OP193FSZ-REEL1 [ADI]

Precision, Micropower Operational Amplifiers; 高精度,微功耗运算放大器
OP193FSZ-REEL1
型号: OP193FSZ-REEL1
厂家: ADI    ADI
描述:

Precision, Micropower Operational Amplifiers
高精度,微功耗运算放大器

运算放大器
文件: 总20页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Micropower  
Operational Amplifiers  
OP193/OP293  
PIN CONFIGURATIONS  
FEATURES  
Operates from +1.7 V to 18 V  
Low supply current: 15 µA/amplifier  
Low offset voltage: 100 µV maximum  
Outputs sink and source: 8 mA  
No phase reversal  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
OP193  
V+  
OUT A  
NULL  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 1. 8-Lead SOIC_N  
(S Suffix)  
Single- or dual-supply operation  
High open-loop gain: 600 V/mV  
Unity-gain stable  
APPLICATIONS  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP293  
OUT B  
–IN B  
+IN B  
Digital scales  
Strain gages  
TOP VIEW  
(Not to Scale)  
Portable medical equipment  
Battery-powered instrumentation  
Temperature transducer amplifier  
Figure 2. 8-Lead SOIC_N  
(S Suffix)  
GENERAL DESCRIPTION  
The OP193/OP293 are single-supply operational amplifiers that  
feature a combination of high precision, low supply current, and  
the ability to operate at low voltages. For high performance in  
single-supply systems, the input and output ranges include  
ground, and the outputs swing from the negative rail to within  
600 mV of the positive supply. For low voltage operation, the  
OP193/OP293 can operate down to +1.7 V or 0.85 V.  
The combination of high accuracy and low power operation  
make the OP193/OP293 useful for battery-powered equipment.  
The parts low current drain and low voltage operation allow it  
to continue performing long after other amplifiers have ceased  
functioning either because of battery drain or headroom.  
The OP193/OP293 are specified for single +2 V through dual  
15 V operation over the extended (−40°C to +125°C) temperature  
range. They are available in SOIC surface-mount packages.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©1995–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
OP193/OP293  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Overvoltage Protection................................................... 14  
Output Phase Reversal—OP193............................................... 14  
Output Phase Reversal—OP293............................................... 14  
Battery-Powered Applications.................................................. 14  
A Micropower False-Ground Generator................................. 15  
A Battery-Powered Voltage Reference..................................... 15  
A Single-Supply Current Monitor............................................ 15  
A Single-Supply Instrumentation Amplifier .......................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Typical Performance Characteristics ............................................. 9  
Functional Description.................................................................. 13  
Driving Capacitive Loads.......................................................... 13  
A Low Power, Temperature to 4 mA to 20 mA  
Transmitter.................................................................................. 16  
A Micropower Voltage Controlled Oscillator ........................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
9/09—Rev. B to Rev. C  
Deleted A Micropower, Single-Supply Quad Voltage Output  
8-Bit DAC Section .......................................................................... 13  
Deleted Figure 13; Renumbered Sequentially ............................ 14  
Deleted A Single-Supply Micropower Quad Programmable-  
Gain Amplifier Section.................................................................. 14  
Changes to Output Phase Reversal—OP293 Section, Battery-  
Powered Applications Section, and Figure 27 ............................ 14  
Deleted Figure 14............................................................................ 15  
Changes to Figure 31, A Single-Supply Current Monitor  
Section, and Figure 32.................................................................... 15  
Changes to A Low Power, Temperature to 4 mA to 20 mA  
Transmitter Section and Figure 35............................................... 16  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 18  
Updated Format..................................................................Universal  
Deleted OP493 ....................................................................Universal  
Changes to Features and General Description Sections.............. 1  
Deleted 8-Lead Epoxy DIP Pin Configurations for OP193 and  
OP293, and 14-Lead Epoxy DIP and 16-Lead Wide Body SOL  
Pin Configurations for OP493........................................................ 1  
Changes to Offset Voltage Parameter and Large Signal Voltage  
Gain, RL = 100 kΩ, −10 V ≤ VOUT ≤ +10 V Parameter, and  
Power Supply Rejection Ratio Parameter, Table 1........................ 3  
Changes to Offset Voltage Parameter and Power Supply  
Rejection Ratio Parameter, Table 2 ................................................ 4  
Changes to Offset Voltage Parameter and Power Supply  
Rejection Ratio Parameter, Table 3 ................................................ 6  
Changes to Offset Voltage Parameter and Power Supply  
Rejection Ratio Parameter, Table 4 ................................................ 7  
Changes to Table 5 and Table 6....................................................... 8  
Changes to Figure 3 to Figure 6...................................................... 9  
Changes to Figure 10 and Figure 12............................................. 10  
Changes to Functional Description Section and Figure 26 ...... 13  
1/02—Rev. A to Rev. B  
Deletion of Wafer Test Limits Table................................................5  
Deletion of Dice Characteristics Images ........................................6  
Edits to Ordering Guide ...................................................................6  
Rev. C | Page 2 of 20  
 
OP193/OP293  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VS = 15.0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
E Grade  
Typ  
F Grade  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
150  
250  
250  
350  
20  
μV  
μV  
μV  
μV  
nA  
nA  
V
OP193, −40°C ≤ TA ≤ +125°C  
OP293  
OP293, −40°C ≤ TA ≤ +125°C  
VCM = 0 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V, −40°C ≤ TA ≤ +125°C  
100  
200  
15  
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
2
4
−14.9  
100  
97  
+13.5 −14.9  
+13.5  
−14.9 V ≤ VCM ≤ +14 V  
−14.9 V ≤ VCM ≤ +14 V,  
−40°C ≤ TA ≤ +125°C  
116  
97  
94  
116  
dB  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
AVO  
AVO  
RL = 100 kΩ,  
−10 V ≤ VOUT ≤ +10 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ,  
−10 V ≤ VOUT ≤ +10 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ,  
500  
300  
600  
300  
500  
300  
600  
300  
V/mV  
V/mV  
V/mV  
350  
200  
350  
200  
V/mV  
V/mV  
V/mV  
150  
150  
100  
−10 V ≤ VOUT ≤ +10 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
200  
125  
200  
125  
V/mV  
V/mV  
V/mV  
μV  
100  
0.2  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
ΔVOS/ΔT  
150  
1.75  
300  
μV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
IL = 1 mA  
14.1  
14.2  
14.1  
−14.7 −14.6  
−14.4  
14.1  
14.0  
13.9  
14.2  
V
V
V
V
V
IL = 1 mA, −40°C ≤ TA ≤ +125°C 14.0  
IL = 5 mA  
IL = −1 mA  
IL = −1 mA,  
13.9  
14.1  
Output Voltage Swing Low  
VOL  
−14.7 −14.6  
−14.4  
−40°C ≤ TA ≤ +125°C  
IL = −5 mA  
+14.2 −14.1  
25  
+14.2 −14.1  
25  
V
mA  
Short-Circuit Current  
POWER SUPPLY  
ISC  
Power Supply Rejection Ratio PSRR  
VS = 1.5 V to 18 V  
−40°C ≤ TA ≤ +125°C  
VOUT = 0 V, VS = 18 V,  
100  
97  
120  
97  
94  
120  
dB  
dB  
μA  
Supply Current per Amplifier  
ISY  
30  
30  
−40°C ≤ TA ≤ +125°C, RL = ∞  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/√Hz  
pA/√Hz  
μV p-p  
Rev. C | Page 3 of 20  
 
 
OP193/OP293  
E Grade  
Typ  
F Grade  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
15  
35  
120  
15  
35  
120  
V/ms  
kHz  
dB  
VOUT = 10 V p-p, RL = 2 kΩ,  
f = 1 kHz  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 °C, with an LTPD of 1.3.  
2 Offset voltage drift is the average of the −40°C to +25°C delta and the +25°C to +125°C delta.  
VS = 5.0 V, VCM = 0.1 V, TA = 25°C, unless otherwise noted.  
Table 2.  
E Grade  
Typ  
F Grade  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
150  
250  
250  
350  
20  
μV  
μV  
μV  
μV  
nA  
nA  
V
OP193, −40°C ≤ TA ≤ +125°C  
OP293  
OP293, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
100  
200  
15  
2
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
4
4
0
100  
92  
4
0
96  
92  
0.1 V ≤ VCM ≤ 4 V  
0.1 V ≤ VCM ≤ 4 V,  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ,  
0.03 V ≤ VOUT ≤ 4.0 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ,  
0.03 V ≤ VOUT ≤ 4.0 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
116  
130  
116  
dB  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
200  
125  
200  
125  
V/mV  
V/mV  
V/mV  
130  
70  
AVO  
75  
50  
75  
50  
V/mV  
V/mV  
V/mV  
μV  
70  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
ΔVOS/ΔT  
150  
1.25  
300  
0.2  
μV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
IL = 100 μA  
IL = 1 mA  
4.4  
4.4  
4.4  
4.4  
V
V
4.1  
4.1  
IL = 1 mA,  
−40°C ≤ TA ≤ +125°C  
IL = 5 mA  
4.0  
4.0  
4.0  
4.0  
V
V
4.4  
4.4  
Output Voltage Swing Low  
VOL  
IL = −100 μA  
140  
160  
220  
140  
160  
220  
mV  
IL = −100 μA,  
−40°C ≤ TA ≤ +125°C  
No load  
IL = −1 mA  
IL = −1 mA, −40°C ≤ TA ≤ +125°C  
IL = –5 mA  
mV  
mV  
mV  
mV  
mV  
mA  
5
280  
5
280  
400  
500  
900  
400  
500  
900  
700  
8
700  
8
Short-Circuit Current  
POWER SUPPLY  
ISC  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 1.7 V to 6.0 V  
−40°C ≤ TA ≤ +125°C  
VCM = 2.5 V, RL = ∞  
100  
94  
120  
97  
90  
120  
dB  
dB  
μA  
Supply Current per Amplifier  
14.5  
14.5  
Rev. C | Page 4 of 20  
OP193/OP293  
E Grade  
Typ  
F Grade  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
Unit  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/√Hz  
pA/√Hz  
μV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
12  
35  
12  
35  
V/ms  
kHz  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 °C, with an LTPD of 1.3.  
2 Offset voltage drift is the average of the −40°C to +25°C delta and the +25°C to +125°C delta.  
Rev. C | Page 5 of 20  
 
OP193/OP293  
VS = 3.0 V, VCM = 0.1 V, TA = 25°C, unless otherwise noted.  
Table 3.  
E Grade  
F Grade  
Parameter  
Symbol  
Conditions  
Min Typ Max Min Typ Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
150  
250  
250  
350  
20  
μV  
μV  
μV  
μV  
nA  
nA  
V
OP193, −40°C ≤ TA ≤ +125°C  
OP293  
OP293, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
100  
200  
15  
2
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
4
2
0
97  
90  
2
0
94  
87  
0.1 ≤ VCM ≤ 2 V  
0.1 ≤ VCM ≤ 2 V,  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ,  
0.03 V ≤ VOUT ≤ 2 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
116  
116  
100  
dB  
dB  
Large Signal Voltage Gain  
AVO  
100  
75  
100  
75  
V/mV  
V/mV  
V/mV  
μV  
100  
0.2  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
ΔVOS/ΔT  
150  
1.25  
300  
μV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
IL = 1 mA  
IL = 1 mA, –40°C ≤ TA ≤ +125°C  
IL = 5 mA  
2.1  
1.9  
1.9  
2.14  
2.1  
2.1  
1.9  
1.9  
2.14  
2.1  
V
V
V
Output Voltage Swing Low  
VOL  
IL = −1 mA  
IL = −1 mA, −40°C ≤ TA ≤ +125°C  
IL = −5 mA  
280 400  
500  
700 900  
8
280 400  
500  
700 900  
8
mV  
mV  
mV  
mA  
Short-Circuit Current  
POWER SUPPLY  
ISC  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +1.7 V to +6 V  
−40°C ≤ TA ≤ +125°C  
VCM = 1.5 V, RL = ∞  
−40°C ≤ TA ≤ +125°C  
100  
94  
97  
90  
dB  
dB  
μA  
μA  
V
Supply Current per Amplifier  
14.5 22  
22  
14.5 22  
22  
18  
Supply Voltage Range  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
VS  
+2  
18 +2  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/√Hz  
pA/√Hz  
μV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
10  
25  
120  
10  
25  
120  
V/ms  
kHz  
dB  
VOUT = 10 V p-p, RL = 2 kΩ,  
f = 1 kHz  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 °C, with an LTPD of 1.3.  
2 Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Rev. C | Page 6 of 20  
OP193/OP293  
VS = 2.0 V, VCM = 0.1 V, TA = 25°C, unless otherwise noted.  
Table 4.  
E Grade  
Min Typ  
F Grade  
Max Min Typ  
Parameter  
Symbol  
Conditions  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
150  
250  
250  
350  
20  
μV  
μV  
μV  
μV  
nA  
nA  
V
OP193, −40°C ≤ TA ≤ +125°C  
OP293  
OP293, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
100  
175  
15  
2
1
Input Bias Current  
IB  
IOS  
VCM  
AVO  
Input Offset Current  
Input Voltage Range  
Large Signal Voltage Gain  
4
1
0
0
RL = 100 kΩ,  
0.03 V ≤ VOUT ≤ 1 V  
−40°C ≤ TA ≤ +125°C  
60  
60  
V/mV  
V/mV  
μV  
70  
70  
Long-Term Offset Voltage  
POWER SUPPLY  
Power Supply Rejection Ratio  
VOS  
PSRR  
ISY  
150  
300  
VS = 1.7 V to 6 V  
100  
94  
97  
90  
dB  
dB  
μA  
μA  
V
−40°C ≤ TA ≤ +125°C  
VCM = 1.0 V, RL = ∞  
−40°C ≤ TA ≤ +125°C  
Supply Current/Amplifier  
13.2 20  
25  
13.2 20  
25  
Supply Voltage Range  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
VS  
+2  
18  
+2  
18  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/√Hz  
pA/√Hz  
μV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
10  
25  
25  
V/ms  
kHz  
Rev. C | Page 7 of 20  
OP193/OP293  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage1  
18 V  
18 V  
18 V  
Input Voltage1  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
1 For supply voltages less than 18 V, the input voltage is limited to the  
supply voltage.  
Table 6. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
8-Lead SOIC_N (S)  
158  
43  
°C/W  
1 θJA is specified for the worst-case conditions. θJA is specified for a device  
soldered in a circuit board for the SOIC package.  
ESD CAUTION  
Rev. C | Page 8 of 20  
 
 
 
OP193/OP293  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
150  
120  
90  
60  
30  
0
V
= ±15V  
= 25°C  
V = ±15V  
S
S
A
T
–40°C ≤ T ≤ +125°C  
A
160  
120  
80  
40  
0
–75 –60 –45 –30 –15  
0
15  
30  
45  
60  
75  
0
0.2  
0.4  
0.6  
0.8  
1.0  
OFFSET (µV)  
TCV (µV/°C)  
OS  
Figure 3. Offset Distribution, VS = 15 V  
Figure 6. TCVOS Distribution, VS = 15 V  
200  
160  
120  
80  
1
V
= 3V  
= 0.1V  
V = 5V  
S
S
V
CM  
= 25°C  
T
A
0
–1  
–2  
–40°C  
+125°C  
40  
–3  
–4  
+25°C  
0
–75 –60 –45 –30 –15  
0
15  
30  
45  
60  
75  
0
1
2
3
4
5
OFFSET (µV)  
COMMON-MODE VOLTAGE (V)  
Figure 4. Offset Distribution, VS = +3 V  
Figure 7. Input Bias Current vs. Common-Mode Voltage  
150  
120  
90  
60  
30  
0
120  
100  
80  
V
V
= 3V  
S
5V ≤ V ≤ 30V  
S
= 0.1V  
CM  
T = 25°C  
A
–40°C ≤ T ≤ +125°C  
A
–PSRR  
+PSRR  
60  
40  
20  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
10  
10k  
100  
1k  
TCV (µV/°C)  
OS  
FREQUENCY (Hz)  
Figure 5. TCVOS Distribution, VS = +3 V  
Figure 8. PSRR vs. Frequency  
Rev. C | Page 9 of 20  
 
OP193/OP293  
120  
100  
80  
0
–0.05  
–0.10  
–0.15  
T
= 25°C  
A
V
V
= ±15V  
= +5V  
S
V
V
= +2V  
S
= 0.1V  
60  
CM  
S
40  
–0.20  
–0.25  
V
= ±15V  
S
20  
0
10  
10k  
125  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
125  
125  
100  
FREQUENCY (Hz)  
1k  
TEMPERATURE (°C)  
Figure 9. CMRR vs. Frequency  
Figure 12. Input Offset Current vs. Temperature  
25  
20  
15  
10  
0
–1  
–2  
–3  
+SR = –SR  
= ±15V  
V
S
+SR = –SR  
= +5V  
V
= ±15V  
= +2V  
S
V
S
V
V
S
= 0.1V  
CM  
5
0
–4  
–5  
–50  
–50  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Slew Rate vs. Temperature  
Figure 13. Input Bias Current vs. Temperature  
40  
30  
20  
25  
20  
15  
10  
+I  
V
= ±18V  
SC  
S
V
= ±15V  
S
| –I  
SC  
V
|
= ±15V  
S
V
V
= +2V  
S
= 1V  
CM  
| –I  
|
10  
0
SC  
V
= +5V  
S
+I  
5
0
SC  
= +5V  
V
S
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Short-Circuit Current vs. Temperature  
Figure 14. Supply Current vs. Temperature  
Rev. C | Page 10 of 20  
OP193/OP293  
1k  
2500  
2000  
1500  
1000  
5V ≤ V ≤ 30V  
S
T
= 25°C  
A
V
= ±15V  
S
–10V ≤ V  
≤ +10V  
100  
OUT  
10  
V
= +5V  
S
0.03V ≤ V  
≤ 4V  
OUT  
500  
0
1
0.1  
1
10  
100  
1k  
–50  
125  
–25  
0
25  
50  
75  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Voltage Noise Density vs. Frequency  
Figure 18. Voltage Gain (RL = 100 kΩ) vs. Temperature  
1000  
800  
600  
400  
1k  
5V ≤ V ≤ 30V  
S
T
= 25°C  
A
V
= ±15V  
S
–10V ≤ V  
≤ +10V  
OUT  
100  
10  
V = +5V  
S
0.03V ≤ V  
≤ 4V  
OUT  
200  
0
1
0.1  
–50  
125  
–25  
0
25  
50  
75  
100  
1
10  
100  
1k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 19. Voltage Gain (RL = 10 kΩ) vs. Temperature  
Figure 16. Current Noise Density vs. Frequency  
60  
40  
20  
10k  
1k  
V
T
= 5V  
= 25°C  
5V ≤ V ≤ 30V  
S
S
T
= 25°C  
A
A
DELTA  
FROM V  
CC  
DELTA  
FROM V  
100  
10  
1
EE  
0
–20  
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
CURRENT LOAD (µA)  
Figure 20. Closed-Loop Gain vs. Frequency, VS = 5 V  
Figure 17. Delta Output Swing vs. Current Load  
Rev. C | Page 11 of 20  
OP193/OP293  
60  
60  
40  
V
T
= ±15V  
= 25°C  
V
= 5V  
S
A
S
PHASE  
GAIN  
90  
45  
0
40  
20  
20  
0
0
–20  
–40  
–45  
–90  
–20  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
Figure 21. Closed-Loop Gain vs. Frequency, VS = 15 V  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
60  
50  
40  
30  
20  
60  
40  
V
= 5V  
= 25°C  
= 1  
S
V = ±15V  
S
T
A
A
V
50mV ≤ V ≤ 150mV  
LOADS TO GND  
90  
45  
0
IN  
+OS = | –OS |  
= 50kΩ  
PHASE  
GAIN  
R
L
20  
0
+OS  
L
R
=
–20  
–40  
–45  
–90  
+OS = | –OS |  
10  
0
R
= 10kΩ  
L
–OS  
L
R
=
10  
100  
1k  
10k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
CAPACITIVE LOAD (pF)  
Figure 22. Small Signal Overshoot vs. Capacitive Load  
Figure 24. Open-Loop Gain and Phase vs. Frequency  
Rev. C | Page 12 of 20  
OP193/OP293  
FUNCTIONAL DESCRIPTION  
V+  
The OP193/OP293 operational amplifiers are single-supply,  
micropower, precision amplifiers whose input and output ranges  
both include ground. Input offset voltage (VOS) is only 100 μV  
maximum, while the output delivers ±± mꢀ to a load. Supply  
current is only 1± μꢀ.  
Q4  
FROM  
INPUT  
STAGE  
Q1  
Q5  
ꢀ simplified schematic of the input stage is shown in Figure 26.  
The input transistors, Q1 and Q2, are PNP devices, which permit  
the inputs to operate down to ground potential. The input transis-  
tors have resistors in series with the base terminals to protect  
the junctions from overvoltage conditions. The second stage is  
an NPN cascode that is buffered by an emitter follower before  
driving the final PNP gain stage.  
OUTPUT  
Q3  
Q2  
I3  
I2  
I1  
V–  
Figure 25. OP193/OP293 Equivalent Output Circuit  
By operating as an emitter follower, Q1 offers a high impedance  
load to the final PNP collector of the input stage. Base drive to  
Q2 is derived by monitoring Q1s collector current. Transistor  
Q± tracks the collector current of Q1. When Q1 is on, Q± keeps  
Q4 off, and Current Source I1 keeps Q2 turned off. When Q1 is  
driven to cutoff (that is, the output must move toward V−), Q±  
allows Q4 to turn on. Q4s collector current then provides the  
base drive for Q3 and Q2, and the output low voltage swing is  
set by Q2s VCE,SꢀT, which is about ± mV.  
The OP193 includes connections to taps on the input load resis-  
tors, which can be used to null the input offset voltage, VOS.  
The OP293 have two additional transistors, Q7 and Q8. The  
behavior of these transistors is discussed in the Output Phase  
Reversal—OP193 and Output Phase Reversal—OP293 sections.  
The output stage, shown in Figure 2±, is a noninverting NPN  
totem-pole configuration. Current is sourced to the load by  
Emitter Follower Q1, while Q2 provides current sink capability.  
When Q2 saturates, the output is pulled to within ± mV of  
ground without an external pull-down resistor. The totem-pole  
output stage supplies a minimum of ± mꢀ to an external load,  
even when operating from a single 3.0 V power supply.  
DRIVING CAPACITIVE LOADS  
The OP193/OP293 amplifiers are unconditionally stable with  
capacitive loads less than 200 pF. However, the small signal,  
unity-gain overshoot improves if a resistive load is added. For  
example, transient overshoot is 20% when driving a 1000 pF,  
10 kΩ load. When driving large capacitive loads in unity-gain  
configurations, an in-the-loop compensation technique is  
recommended, as illustrated in Figure 30.  
V+  
I1  
I2  
I3  
I4  
+INPUT  
–INPUT  
2k  
2kΩ  
Q5  
Q1  
Q2  
Q6  
Q4  
OP293  
ONLY  
Q3  
Q7  
TO  
Q8  
OUTPUT  
STAGE  
D1  
R1  
R2  
A
A
I5  
I6  
R1  
R2  
B
B
V–  
NULLING  
TERMINALS  
(OP193 ONLY)  
Figure 26. OP193/OP293 Equivalent Input Circuit  
Rev. C | Page 13 of 20  
 
 
 
 
OP193/OP293  
OP193/OP293 can be operated over the entire useful life of the  
cell. Figure 27 shows the typical discharge characteristic of a  
1 Ah lithium cell powering the OP193 and OP293, with each  
amplifier, in turn, driving 2.1 V into a 100 kΩ load.  
4
INPUT OVERVOLTAGE PROTECTION  
As previously mentioned, the OP193/OP293 op amps use a  
PNP input stage with protection resistors in series with the  
inverting and noninverting inputs. The high breakdown of the  
PNP transistors, coupled with the protection resistors, provides  
a large amount of input protection from overvoltage conditions.  
The inputs can therefore be taken 20 V beyond either supply  
without damaging the amplifier.  
3
2
OUTPUT PHASE REVERSAL—OP193  
The OP193s input PNP collector-base junction can be forward-  
biased if the inputs are brought more than one diode drop (0.7 V)  
below ground. When this happens to the noninverting input,  
Q4 of the cascode stage turns on and the output goes high. If  
the positive input signal can go below ground, phase reversal  
can be prevented by clamping the input to the negative supply  
(that is, GND) with a diode. The reverse leakage of the diode  
does add to the input bias current of the amplifier. If input bias  
current is not critical, a 1N914 diode adds less than 10 nA of  
leakage. However, its leakage current doubles for every 10°C  
increase in ambient temperature. For critical applications, the  
collector-base junction of a 2N3906 transistor adds only about  
10 pA of additional bias current. To limit the current through  
the diode under fault conditions, a 1 k Ω resistor irsecommended  
in series with the input. (The OP193s internal current limiting  
resistors do not protect the external diode.)  
OP293  
OP193  
1
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
HOURS  
Figure 27. Lithium Sulfur Dioxide Cell Discharge Characteristic with  
OP193/OP293 and 100 kΩ Loads Input Offset Voltage Nulling  
The OP193 provides two offset nulling terminals that can be  
used to adjust the OP193s internal VOS. In general, operational  
amplifier terminals should never be used to adjust system offset  
voltages. The offset nulling circuit of Figure 28 provides about  
7 mV of offset adjustment range. A 100 kΩ resistor placed in  
series with the wiper arm of the offset null potentiometer, as shown  
in Figure 29, reduces the offset adjustment range to 400 μV and  
is recommended for applications requiring high null resolution.  
Offset nulling does not adversely affect TCVOS performance,  
providing that the trimming potentiometer temperature coeffi-  
cient does not exceed 100 ppm/°C.  
OUTPUT PHASE REVERSAL—OP293  
The OP293 includes two lateral PNP transistors, Q7 and Q8, to  
protect against phase reversal. If an input is brought more than  
one diode drop (≈0.7 V) below ground, Q7 and Q8 combine to  
level shift the entire cascode stage, including the bias to Q3 and  
Q4, simultaneously. In this case, Q4 does not saturate and the  
output remains low.  
V+  
7
2
The OP293 does not exhibit output phase reversal for inputs up  
to −5 V below V− at +25°C. The phase reversal limit at +125°C  
is about −3 V. If the inputs can be driven below these levels, an  
external clamp diode, as discussed in the previous section,  
should be added.  
6
OP193  
4
3
5
1
100kΩ  
BATTERY-POWERED APPLICATIONS  
V–  
OP193/OP293 series op amps can be operated on a minimum  
supply voltage of 1.7 V, and draw only 13 μA of supply current  
per amplifier from a 2.0 V supply. In many battery-powered cir-  
cuits, OP193/OP293 devices can be continuously operated for  
thousands of hours before requiring battery replacement, thus  
reducing equipment downtime and operating cost.  
Figure 28. Offset Nulling Circuit  
V+  
7
2
High performance portable equipment and instruments fre-  
quently use lithium cells because of their long shelf life, light  
weight, and high energy density relative to older primary cells.  
Most lithium cells have a nominal output voltage of 3 V and are  
noted for a flat discharge characteristic. The low supply voltage  
requirement of the OP193/OP293, combined with the flat  
discharge characteristic of the lithium cell, indicates that the  
6
OP193  
4
3
5
1
100kΩ  
100kΩ  
V–  
Figure 29. High Resolution Offset Nulling Circuit  
Rev. C | Page 14 of 20  
 
 
 
 
 
 
 
OP193/OP293  
A MICROPOWER FALSE-GROUND GENERATOR  
V+  
R1  
R2  
1.5MΩ  
(2.5V TO 36V)  
240kΩ  
Some single-supply circuits work best when inputs are biased  
above ground, typically at ½ of the supply voltage. In these  
cases, a false ground can be created by using a voltage divider  
buffered by an amplifier. One such circuit is shown in Figure 30.  
7
2
3
C1  
1000pF  
6
OP193  
V
OUT  
(1.23V @ 25°C)  
5
4
This circuit generates a false-ground reference at ½ of the supply  
voltage, while drawing only about 27 μA from a 5 V supply.  
The circuit includes compensation to allow for a 1 μF bypass  
capacitor at the false-ground output. The benefit of a large  
capacitor is that not only does the false ground present a very  
low dc resistance to the load, but its ac impedance is low as well.  
The OP193 can both sink and source more than 5 mA, which  
improves recovery time from transients in the load current.  
5V OR 12V  
MAT01AH  
1
7
Q2  
Q1  
2
6
+
+
V
V
3
5
BE2  
BE1  
R3  
68kΩ  
V1  
+
ΔV  
BE  
R4  
130kΩ  
R5, 20kΩ  
OUTPUT  
ADJUST  
10kΩ  
0.022µF  
240kΩ  
Figure 31. A Battery-Powered Voltage Reference  
7
2
A SINGLE-SUPPLY CURRENT MONITOR  
100Ω  
6
2.5V OR 6V  
OP193  
Current monitoring essentially consists of amplifying the voltage  
drop across a resistor placed in series with the current to be  
measured. The difficulty is that only small voltage drops can be  
tolerated, and with low precision op amps, this greatly limits the  
overall resolution. The single-supply current monitor of Figure 32  
has a resolution of 10 μA and is capable of monitoring 30 mA  
of current. This range can be adjusted by changing the current  
sense resistor, R1. When measuring total system current, it may  
be necessary to include the supply current of the current monitor,  
which bypasses the current sense resistor, in the final result.  
This current can be measured and calibrated (together with the  
residual offset) by adjustment of the offset trim potentiometer,  
R2. This produces a deliberate temperature dependent offset.  
However, the supply current of the OP193 is also proportional  
to temperature, and the two effects tend to track. Voltage devel-  
oped at the noninverting input and amplified by (1 + R4/R5)  
3
4
+
+
1µF  
1µF  
240kΩ  
Figure 30. A Micropower False-Ground Generator  
A BATTERY-POWERED VOLTAGE REFERENCE  
The circuit of Figure 31 is a battery-powered voltage reference  
that draws only 17 μA of supply current. At this level, two AA  
alkaline cells can power this reference for more than 18 months.  
At an output voltage of 1.23 V at 25°C, drift of the reference is  
only 5.5 μV/°C over the industrial temperature range. Load  
regulation is 85 μV/mA with line regulation at 120 μV/V.  
Design of the reference is based on the Brokaw band gap core  
technique. Scaling of Resistor R1 and Resistor R2 produces  
unequal currents in Q1 and Q2. The resulting ΔVBE across R3  
creates a temperature-proportional voltage (PTAT), which, in  
turn, produces a larger temperature-proportional voltage across  
R4 and R5, V1. The temperature coefficient of V1 cancels (first  
order) the complementary to absolute temperature (CTAT)  
coefficient of VBE1. When adjusted to 1.23 V at 25°C, output  
voltage temperature coefficient is at a minimum. Band gap  
references can have start-up problems. With no current in R1  
and R2, the OP193 is beyond its positive input range limit and  
has an undefined output state. Shorting Pin 5 (an offset adjust  
pin) to ground forces the output high under these circumstances  
and ensures reliable startup without significantly degrading the  
OP193s offset drift.  
appears at VOUT  
.
V+  
+
TO CIRCUIT  
UNDER TEST  
7
3
2
6
OP193  
I
TEST  
V
=
OUT  
100mV/mA(I  
4
)
TEST  
5
1
R4  
9.9kΩ  
R1  
1Ω  
R2  
100kΩ  
R5  
100Ω  
R3  
100kΩ  
Figure 32. Single-Supply Current Monitor  
Rev. C | Page 15 of 20  
 
 
 
 
 
 
OP193/OP293  
R1  
20kΩ  
R2  
1.98MΩ  
A SINGLE-SUPPLY INSTRUMENTATION AMPLIFIER  
Designing a true single-supply instrumentation amplifier with  
zero-input and zero-output operation requires special care. The  
traditional configuration, shown in Figure 33, depends upon  
Amplifier A1s output being at 0 V when the applied common-  
mode input voltage is at 0 V. Any error at the output is multiplied  
by the gain of A2. In addition, current flows through Resistor R3  
as A2s output voltage increases. A1’s output must remain at 0 V  
while sinking the current through R3, or a gain error results. With  
a maximum output voltage of 4 V, the current through R3 is  
only 2 μA, but this still produces an appreciable error.  
5V  
R3  
R4  
V+  
A1  
1/2 OP293  
20kΩ  
1.98MΩ  
–IN  
+
V–  
5V  
10kΩ  
5V  
Q1  
Q2  
V+  
V
OUT  
A2  
1/2 OP293  
VN2222  
+IN  
+
V–  
R1  
20kΩ  
R2  
1.98MΩ  
Figure 34. An Improved Single-Supply, 0 VIN, 0 VOUT Instrumentation Amplifier  
5V  
A LOW POWER, TEMPERATURE TO 4 mA TO 20 mA  
TRANSMITTER  
V+  
A1  
R3  
R4  
20kΩ  
1.98MΩ  
1/2 OP293  
5V  
–IN  
+IN  
+
V–  
A simple temperature to 4 mA to 20 mA transmitter is shown  
in Figure 35. After calibration, this transmitter is accurate to  
0.5°C over the −50°C to +150°C temperature range. The  
transmitter operates from 8 V to 40 V with supply rejection  
better than 3 ppm/V. One half of the OP293 is used to buffer  
the TEMP pin, and the other half regulates the output current  
to satisfy the current summation at its noninverting input.  
I
SINK  
V+  
V
OUT  
A2  
1/2 OP293  
+
V–  
Figure 33. A Conventional Instrumentation Amplifier  
One solution to this problem is to use a pull-down resistor. For  
example, if R3 = 20 kΩ, then the pull-down resistor must be less  
than 400 Ω. However, the pull-down resistor appears as a fixed  
load when a common-mode voltage is applied. With a 4 V  
common-mode voltage, the additional load current is 10 mA,  
which is unacceptable in a low power application.  
VTEMP  
×
(
R6 + R7  
)
VSET  
R2 + R6 + R7  
R2 × R10  
IOUT  
+
R2 × R10  
The change in output current with temperature is the derivative  
of the following transfer function:  
Figure 34 shows a better solution. A1s sink current is provided  
by a pair of N-channel FET transistors, configured as a current  
mirror. With the values shown, the sink current of Q2 is about  
340 μA. Thus, with a common-mode voltage of 4 V, the addi-  
tional load current is limited to 340 μA vs. 10 mA with a 400 Ω  
resistor.  
VTEMP  
T  
R2 × R10  
(
R6 + R7  
)
IOUT  
T  
=
1N4002  
V+  
8V TO 40V  
SPAN TRIM  
R6  
3kΩ  
R4  
20kΩ  
REF43GPZ  
R7  
2
2
6
3
8
V
R2  
5kΩ  
IN  
V
1kΩ  
1
1/2  
OP293  
TEMP  
6
V
R8  
OUT  
1kΩ  
1/2  
7
3
2N1711  
+
4
TEMP  
GND  
OP293  
V
R3  
100kΩ  
R5  
5kΩ  
R1, 10kΩ  
SET  
5
+
4
R9  
100kΩ  
ZERO  
TRIM  
R10  
100Ω  
1%, 1/2 W  
I
OUT  
R
LOAD  
NOTES  
1. ALL RESISTORS 1/4 W, 5% UNLESS OTHERWISE NOTED.  
Figure 35. Temperature to 4 mA to 20 mA Transmitter  
Rev. C | Page 16 of 20  
 
 
 
 
 
OP193/OP293  
C1  
5V  
From the formulas, it can be seen that if the span trim is adjusted  
before the zero trim, the two trims are not interactive, which  
greatly simplifies the calibration procedure.  
75nF  
R5  
200kΩ  
5V  
R1  
200kΩ  
2
8
V
CONTROL  
A1  
1/2 OP293  
1
6
SQUARE  
OUT  
Calibration of the transmitter is simple. First, the slope of the  
output current vs. temperature is calibrated by adjusting the  
span trim, R7. A couple of iterations may be required to be sure  
the slope is correct.  
A2  
7
3
4
1/2 OP293  
+
R2  
200kΩ  
5
+
TRIANGLE  
OUT  
R3  
R4  
200kΩ  
100kΩ  
R6  
200kΩ  
R7  
200kΩ  
When the span trim has been adjusted, the zero trim can be  
made. Adjusting the zero trim does not affect the gain.  
R8  
200kΩ  
5V  
DD  
The zero trim can be set at any known temperature by adjusting  
R5 until the output current equals:  
CD4066  
IFS  
TOPERATING  
1
2
3
4
5
6
7
IN/OUT  
OUT/IN  
OUT/IN  
IN/OUT  
CONT  
14  
5V  
V
IOUT  
=
(
TAMBIENT TMIN + 4 mA  
)
S1  
CONT 13  
CONT 12  
Table 7 shows the values of R6 required for various temperature  
ranges.  
S2  
IN/OUT 11  
OUT/IN 10  
Table 7. R6 Values vs. Temperature  
Temp Range  
R6  
S3  
S4  
0°C to 70°C  
−40°C to +85°C  
−55°C to +150°C  
10 kΩ  
6.2 kΩ  
3 kΩ  
CONT  
OUT/IN  
IN/OUT  
9
8
5V  
V
SS  
A MICROPOWER VOLTAGE CONTROLLED  
OSCILLATOR  
Figure 36. Micropower Voltage Controlled Oscillator  
The OP293 CMOS analog switch forms the precision VCO of  
Figure 36. This circuit provides triangle and square wave  
outputs and draws only 50 μA from a single 5 V supply. A1 acts  
as an integrator; S1 switches the charging current symmetrically  
to yield positive and negative ramps. The integrator is bounded  
by A2, which acts as a Schmitt trigger with a precise hysteresis  
of 1.67 V, set by Resistor R5, Resistor R6, and Resistor R7, and  
associated CMOS switches. The resulting output of A1 is a  
triangle wave with upper and lower levels of 3.33 V and 1.67 V.  
The output of A2 is a square wave with almost rail-to-rail swing.  
With the components shown, frequency of operation is given by  
the equation:  
f
OUT = VCONTROL V × 10 Hz/V  
However, the frequency can easily be changed by varying C1.  
The circuit operates well up to 500 Hz.  
Rev. C | Page 17 of 20  
 
 
 
OP193/OP293  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
OP193FS  
Temperature Range  
−40°C to +125°C  
Package Description  
Package Option  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
OP193FS-REEL  
OP193FS-REEL7  
OP193FSZ1  
OP193FSZ-REEL1  
OP193FSZ-REEL71  
OP293ES  
OP293ES-REEL  
OP293ES-REEL7  
OP293ESZ1  
OP293ESZ-REEL1  
OP293ESZ-REEL71  
OP293FS  
OP293FS-REEL  
OP293FS-REEL7  
OP293FSZ1  
OP293FSZ-REEL1  
OP293FSZ-REEL71  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
1 Z = RoHS Compliant Part.  
Rev. C | Page 18 of 20  
 
 
OP193/OP293  
NOTES  
Rev. C | Page 19 of 20  
OP193/OP293  
NOTES  
©1995–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00295-0-9/09(C)  
Rev. C | Page 20 of 20  

相关型号:

OP193FSZ-REEL71

Precision, Micropower Operational Amplifiers
ADI

OP193FSZ1

Precision, Micropower Operational Amplifiers
ADI

OP193GBC

Precision, Micropower Operational Amplifiers
ADI

OP193_02

Precision, Micropower Operational Amplifiers
ADI

OP196

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP19630000J0G

Strip Terminal Block,
AMPHENOL

OP19631000J0G

Strip Terminal Block
AMPHENOL

OP19632000J0G

Strip Terminal Block
AMPHENOL

OP196GP

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP196GS

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP196GS-REEL

IC OP-AMP, 650 uV OFFSET-MAX, 0.35 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI