
10  
13.5  
0
±2.5  
±5.0  
±7.5  
±10.0 ±12.5 ±15.0 ±17.5 ±20.0  
COMMON MODE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Figure 13. Supply Current per Amplifier vs. Supply Voltage  
Rev. D | Page 8 of 16  
OP183  
60  
50  
40  
140  
120  
100  
80  
T
V
= 25°C  
= ±15V  
A
S
+PSRR  
–PSRR  
–1  
SC  
30  
20  
10  
0
60  
40  
+1  
SC  
20  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
125  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
TEMPERATURE (°C)  
Figure 14. Short-Circuit Current vs. Temperature @ 5 V  
Figure 17. Power Supply Rejection vs. Frequency  
60  
50  
40  
90  
80  
T
V
= 25°C  
= 3V  
A
–1  
SC  
S
R
= 10kΩ  
L
70  
60  
50  
GAIN  
+1  
SC  
30  
20  
10  
0
40  
30  
20  
10  
0
195  
PHASE  
MARGIN  
= 43°  
PHASE  
90  
45  
0
–45  
10M  
–10  
–75  
–50  
–25  
0
25  
50  
75  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
TEMPERATURE (°C)  
Figure 15. Short-Circuit Current vs. Temperature @ 15 V  
Figure 18. Open-Loop Gain and Phase vs. Frequency @ 3 V  
140  
120  
100  
80  
90  
80  
T
= 25°C  
V = 5V  
S
T
V
= 25°C  
= ±15V  
A
A
S
R
= 10kΩ  
L
70  
60  
50  
GAIN  
40  
30  
20  
10  
0
60  
40  
195  
90  
PHASE  
MARGIN  
= 46°  
PHASE  
45  
20  
0
0
–45  
10M  
–10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
FREQUENCY (Hz)  
Figure 16. Common-Mode Rejection vs. Frequency  
Figure 19. Open-Loop Gain and Phase vs. Frequency @ 5 V  
Rev. D | Page 9 of 16  
OP183  
90  
80  
25  
T
V
R
= 25°C  
= ±15V  
= 10kΩ  
A
S
L
70  
60  
50  
20  
15  
10  
5
V
R
= ±15V  
= 2kΩ  
GAIN  
S
L
±SLEW RATE  
40  
30  
20  
10  
0
195  
90  
PHASE  
MARGIN  
= 56°  
V
R
= ±15V  
= 2kΩ  
PHASE  
S
L
±SLEW RATE  
45  
0
–45  
–10  
1k  
0
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
10k  
10k  
TEMPERATURE (°C)  
Figure 20. Open-Loop Gain and Phase vs. Frequency @ 15 V  
Figure 23. Slew Rate vs. Temperature  
1000  
30  
25  
T
= +25°C  
= ±15V  
OR  
A
900  
V
S
800  
700  
V
= +3V, +15V  
S
20  
15  
10  
5
V
= +5V  
S
600  
500  
R
= 2kΩ  
L
400  
300  
200  
100  
0
V
V
= ±15V  
OR  
= +3V  
= 2kΩ  
S
S
R
L
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
10  
100  
FREQUENCY (Hz)  
1k  
TEMPERATURE (°C)  
Figure 21. Open-Loop Gain vs. Temperature  
Figure 24. Voltage Noise Density vs. Frequency  
50  
40  
30  
20  
6
5
T
= 25°C  
= ±15V  
OR  
A
T
V
= 25°C  
= ±15V  
A
A
= 100  
= 10  
= 1  
V
V
S
S
V
= +3V, +15V  
S
4
3
2
1
A
V
10  
0
A
V
–10  
–20  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10  
100  
FREQUENCY (Hz)  
1k  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. Current Noise Density vs. Frequency  
Rev. D | Page 10 of 16  
OP183  
100  
90  
T
V
= 25°C  
= ±15V  
A
S
80  
70  
60  
50  
40  
30  
20  
10  
0
AV = 10  
AV = 1  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 29. Small Signal Performance @ 15 V  
Figure 26. Closed-Loop Output Impedance vs. Frequency  
80  
70  
60  
50  
T
V
R
= 25°C  
= 5V  
= 10kΩ  
A
S
L
NEGATIVE  
EDGE  
40  
30  
20  
POSITIVE  
EDGE  
10  
0
0
100  
200  
300  
CAPACITANCE (pF)  
Figure 30. 0.1 Hz to 10 Hz Noise @ 2.5 V  
Figure 27. Small Signal Overshoot vs. Load Capacitance  
Figure 28. Large Signal Performance @ 15 V  
Figure 31. 0.1 Hz to 10 Hz Noise @ 15 V  
Rev. D | Page 11 of 16  
OP183  
Preliminary Technical Data  
0.1  
OP183  
2.5V  
V
= ±  
S
600  
Ω
A
R
= +1  
= 0  
V
F
V
= 1V  
RMS  
1kΩ  
IN  
80kHz LOW-PASS FILTER  
2k  
Ω
0.010  
5k  
Ω
10Ω  
NO  
LOAD  
0.001  
0.0005  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
Figure 32. THD + Noise vs. Frequency for Various Loads  
Rev. D | Page 12 of 16  
OP183  
APPLICATIONS  
OFFSET ADJUST  
This arrangement drives the transformer differentially so that  
the drive to the transformer is effectively doubled over a single  
amplifier arrangement. This application takes advantage of the  
ability of the OP183 to drive capacitive loads and to save power  
in single-supply applications.  
Figure 33 shows how the offset voltage of the OP183 can be  
adjusted by connecting a potentiometer between Pins 1 and 5,  
and connecting the wiper to VEE. The recommended value for  
the potentiometer is 10 kΩ. This will give an adjustment range  
of approximately 1 mV. If a larger adjustment span is desired, a  
50 kΩ potentiometer will yield a range of 2.5 mV.  
300pF  
37.4kΩ  
V
CC  
20kΩ  
0.1μF  
A1  
7
OP183  
RxA  
3
2
6
V
OS  
OP183  
0.0047μF  
20kΩ  
475Ω  
4
5
V
EE  
1
3.3kΩ  
A2  
OP183  
22.1kΩ  
0.1μF  
20kΩ  
0.33μF  
TxA  
Figure 33. OP183 Offset Adjust  
750pF  
20kΩ  
20kΩ  
PHASE REVERSAL  
A3  
The OP183 is protected against phase reversal as long as both of  
the inputs are within the range of the positive supply and the  
negative supply −0.6 V. If there is a possibility of either input  
going beyond these limits, however, the inputs should be  
protected with a series resistor to limit input current to 2 mA.  
OP183  
REF  
2.5V  
Figure 34. Direct Access Arrangement  
5 V ONLY STEREO DAC FOR MULTIMEDIA  
DIRECT ACCESS ARRANGEMENT  
The low noise and single-supply capability of the OP183 are  
ideally suited for stereo DAC audio reproduction or sound  
synthesis applications, such as multimedia systems. Figure 35  
shows an 18-bit stereo DAC output setup that is powered from a  
single 5 V supply. The low noise preserves the 18-bit dynamic  
range of the AD1868.  
The OP183 can be used in a single supply direct access  
arrangement (DAA) as shown in Figure 34. This figure shows a  
portion of a typical DAA capable of operating from a single 5 V  
supply; with minor modifications it should also work on 3 V  
supplies. Amplifiers A2 and A3 are configured so that the  
transmit signal TxA is inverted by A2 and not inverted by A3.  
AD1868  
VBL  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
L
8
16-BIT  
DAC  
3
LL  
220μF  
LEFT  
CHANNEL  
OUTPUT  
+
1
OP183  
9.76kΩ  
7.68kΩ  
DL  
CK  
DR  
LR  
18-BIT  
SERIAL  
REG.  
47kΩ  
2
4
VOL  
330pF  
100pF  
V
V
REF  
REF  
AGND 12  
11  
7.68kΩ  
7.68kΩ  
18-BIT  
SERIAL  
REG.  
VOR  
10  
DGND  
VBR  
16-BIT  
DAC  
100pF  
7
V
9
9.76kΩ  
S
7.68kΩ  
6
5
220μF  
RIGHT  
CHANNEL  
OUTPUT  
330pF  
+
OP183  
47kΩ  
Figure 35. 5 V Only 18-Bit Stereo DAC  
Rev. D | Page 13 of 16  
 
OP183  
3 V 50 HZ/60 HZ ACTIVE NOTCH FILTER WITH  
FALSE GROUND  
LOW VOLTAGE HEADPHONE AMPLIFIERS  
Figure 36 shows a stereo headphone output amplifier for the  
AD1849 16-bit SoundPort® Stereo Codec device. The  
pseudoreference voltage is derived from the common-mode  
voltage generated internally by the AD1849, thus providing a  
convenient bias for the headphone output amplifiers.  
To process ac signals, it may be easier to use a false-ground bias  
rather than the negative supply as a reference ground. This  
would reject the power line frequency interference which can  
often obscure low frequency physiological signals, such as heart  
rates, blood pressures, EEGs, and ECGs.  
OPTIONAL  
GAIN  
5kΩ  
Figure 38 shows a 50 Hz/60 Hz active notch filter for  
eliminating line noise in patient monitoring equipment. It has  
several kilohertz bandwidth and is not sensitive to false-ground  
perturbations. The simple false-ground circuit shown achieves  
good rejection of low frequency interference using standard off-  
the-shelf components.  
1kΩ  
V
REF  
5V  
10μF  
220μF  
47kΩ  
16Ω  
21  
LOUT1L  
HEADPHONE  
LEFT  
L VOLUME  
CONTROL  
OP183  
10kΩ  
AD1849  
5V  
R2  
2.67kΩ  
OP183  
3V  
R1  
V
REF  
2.67kΩ  
C1  
1μF  
C2  
1μF  
2
3
4
OP183  
CMOUT 19  
1
6
8
A1  
10kΩ  
10μF  
R3  
2.67kΩ  
R4  
2.67kΩ  
5
7
220μF  
47kΩ  
V
V
O
A2  
IN  
16Ω  
HEADPHONE  
RIGHT  
R VOLUME  
CONTROL  
OP183  
5kΩ  
20  
LOUT1R  
R6  
10kΩ  
R7  
C3  
1μF  
(1μF × 2)  
R5  
1kΩ  
OP183  
1.33kΩ  
(2.67kΩ ÷ 2)  
R8  
1kΩ  
OPTIONAL  
GAIN  
1kΩ  
R11  
10kΩ  
Q = 0.75  
NOTE:  
V
REF  
FOR 50Hz APPLICATIONS  
CHANGE R1–R4 TO 3.1Ω  
AND R5 TO 1.58Ω (3.16Ω ÷ 2).  
Figure 36. Headphone Output Amplifier for Multimedia Sound Codec  
C5  
0.015μF  
3V  
R9  
R12  
70Ω  
3
LOW NOISE MICROPHONE AMPLIFIER FOR  
MULTIMEDIA  
0.75V  
1
A3  
75kΩ  
C6  
1μF  
4
C4  
1μF  
R10  
25kΩ  
OP183  
The OP183 is ideally suited as a low noise microphone preamp  
for low voltage audio applications. Figure 37 shows a gain of 100  
stereo preamp for the AD1849 16-bit SoundPort Stereo Codec  
chip. The common-mode output buffer serves as a phantom  
power driver for the microphones.  
Figure 38. 3 V Supply 50 Hz/60 Hz Notch Filter with Pseudo Ground  
Amplifier A3 biases A1 and A2 to the middle of their input  
common-mode range. When operating on a 3 V supply, the  
center of the common-mode range of the OP183 is 0.75 V. This  
notch filter effectively squelches 60 Hz pickup at a filter Q of  
0.75. To reject 50 Hz interference, change the resistors in the  
twin-T section (R1 through R5) from 2.67 kΩ to 3.16 kΩ.  
10kΩ  
5V  
17  
MINL  
OP183  
10μF  
LEFT  
ELECTRET  
CONDENSER  
MIC  
50Ω  
10kΩ  
20Ω  
100Ω  
AD1849  
INPUT  
The filter section uses OP183 op amps in a twin-T  
5V  
configuration whose frequency selectivity is very sensitive to  
the relative matching of the capacitors and resistors in the twin-  
T section. Mylar is the material of choice for the capacitors, and  
the relative matching of the capacitors and resistors determines  
the filters pass-band symmetry. Using 1% resistors and 5%  
capacitors produces satisfactory results.  
19 CMOUT  
1/2  
OP219  
100Ω  
20Ω  
10μF  
10kΩ  
RIGHT  
ELECTRET  
CONDENSER  
MIC  
50Ω  
18  
MINR  
OP183  
INPUT  
10kΩ  
Figure 37. Low Noise Stereo Microphone Amplifier for  
Multimedia Sound Codec  
Rev. D | Page 14 of 16  
 
OP183  
LOW VOLTAGE FREQUENCY SYNTHESIZER FOR  
WIRELESS TRANSCEIVER  
3V  
CRYSTAL  
OP183  
The low noise and low voltage operation capability of the  
OP183 serves well for the loop filter of a frequency synthesizer.  
REFERENCE  
OSCILLATOR  
PHASE  
DETECTOR  
Figure 39 shows a typical application in a radio transceiver. The  
phase noise performance of the synthesizer depends on low  
noise contribution from each component in the loop as the  
noise is amplified by the frequency division factor of the  
prescaler.  
V
CONTROL  
VCO  
÷
RF  
OUT  
PRESCALER  
900MHz  
Figure 39. Low Voltage Frequency Synthesizer for a Wireless Transceiver  
The resistors used in the low-pass filter should be of low to  
moderate values to reduce noise contribution due to the input  
bias current as well as the resistors themselves. The filter cutoff  
frequency should be chosen to optimize the loop constant.  
7
QB9  
RB4  
QB6  
RB5  
QB7  
RB6  
QB10  
QB11  
R9  
RB3  
Q7  
Q5  
Q8  
Q6  
QB8  
Q12  
QD2  
R1  
Q1  
R2  
Q2  
CC2  
JB1  
3
2
QD1  
CC3  
Z1  
R8  
6
CF1  
Q4  
R5  
QB5A  
Q3  
QD3  
CB1  
CO  
R7  
QB4  
A
QB3  
QB1  
5
1
B
Q11  
R10  
R3A  
R4A  
R11  
Q10  
QB13  
QB2  
QB14  
CC1  
R4B  
QB12  
R3AT  
R3B  
R4AT  
R4LT  
R3LT  
RB2  
RB1  
4
Figure 40. OP183 Simplified Schematic  
Rev. D | Page 15 of 16  
 
OP183  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
S-Suffix  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
OP183GS  
OP183GS-REEL  
OP183GS-REEL7  
OP183GSZ1  
OP183GSZ-REEL1  
OP183GSZ-REEL71  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1Z = Pb free part.  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00292-0-5/05(D)  
Rev. D | Page 16 of 16  
 

相关型号:

OP183GSZ-REEL7

5 MHz Single-Supply Operational Amplifier
ADI

OP183_05

5 MHz Single-Supply Operational Amplifier
ADI

OP184

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP184EP

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP184ES

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP184ES-REEL

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP184ES-REEL7

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP184ESZ

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP184ESZ-REEL

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP184ESZ-REEL7

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP184FP

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP184FS

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI