OP262GS-REEL7 [ADI]

15 MHz Rail-to-Rail Operational Amplifiers; 15 MHz的轨至轨运算放大器
OP262GS-REEL7
型号: OP262GS-REEL7
厂家: ADI    ADI
描述:

15 MHz Rail-to-Rail Operational Amplifiers
15 MHz的轨至轨运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
15 MHz Rail-to-Rail  
Operational Amplifiers  
OP162/OP262/OP462  
FEATURES  
PIN CONFIGURATIONS  
Wide bandwidth: 15 MHz  
Low offset voltage: 325 µV max  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NULL  
V+  
OP162  
OUT A  
NC  
Hz  
TOP VIEW  
(Not to Scale)  
Low noise: 9.5 nV/√ @ 1 kHz  
Single-supply operation: 2.7 V to 12 V  
Rail-to-rail output swing  
Low TCVOS: 1 µV/°C typ  
High slew rate: 13 V/µs  
No phase inversion  
NC = NO CONNECT  
Figure 1. 8-Lead Narrow-Body SOIC (S Suffix)  
1
NULL  
–IN A  
+IN A  
V–  
8
7
6
5
NULL  
V+  
2
3
4
Unity-gain stable  
OP162  
TOP VIEW  
(Not to Scale)  
OUT A  
NC  
APPLICATIONS  
NC = NO CONNECT  
Portable instrumentation  
Sampling ADC amplifier  
Wireless LANs  
Figure 2. 8-Lead TSSOP (RU Suffix)  
8-Lead MSOP (RM Suffix)  
Direct access arrangement  
Office automation  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP262  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
GENERAL DESCRIPTION  
The OP162 (single), OP262 (dual), and OP462 (quad) rail-to-  
rail 15 MHz amplifiers feature the extra speed new designs  
require, with the benefits of precision and low power operation.  
With their incredibly low offset voltage of 45 µV (typical) and  
low noise, they are perfectly suited for precision filter applica-  
tions and instrumentation. The low supply current of 500 µA  
(typical) is critical for portable or densely packed designs. In  
addition, the rail-to-rail output swing provides greater dynamic  
range and control than standard video amplifiers.  
Figure 3. 8-Lead Narrow-Body SOIC (S Suffix)  
1
2
3
4
OUT A  
–IN A  
+IN A  
V–  
8
7
6
5
V+  
OUT B  
–IN B  
+IN B  
OP262  
TOP VIEW  
(Not to Scale)  
Figure 4. 8-Lead TSSOP (RU Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OP462  
These products operate from single supplies as low as 2.7 V to  
dual supplies of 6 V. The fast settling times and wide output  
swings recommend them for buffers to sampling A/D converters.  
The output drive of 30 mA (sink and source) is needed for  
many audio and display applications; more output current can  
be supplied for limited durations. The OPx62 family is specified  
over the extended industrial temperature range (–40°C to  
+125°C). The single OP162 amplifiers are available in 8-lead  
SOIC, MSOP, and TSSOP packages. The dual OP262 amplifiers  
are available in 8-lead SOIC and TSSOP packages. The quad  
OP462 amplifiers are available in 14-lead, narrow-body SOIC  
and TSSOP packages.  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 5. 14-Lead Narrow-Body SOIC (S Suffix)  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
OUT D  
–IN D  
+IN D  
V–  
OP462  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 6. 14-Lead TSSOP (RU Suffix)  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
OP162/OP262/OP462  
TABLE OF CONTENTS  
Specifications...........................................................................................3  
Absolute Maximum Ratings.................................................................6  
Power-On Settling Time............................................................ 14  
Capacitive Load Drive ............................................................... 14  
Total Harmonic Distortion and Crosstalk .............................. 15  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ..................................................7  
Applications ...........................................................................................12  
PCB Layout Considerations...................................................... 15  
Application Circuits ............................................................................ 16  
Single-Supply Stereo Headphone Driver................................. 16  
Functional Description.............................................................. 12  
Offset Adjustment ...................................................................... 12  
Rail-to-Rail Output .................................................................... 12  
Output Short-Circuit Protection.............................................. 12  
Input Overvoltage Protection ................................................... 13  
Output Phase Reversal............................................................... 13  
Power Dissipation....................................................................... 13  
Unused Amplifiers ..................................................................... 14  
Instrumentation Amplifier........................................................ 16  
Direct Access Arrangement ...................................................... 17  
Spice Macro-Model.................................................................... 18  
Outline Dimensions ............................................................................ 19  
Ordering Guide .......................................................................... 20  
REVISION HISTORY  
1/05—Rev. E to Rev. F  
Changes to Absolute Maximum Ratings Table 4 and Table 5 .... 6  
Change to Figure 36 ....................................................................... 13  
Changes to Ordering Guide .......................................................... 20  
12/04—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to General Description .................................................... 1  
Changes to Specifications................................................................ 3  
Changes to Package Type................................................................. 6  
Change to Figure 16 ......................................................................... 8  
Change to Figure 22 ......................................................................... 9  
Change to Figure 36 ....................................................................... 13  
Change to Figure 37 ....................................................................... 14  
Changes to Ordering Guide .......................................................... 20  
10/02—Rev. C to Rev. D  
Deleted 8-Lead Plastic DIP (N-8) ....................................Universal  
Deleted 14-Lead Plastic DIP (N-14) ................................Universal  
Edits to ORDERING GUIDE........................................................ 19  
Edits to Figure 30............................................................................ 19  
Edits to Figure 31............................................................................ 19  
Updated Outline Dimensions....................................................... 19  
Rev. F | Page 2 of 20  
OP162/OP262/OP462  
SPECIFICATIONS  
@ VS = 5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 1. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G  
–40°C ≤ TA ≤ +125°C  
H grade, –40°C ≤ TA ≤ +125°C  
D grade  
45  
325  
800  
1
3
5
600  
650  
25  
40  
4
µV  
µV  
mV  
mV  
mV  
nA  
nA  
nA  
nA  
V
0.8  
360  
2.5  
–40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
–40°C ≤ TA ≤ +125°C  
–40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
VCM  
0
Common-Mode Rejection  
Large Signal Voltage Gain  
CMRR  
AVO  
0 V ≤ VCM ≤ 4.0 V, –40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, 0.5 ≤ VOUT ≤ 4.5 V  
RL = 10 kΩ, 0.5 ≤ VOUT ≤ 4.5 V  
RL = 10 kΩ, –40°C ≤ TA ≤ +125°C  
G grade  
70  
110  
30  
88  
dB  
V/mV  
V/mV  
V/mV  
µV  
µV/°C  
pA/°C  
65  
40  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
600  
1
VOS/T  
IB/T  
Bias Current Drift  
250  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
IL = 5 mA  
IL = 250 µA, –40°C ≤TA ≤ +125°C  
IL = 5 mA  
4.95  
4.85  
4.99  
4.94  
14  
65  
80  
V
V
mV  
mV  
mA  
mA  
Output Voltage Swing Low  
50  
150  
Short-Circuit Current  
Maximum Output Current  
POWER SUPPLY  
ISC  
IOUT  
Short to ground  
30  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 7 V  
120  
600  
500  
dB  
dB  
µA  
mA  
µA  
µA  
–40°C ≤ TA ≤ +125°C  
OP162, VOUT = 2.5 V  
–40°C ≤ TA ≤ +125°C  
OP262, OP462, VOUT = 2.5 V  
–40°C ≤ TA ≤ +125°C  
90  
Supply Current/Amplifier  
750  
1
700  
850  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
φm  
1 V < VOUT < 4 V, RL = 10 kΩ  
To 0.1%, AV = –1, VO = 2 V step  
10  
540  
15  
V/µs  
ns  
MHz  
Degrees  
61  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.5  
9.5  
0.4  
µV p-p  
Hz  
nV/√  
f = 1 kHz  
Hz  
pA/√  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2 Offset voltage drift is the average of the −40°C to +25°C delta and the +25°C to +125°C delta.  
Rev. F | Page 3 of 20  
 
 
OP162/OP262/OP462  
@ VS = 3.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
50  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G  
G, H grades, –40°C ≤ TA ≤ +125°C  
D grade  
325  
1
3
µV  
mV  
mV  
mV  
nA  
nA  
V
0.8  
–40°C ≤ TA ≤ +125°C  
5
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
AVO  
360  
2.5  
600  
25  
2
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
Large Signal Voltage Gain  
0
70  
0 V ≤ VCM ≤ 2.0 V, –40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, 0.5 V ≤ VOUT ≤ 2.5 V  
RL = 10 kΩ, 0.5 V ≤ VOUT ≤ 2.5 V  
G grade  
110  
20  
30  
dB  
V/mV  
V/mV  
µV  
20  
Long-Term Offset Voltage1  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOS  
VOH  
VOL  
600  
IL = 250 µA  
IL= 5 mA  
IL = 250 µA  
IL= 5 mA  
2.95  
2.85  
2.99  
2.93  
14  
V
V
mV  
mV  
Output Voltage Swing Low  
50  
150  
66  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 7 V,  
–40°C ≤ TA ≤ +125°C  
OP162, VOUT = 1.5 V  
–40°C ≤ TA ≤ +125°C  
OP262, OP462, VOUT = 1.5 V  
–40°C ≤ TA ≤ +125°C  
60  
110  
600  
dB  
µA  
mA  
µA  
µA  
Supply Current/Amplifier  
700  
1
650  
850  
500  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
φm  
RL = 10 kΩ  
To 0.1%, AV = –1, VO = 2 V step  
10  
575  
15  
V/µs  
ns  
MHz  
Degrees  
59  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.5  
9.5  
0.4  
µV p-p  
Hz  
nV/√  
f = 1 kHz  
Hz  
pA/√  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
Rev. F | Page 4 of 20  
 
OP162/OP262/OP462  
@ VS = 5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 3. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G  
40°C ≤ TA ≤ +125°C  
H grade, –40°C ≤ TA ≤ +125°C  
D grade  
25  
325  
800  
1
3
5
µV  
µV  
mV  
mV  
mV  
nA  
0.8  
260  
2.5  
40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
500  
650  
25  
40  
+4  
nA  
40°C ≤ TA ≤ +125°C  
40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
nA  
nA  
Input Voltage Range  
Common-Mode Rejection  
Large Signal Voltage Gain  
VCM  
CMRR  
AVO  
–5  
70  
V
dB  
110  
35  
120  
4.9 V ≤ VCM ≤ +4.0 V, –40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, –4.5 V ≤ VOUT ≤ +4.5 V  
RL = 10 kΩ, –4.5 V ≤ VOUT ≤ +4.5 V  
40°C ≤ TA ≤ +125°C  
V/mV  
V/mV  
V/mV  
µV  
µV/°C  
pA/°C  
75  
25  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
G grade  
600  
1
VOS/T  
IB/T  
Bias Current Drift  
250  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
IL= 5 mA  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
IL= 5 mA  
4.95  
4.85  
4.99  
4.94  
–4.99  
–4.94  
80  
V
V
V
V
mA  
mA  
Output Voltage Swing Low  
–4.95  
–4.85  
Short-Circuit Current  
Maximum Output Current  
ISC  
IOUT  
Short to ground  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 1.35 V to 6 V,  
40°C ≤ TA ≤ +125°C  
OP162, VOUT = 0 V  
60  
110  
650  
dB  
µA  
mA  
µA  
mA  
V
Supply Current/Amplifier  
800  
1.15  
775  
1
40°C ≤ TA ≤ +125°C  
OP262, OP462, VOUT = 0 V  
40°C ≤ TA ≤ +125°C  
550  
Supply Voltage Range  
VS  
3.0 ( 1.5ꢀ  
12 ( 6ꢀ  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
tS  
GBP  
φm  
13  
V/µs  
ns  
MHz  
Degrees  
4 V < VOUT < 4 V, RL = 10 kΩ  
To 0.1%, AV = –1, VO = 2 V step  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
475  
15  
64  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.5  
9.5  
0.4  
µV p-p  
Hz  
nV/√  
f = 1 kHz  
Hz  
pA/√  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125°C, with an LTPD of 1.3.  
2 Offset voltage drift is the average of the −40°C to +25°C delta and the +25°C to +125°C delta.  
Rev. F | Page 5 of 20  
 
OP162/OP262/OP462  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operation section  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Min  
Supply Voltage  
Input Voltage1  
6 V  
6 V  
Differential Input Voltage2  
Internal Power Dissipation  
SOIC (Sꢀ  
MSOP (RMꢀ  
TSSOP (RUꢀ  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
0.6 V  
Observe Derating Curves  
Observe Derating Curves  
Observe Derating Curves  
Observe Derating Curves  
–65°C to +150°C  
Table 5.  
Package Type  
1
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJC  
–40°C to +125°C  
–65°C to +150°C  
8-Lead SOIC (Sꢀ  
157  
208  
190  
105  
148  
56  
8-Lead TSSOP (RUꢀ  
8-Lead MSOP (RMꢀ  
14-Lead SOIC (Sꢀ  
14-Lead TSSOP (RUꢀ  
____________________________  
Lead Temperature Range  
(Soldering, 10 secꢀ  
300°C  
44  
1 For supply voltages greater than 6 V, the input voltage is limited to less than  
or equal to the supply voltage.  
2 For differential input voltages greater than 0.6 V, the input current should be  
limited to less than 5 mA to prevent degradation or destruction of the input  
devices.  
1 θ is specified for the worst-case conditions, that is, θ is specified for a  
JA  
JA  
device soldered in circuit board for SOIC, MSOP, and TSSOP packages.  
ESD CAUTION  
ESD (electrostatic dischargeꢀ sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 6 of 20  
 
 
 
OP162/OP262/OP462  
TYPICAL PERFORMANCE CHARACTERISTICS  
250  
125  
100  
75  
V
= 5V  
S
V
= 5V  
S
T
= 25°C  
A
200  
150  
100  
COUNT =  
720 OP AMPS  
50  
50  
0
25  
0
–200  
–140  
–80  
–20  
40  
100  
160  
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 7. OP462 Input Offset Voltage Distribution  
Figure 10. OP462 Input Offset Voltage vs. Temperature  
100  
80  
0
–100  
–200  
–300  
V
= 5V  
S
V
= 5V  
= 25°C  
S
T
A
COUNT =  
360 OP AMPS  
60  
40  
20  
0
–400  
–500  
0.2  
0.3  
0.5  
0.7  
0.9  
1.1  
OS  
1.3  
1.5  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
INPUT OFFSET DRIFT, TCV (µV,°C)  
TEMPERATURE (°C)  
Figure 8. OP462 Input Offset Voltage Drift (TCVOS)  
Figure 11. OP462 Input Bias Current vs. Temperature  
420  
15  
10  
V
= 5V  
V
= 5V  
S
S
340  
260  
180  
100  
5
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 9. OP462 Input Bias Current vs. Common-Mode Voltage  
Figure 12. OP462 Input Offset Current vs. Temperature  
Rev. F | Page 7 of 20  
 
OP162/OP262/OP462  
100  
80  
5.12  
5.06  
5.00  
4.94  
V
= 5V  
S
I
= 250µA  
OUT  
60  
V
= 10V  
S
V
= 3V  
40  
S
I
= 5mA  
OUT  
20  
0
4.88  
4.82  
0
1
2
3
4
5
6
7
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 13. OP462 Output High Voltage vs. Temperature  
Figure 16. Output Low Voltage to Supply Rail vs. Load Current  
1.0  
0.9  
0.8  
0.100  
0.080  
0.060  
0.040  
V
= 5V  
S
V
= 10V  
S
I
= 5mA  
OUT  
0.7  
0.6  
0.5  
0.4  
V
= 5V  
S
V
= 3V  
S
0.3  
0.2  
0.1  
0
0.020  
0.000  
I
= 250µA  
OUT  
–75  
–50  
–25  
0
25  
75  
100  
125  
150  
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Supply Current/Amplifier vs. Temperature  
Figure 14. OP462 Output Low Voltage vs. Temperature  
100  
0.7  
0.6  
R
= 10kΩ  
L
T
= 25°C  
A
80  
V
= 5V  
S
60  
40  
0.5  
0.4  
R
= 2kΩ  
L
20  
0
R
= 600kΩ  
L
0
2
4
6
8
10  
12  
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 15. OP462 Open-Loop Gain vs. Temperature  
Figure 18. OP462 Supply Current/Amplifier vs. Supply Voltage  
Rev. F | Page 8 of 20  
OP162/OP262/OP462  
50  
40  
30  
20  
10  
0
4
3
V
T
= 5V  
= 25°C  
S
A
GAIN  
0.1%  
0.01%  
V
T
= 5V  
= 25°C  
S
A
45  
2
1
90  
PHASE  
135  
180  
0
–1  
–10  
225  
270  
–2  
–3  
0.1%  
0.01%  
–20  
–30  
–4  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
0
200  
400  
600  
800  
1000  
1000  
1k  
SETTLING TIME (nS)  
Figure 19. Open-Loop Gain and Phase vs. Frequency (No Load)  
Figure 22. Step Size vs. Settling Time  
60  
60  
50  
40  
30  
20  
V
T
T
= 5V  
S
A
A
V
T
R
C
= 5V  
S
A
= 25°C  
= ±50mV  
= 10kΩ  
= 25°C  
= 830Ω  
= 5pF  
L
L
40  
20  
0
R
L
+OS  
–OS  
–20  
–30  
10  
0
10k  
100k  
1M  
10M  
100M  
10  
100  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
Figure 20. Closed-Loop Gain vs. Frequency  
Figure 23. Small-Signal Overshoot vs. Capacitance  
5
4
3
2
70  
60  
50  
V
= 5V  
= 25°C  
S
A
T
40  
30  
20  
V
= 5V  
S
A
R
C
= 1  
VCL  
= 10kΩ  
= 15pF  
= 25°C  
L
L
1
0
10  
0
T
A
DISTORTION<1%  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
10  
100  
FREQUENCY (Hz)  
Figure 21. Maximum Output Swing vs. Frequency  
Figure 24. Voltage Noise Density vs. Frequency  
Rev. F | Page 9 of 20  
OP162/OP262/OP462  
7
6
5
90  
80  
70  
60  
50  
40  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
S
A
S
A
4
3
2
+PSRR  
–PSRR  
1
0
30  
20  
1
10  
100  
FREQUENCY (Hz)  
1k  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 25. Current Noise Density vs. Frequency  
Figure 28. PSRR vs. Frequency  
300  
250  
200  
20mV  
2s  
V
T
= 5V  
= 25°C  
S
A
100  
90  
150  
100  
A
= 10  
VCL  
10  
0%  
A
= 1  
VCL  
V = 5V  
S
A
= 100k  
50  
0
V
en = 0.5µV p-p  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 26. Output Impedance vs. Frequency  
Figure 29. 0.1 Hz to 10 Hz Noise  
90  
V
= 5V  
= 25°C  
2V  
S
V
V
A
= 12V p-p  
= ±5V  
= 1  
IN  
T
80  
70  
60  
50  
40  
A
S
100  
V
90  
10  
0%  
30  
20  
2V  
20µs  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 27. CMRR vs. Frequency  
Figure 30. No Phase Reversal (VIN = 12 V p-p, VS = 5 V, AV = 1)  
Rev. F | Page 10 of 20  
 
OP162/OP262/OP462  
V
= 5V  
S
A
T
= 1  
= 25°C  
= 100pF  
V
A
V
= 5V  
= 1  
= 25°C  
= 100pF  
S
100  
90  
A
T
100  
90  
V
C
L
A
C
L
10  
10  
0%  
0%  
500mV  
100µs  
20mV  
200ns  
Figure 31. Small Signal Transient Response  
Figure 32. Large Signal Transient Response  
Rev. F | Page 11 of 20  
OP162/OP262/OP462  
APPLICATIONS  
FUNCTIONAL DESCRIPTION  
OFFSET ADJUSTMENT  
The OPx62 family is fabricated using Analog Devices’ high  
speed complementary bipolar process, also called XFCB. This  
process trench isolates each transistor to lower parasitic capaci-  
tances for high speed performance. This high speed process has  
been implemented without sacrificing the excellent transistor  
matching and overall dc performance characteristic of Analog  
Devices’ complementary bipolar process. This makes the OPx62  
family an excellent choice as an extremely fast and accurate low  
voltage op amp.  
Because the OP162/OP262/OP462 have an exceptionally low  
typical offset voltage, adjustment to correct offset voltage may  
not be needed. However, the OP162 has pinouts to attach a  
nulling resistor. Figure 34 shows how the OP162 offset voltage  
can be adjusted by connecting a potentiometer between Pin 1  
and Pin 8, and connecting the wiper to VCC. It is important to  
avoid accidentally connecting the wiper to VEE, as this can damage  
the device. The recommended value for the potentiometer is  
20 kΩ.  
+5V  
Figure 33 shows a simplified equivalent schematic for the OP162.  
A PNP differential pair is used at the input of the device. The  
cross connecting of the emitters lowers the transconductance of  
the input stage improving the slew rate of the device. Lowering  
the transconductance through cross connecting the emitters has  
another advantage in that it provides a lower noise factor than if  
emitter degeneration resistors were used. The input stage can  
function with the base voltages taken all the way to the negative  
power supply, or up to within 1 V of the positive power supply.  
20k  
1
8
3
2
7
4
6
OP162  
V
OS  
–5V  
Figure 34. Offset Adjustment Schematic  
V
CC  
RAIL-TO-RAIL OUTPUT  
The OP162/OP262/OP462 have a wide output voltage range  
that extends to within 60 mV of each supply rail with a load  
current of 5 mA. Decreasing the load current extends the output  
voltage range even closer to the supply rails. The common-mode  
input range extends from ground to within 1 V of the positive  
supply. It is recommended that there be some minimal amount  
of gain when a rail-to-rail output swing is desired. The minimum  
gain required is based on the supply voltage and can be found as  
+IN  
–IN  
V
OUT  
VS  
VS 1  
AV,min  
=
where VS is the positive supply voltage. With a single-supply  
voltage of 5 V, the minimum gain to achieve rail-to-rail output  
should be 1.25.  
V
EE  
Figure 33. Simplified Schematic  
Two complementary transistors in a common-emitter  
configuration are used for the output stage. This allows the  
output of the device to swing to within 50 mV of either supply  
OUTPUT SHORT-CIRCUIT PROTECTION  
To achieve a wide bandwidth and high slew rate, the output of  
the OP162/OP262/OP462 are not short-circuit protected. Shorting  
the output directly to ground or to a supply rail may destroy the  
device. The typical maximum safe output current is 30 mA.  
Steps should be taken to ensure the output of the device will not  
be forced to source or sink more than 30 mA.  
rail at load currents less than 1 mA. As load current increases,  
the maximum voltage swing of the output decreases. This is due  
to the collector-to-emitter saturation voltages of the output  
transistors increasing. The gain of the output stage, and conse-  
quently the open-loop gain of the amplifier, is dependent on the  
load resistance connected at the output. Because the dominant pole  
frequency is inversely proportional to the open-loop gain, the  
unity-gain bandwidth of the device is not affected by the load  
resistance. This is typically the case in rail-to-rail output  
devices.  
In applications where some output current protection is needed,  
but not at the expense of reduced output voltage headroom, a  
low value resistor in series with the output can be used. This is  
shown in Figure 35. The resistor is connected within the feed-  
back loop of the amplifier so that if VOUT is shorted to ground  
Rev. F | Page 12 of 20  
 
 
 
OP162/OP262/OP462  
To calculate the internal junction temperature of the OPx62, use  
the formula  
and VIN swings up to 5 V, the output current will not exceed  
30 mA. For single 5 V supply applications, resistors less than  
169 Ω are not recommended.  
TJ = PDISS × θJA + TA  
5V  
where:  
TJ is the OPx62 junction temperature.  
V
IN  
P
DISS is the OPx62 power dissipation.  
169  
OPx62  
V
OUT  
θJA is the OPx62 package thermal resistance, junction-to-  
ambient temperature.  
TA is the ambient temperature of the circuit.  
The power dissipated by the device can be calculated as  
Figure 35. Output Short-Circuit Protection  
PDISS = ILOAD × (VS VOUT  
)
INPUT OVERVOLTAGE PROTECTION  
where:  
The input voltage should be limited to 6 V, or damage to the  
device can occur. Electrostatic protection diodes placed in the  
input stage of the device help protect the amplifier from static  
discharge. Diodes are connected between each input as well as  
from each input to both supply pins as shown in the simplified  
equivalent circuit in Figure 33. If an input voltage exceeds either  
supply voltage by more than 0.6 V, or if the differential input  
voltage is greater than 0.6 V, these diodes energize causing  
overvoltage damage.  
I
LOAD is the OPx62 output load current.  
VS is the OPx62 supply voltage.  
OUT is the OPx62 output voltage.  
V
Figure 36 and Figure 37 provide a convenient way to determine  
if the device is being overheated. The maximum safe power  
dissipation can be found graphically, based on the package type  
and the ambient temperature around the package. By using the  
previous equation, it is a simple matter to see if PDISS exceeds the  
device’s power derating curve. To ensure proper operation, it is  
important to observe the recommended derating curves shown  
in Figure 36 and Figure 37.  
The input current should be limited to less than 5 mA to  
prevent degradation or destruction of the device by placing an  
external resistor in series with the input at risk of being overdriven.  
The size of the resistor can be calculated by dividing the maxi-  
mum input voltage by 5 mA. For example, if the differential  
input voltage could reach 5 V, the external resistor should be  
5 V/5 mA = 1 kΩ. In practice, this resistor should be placed in  
series with both inputs to balance any offset voltages created by  
the input bias current.  
0.9  
0.8  
0.7  
8-LEAD SOIC  
0.6  
0.5  
8-LEAD MSOP  
OUTPUT PHASE REVERSAL  
0.4  
8-LEAD TSSOP  
0.3  
The OP162/OP262/OP462 are immune to phase reversal as  
long as the input voltage is limited to 6 V. Figure 30 shows the  
output of a device with the input voltage driven beyond the  
supply voltages. Although the devices output does not change  
phase, large currents due to input overvoltage could result,  
damaging the device. In applications where the possibility of an  
input voltage exceeding the supply voltage exists, overvoltage  
protection should be used, as described in the previous section.  
0.2  
0.1  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 36. Maximum Power Dissipation vs. Temperature for  
8-Lead Package Types  
POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
OP162/OP262/OP462 is limited by the associated rise in  
junction temperature. The maximum safe junction temperature  
is 150°C; device performance suffers when this limit is  
exceeded. If this maximum is only momentarily exceeded,  
proper circuit operation will be restored as soon as the die  
temperature is reduced. Leaving the device in an “overheated”  
condition for an extended period can result in permanent  
damage to the device.  
Rev. F | Page 13 of 20  
 
 
OP162/OP262/OP462  
1.2  
1.1  
1.0  
1
0 TO +5V  
SQUARE  
14-LEAD SOIC  
0.9  
0.8  
OP462  
V
OUT  
10KΩ  
0.7  
0.6  
0.5  
0.4  
14-LEAD TSSOP  
Figure 39. Test Circuit for Power-On Settling Time  
0.3  
0.2  
CAPACITIVE LOAD DRIVE  
0.1  
0
The OP162/OP262/OP462 are high speed, extremely accurate  
devices that tolerate some capacitive loading at their outputs. As  
load capacitance increases, unity-gain bandwidth of an OPx62  
device decreases. This also causes an increase in overshoot and  
settling time for the output. Figure 41 shows an example of this  
with the device configured for unity gain and driving a 10 kΩ  
resistor and 300 pF capacitor placed in parallel.  
20  
45  
70  
95  
120  
AMBIENT TEMPERATURE (°C)  
Figure 37. Maximum Power Dissipation vs. Temperature for  
14-Lead Package Types  
UNUSED AMPLIFIERS  
It is recommended that any unused amplifiers in a dual or a  
quad package be configured as a unity-gain follower with a  
1 kΩ feedback resistor connected from the inverting input to  
the output, and the noninverting input tied to the ground plane.  
By connecting a series R-C network, commonly called a  
“snubber” network, from the output of the device to ground,  
this ringing can be eliminated and overshoot can be  
significantly reduced. Figure 40 shows how to set up the  
snubber network, and Figure 42 shows the improvement in  
output response with the network added.  
POWER-ON SETTLING TIME  
The time it takes for the output of an op amp to settle after a  
supply voltage is delivered can be an important consideration in  
some power-up-sensitive applications. An example of this  
would be in an A/D converter where the time until valid data  
can be produced after power-up is important.  
5V  
OPx62  
V
OUT  
C
V
R
L
IN  
X
The OPx62 family has a rapid settling time after power-up.  
Figure 38 shows the OP462 output settling times for a single-  
supply voltage of VS = +5 V. The test circuit in Figure 39 was  
used to find the power-on settling times for the device.  
C
X
Figure 40. Snubber Network Compensation for Capacitive Loads  
V
= 5V  
= 1  
= 300pF  
= 10k  
S
2V  
500ns  
A
C
R
V
L
L
100  
90  
100  
90  
V
A
R
= 5V  
= 1  
= 10k  
S
V
L
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
Figure 41. A Photo of a Ringing Square Wave  
Figure 38. Oscilloscope Photo of VS and VOUT  
Rev. F | Page 14 of 20  
 
 
 
 
 
OP162/OP262/OP462  
Figure 45 shows the worst case crosstalk between two amplifiers  
in the OP462. A 1 V rms signal is applied to one amplifier while  
measuring the output of an adjacent amplifier. Both amplifiers  
are configured for unity gain and supplied with 2.5 V.  
V
= 5V  
= 1  
= 300pF  
= 10k  
S
A
C
R
V
L
L
100  
90  
WITH SNUBBER:  
R
C
= 140Ω  
= 10nF  
0.010  
X
X
V
A
= ±2.5V  
= 1  
S
V
V
R
= 1.0V rms  
= 10kΩ  
IN  
L
BANDWIDTH:  
<10Hz TO 22kHz  
10  
0%  
0.001  
µ
1s  
50mV  
Figure 42. A Photo of a Nice Square Wave at the Output  
The network operates in parallel with the load capacitor, CL,  
and provides compensation for the added phase lag. The actual  
values of the network resistor and capacitor are empirically  
determined to minimize overshoot and maximize unity-gain  
bandwidth. Table 6 shows a few sample snubber networks for  
large load capacitors.  
0.0001  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 44. THD + N vs. Frequency  
–40  
–50  
A
= 1  
= 1.0V rms  
(0dBV)  
= 10kΩ  
= ±2.5V  
Table 6. Snubber Networks for Large Capacitive Loads  
V
V
IN  
CLOAD  
RX  
CX  
–60  
R
L
S
< 300 pF  
500 pF  
1 nF  
140 Ω  
100 Ω  
80 Ω  
10 Ω  
10 nF  
10 nF  
10 nF  
47 nF  
V
–70  
–80  
–90  
10 nF  
–100  
–110  
–120  
Higher load capacitance will reduce the unity-gain bandwidth  
of the device. Figure 43 shows unity-gain bandwidth vs.  
capacitive load. The snubber network does not provide any  
increase in bandwidth, but it substantially reduces ringing and  
overshoot, as shown between Figure 41 and Figure 42.  
–130  
–140  
20  
100  
1k  
10k 20k  
10  
FREQUENCY (Hz)  
9
Figure 45. Crosstalk vs. Frequency  
8
PCB LAYOUT CONSIDERATIONS  
7
Because the OP162/OP262/OP462 can provide gains at high  
frequency, careful attention to board layout and component  
selection is recommended. As with any high speed application,  
a good ground plane is essential to achieve the optimum  
performance. This can significantly reduce the undesirable  
effects of ground loops and I × R losses by providing a low  
impedance reference point. Best results are obtained with a  
multilayer board design with one layer assigned to ground  
plane.  
6
5
4
3
2
1
0
10pF  
100pF  
1nF  
10nF  
C
LOAD  
Use chip capacitors for supply bypassing, with one end of the  
capacitor connected to the ground plane and the other end  
connected within 1/8 inch of each power pin. An additional  
large tantalum electrolytic capacitor (4.7 µF to 10 µF) should be  
connected in parallel. This capacitor provides current for fast,  
large-signal changes at the devices output; therefore, it does not  
need to be placed as close to the supply pins.  
Figure 43. Unity-Gain Bandwidth vs. CLOAD  
TOTAL HARMONIC DISTORTION AND CROSSTALK  
The OPx62 device family offers low total harmonic distortion  
making it an excellent choice for audio applications. Figure 44  
shows a graph of THD plus noise figures at 0.001% for the  
OP462.  
Rev. F | Page 15 of 20  
 
 
 
 
 
 
OP162/OP262/OP462  
APPLICATION CIRCUITS  
SINGLE-SUPPLY STEREO HEADPHONE DRIVER  
INSTRUMENTATION AMPLIFIER  
Figure 46 shows a stereo headphone output amplifier that can  
operate from a single 5 V supply. The reference voltage is  
derived by dividing the supply voltage down with two 100 kΩ  
resistors. A 10 µF capacitor prevents power supply noise from  
contaminating the audio signal and establishes an ac ground for  
the volume control potentiometers.  
Because of their high speed, low offset voltages, and low noise  
characteristics, the OP162/OP262/OP462 can be used in a wide  
variety of high speed applications, including precision instru-  
mentation amplifiers. Figure 47 shows an example of such an  
application.  
–V  
IN  
OP462-A  
The audio signal is ac-coupled to each noninverting input  
through a 10 µF capacitor. The gain of the amplifier is con-  
trolled by the feedback resistors and is (R2/R1) + 1. For this  
example, the gain is 6. By removing R1, the amplifier would  
have unity gain. To short-circuit protect the output of the  
device, a 169 Ω resistor is placed at the output in the feedback  
network. This prevents any damage to the device if the head-  
phone output becomes shorted. A 270 µF capacitor is used at  
the output to couple the amplifier to the headphone. This value  
is much larger than that used for the input because of the low  
impedance of headphones, which can range from 32 Ω to 600 Ω  
or more.  
2kΩ  
1kΩ  
2kΩ  
10kΩ  
2kΩ  
OP462-D  
OP462-C  
OUTPUT  
R
G
1kΩ  
1.9kΩ  
10kΩ  
OP462-B  
200Ω  
10 TURN  
(OPTIONAL)  
+V  
IN  
Figure 47. High Speed Instrumentation Amplifier  
The differential gain of the circuit is determined by RG, where  
R1 = 10kΩ  
R2 = 50kΩ  
10µF  
5V  
2
ADIFF = 1+  
RG  
LEFT IN  
10µF  
270µF  
47kΩ  
L VOLUME  
CONTROL  
169Ω  
HEADPHONE  
LEFT  
OP262-A  
with the RG resistor value in kΩ. Removing RG sets the circuit  
gain to unity.  
10kΩ  
5V  
100kΩ  
100kΩ  
10µF  
The fourth op amp, OP462-D, is optional and is used to  
improve CMRR by reducing any input capacitance to the  
amplifier. By shielding the input signal leads and driving the  
shield with the common-mode voltage, input capacitance is  
eliminated at common-mode voltages. This voltage is derived  
from the midpoint of the outputs of OP462-A and OP462-B by  
using two 10 kΩ resistors followed by OP462-D as a unity-gain  
buffer.  
5V  
10kΩ  
10µF  
270µF  
47kΩ  
169Ω  
HEADPHONE  
RIGHT  
OP262-B  
R VOLUME  
CONTROL  
RIGHT IN  
R2 = 50kΩ  
R1 = 10kΩ  
It is important to use 1% or better tolerance components for the  
2 kΩ resistors, as the common-mode rejection is dependent on  
their ratios being exact. A potentiometer should also be connected  
in series with the OP462-C noninverting input resistor to ground  
to optimize common-mode rejection.  
10µF  
Figure 46. Headphone Output Amplifier  
The circuit in Figure 47 was implemented to test its settling  
time. The instrumentation amp was powered with −5 V, so the  
input step voltage went from 5 V to +4 V to keep the OP462  
within its input range. Therefore, the 0.05% settling range is  
when the output is within 4.5 mV. Figure 48 shows the positive  
slope settling time to be 1.8 µs, and Figure 49 shows a settling  
time of 3.9 µs for the negative slope.  
Rev. F | Page 16 of 20  
 
 
 
OP162/OP262/OP462  
DIRECT ACCESS ARRANGEMENT  
5mV  
2V  
Figure 50 shows a schematic for a 5 V single-supply transmit/  
receive telephone line interface for 600 Ω transmission systems.  
It allows full-duplex transmission of signals on a transformer-  
coupled 600 Ω line. Amplifier A1 provides gain that can be  
adjusted to meet the modem output drive requirements. Both  
A1 and A2 are configured to apply the largest possible differential  
signal to the transformer. The largest signal available on a single  
5 V supply is approximately 4.0 V p-p into a 600 Ω transmission  
system. Amplifier A3 is configured as a difference amplifier to  
extract the receive information from the transmission line for  
amplification by A4. A3 also prevents the transmit signal from  
interfering with the receive signal. The gain of A4 can be adjusted  
in the same manner as A1 to meet the modems input signal  
requirements. Standard resistor values permit the use of SIP  
(single in-line package) format resistor arrays. Couple this with  
the OP462 14-lead SOIC or TSSOP package and this circuit  
offers a compact solution.  
100  
90  
10  
0%  
1µs  
Figure 48. Positive Slope Settling Time  
5  
mV  
2V  
100  
90  
P1  
TX GAIN  
ADJUST  
R2  
9.09kΩ  
C1  
0.1µF  
TRANSMIT  
TXA  
R1  
10kΩ  
TO TELEPHONE  
LINE  
2k  
R3  
360Ω  
2
10  
1
1:1  
A1  
3
0%  
R5  
10kΩ  
6.2V  
6.2V  
Z
600Ω  
O
1µs  
5V DC  
T1  
R6  
10kΩ  
6
5
R7  
10kΩ  
Figure 49. Negative Slope Settling Time  
MIDCOM  
671-8005  
7
A2  
R8  
10kΩ  
10µF  
R9  
10kΩ  
R10  
10kΩ  
P2  
RX GAIN  
ADJUST  
RECEIVE  
RXA  
R14  
14.3kΩ  
R13  
10kΩ  
2
3
R11  
10kΩ  
1
A3  
2kΩ  
C2  
0.1µF  
6
R12  
10kΩ  
7
A4  
5
A1, A2 = 1/2 AD8532  
A3, A4 = 1/2 AD8532  
Figure 50. Single-Supply Direct Access Arrangement for Modems  
Rev. F | Page 17 of 20  
 
 
OP162/OP262/OP462  
SPICE MACRO-MODEL  
* OP162/OP262/OP462 SPICE Macro-model  
* 7/96, Ver. 1  
ECM 13 98 POLY (2) (1, 98) (2, 98) 0 0.5 0.5  
R2 13 14 1E+6  
* Troy Murphy / ADSC  
*
R3 14 98 70  
C3 13 14 80E-12  
* Copyright 1996 by Analog Devices  
*
*
* POLE AT 1.5MHz, ZERO AT 3MHz  
*
*
*
Refer to “README.DOC” file for License Statement. Use of this model  
indicates your acceptance of the terms and provisions in the License G2 21 98 (10, 98) .588E-6  
* Statement  
*
R4 21 98 1.7E6  
R5 21 22 1.7E6  
* Node Assignments  
C4 22 98 31.21E-15  
*
* POLE AT 6MHz, ZERO AT 3MHz  
*
E1 23 98 (21, 98) 2  
R6 23 24 53E+3  
R7 24 98 53E+3  
C5 23 24 1E-12  
*
*
*
*
*
*
*
noninverting input  
|
|
|
|
|
|
inverting input  
|
|
|
|
|
2
positive supply  
|
|
|
|
99  
negative supply  
|
|
output  
|
|
50  
|
45  
.SUBCKT OP162 1  
*
*
* SECOND GAIN STAGE  
*
G3 25 98 (24, 98) 40E-6  
*INPUT STAGE  
*
Q1  
Q2  
Ios 1  
5
6
7
2
2
3
4
PIX 5  
PIX 5  
R8 25 98 1.65E+6  
D3 25 99 DX  
D4 50 25 DX  
1.25E-9  
I1 99 15 85E-6  
*
EOS 7 POLY(1) (14, 20) 45E-6 1  
1
* OUTPUT STAGE  
RC1 5 50 3.035E+3  
RC2 6 50 3.035E+3  
RE1 3 15 607  
*
GSY 99 50 POLY (1) (99, 50) 277.5E-6 7.5E-6  
R9 99 20 100E3  
R10 20 50 100E3  
RE2 4 15 607  
C1  
D1  
D2  
5
3
4
6
8
9
600E-15  
DX  
DX  
Q3 45 41 99 POUT 4  
Q4 45 43 50 NOUT 2  
EB1 99 40 POLY (1) (98, 25) 0.70366 1  
EB2 42 50 POLY (1) (25, 98) 0.73419 1  
V1 99 8 DC 1  
V2 99 9 DC 1  
*
RB1 40 41 500  
RB2 42 43 500  
* 1st GAIN STAGE  
*
CF 45 25 11E-12  
D5 46 99 DX  
EREF 98 0 (20, 0) 1  
G1  
R1  
C2  
*
98 10 (5, 6) 10.5  
10 98 1  
10 98 3.3E-9  
* COMMON-MODE STAGE WITH ZERO AT 4kHz  
*
.MODEL POUT PNP (BF=119, IS=2.782E-17, VAF=28, KF=3E-7)  
.MODEL NOUT NPN (BF=110, IS=1.786E-17, VAF=90, KF=3E-7)  
.MODEL DX  
.ENDS  
D()  
Rev. F | Page 18 of 20  
 
OP162/OP262/OP462  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
5.10  
5.00  
4.90  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
1
0.25 (0.0098)  
0.10 (0.0040)  
PIN 1  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0.65  
BSC  
1.05  
1.00  
0.80  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
0.15  
0.05  
0.30  
0.19  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 51. 8-Lead Standard Small Outline Package [SOIC] Narrow Body  
S-Suffix (R-8)  
Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
3.00  
BSC  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
8
1
5
4
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
PIN 1  
0.25 (0.0098)  
0.10 (0.0039)  
0.65 BSC  
8°  
0°  
1.10 MAX  
0.51 (0.0201)  
0.31 (0.0122)  
0.15  
0.00  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 52. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 55. 14-Lead Standard Small Outline Package [SOIC] Narrow Body  
S-Suffix (R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
8
5
4
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
0.15  
0.05  
1.20  
MAX  
8°  
0°  
0.30  
0.19  
0.75  
0.60  
0.45  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153AA  
Figure 53. 8-Lead Thin Shrink Small Outline Package [TSSOP)  
(RU-8)  
Dimensions shown in millimeters  
Rev. F | Page 19 of 20  
 
OP162/OP262/OP462  
ORDERING GUIDE  
Model  
OP162GS  
OP162GS-REEL  
OP162GS-REEL7  
OP162GSZ1  
OP162GSZ-REEL1  
OP162GSZ-REEL71  
OP162DRU-REEL  
OP162DRUZ-REEL1  
OP162HRU-REEL  
OP162HRUZ-REEL1  
OP162DRM-REEL  
OP162DRMZ-REEL1  
OP262DRU-REEL  
OP262DRUZ-REEL1  
OP262GS  
Temperature Range  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
RU-8  
RU-8  
RU-8  
RU-8  
RM-8  
Branding  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
AND  
AOJ  
RM-8  
RU-8  
RU-8  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
S-Suffix (R-8ꢀ  
RU-8  
OP262GS-REEL  
OP262GS-REEL7  
OP262GSZ1  
OP262GSZ-REEL1  
OP262GSZ-REEL71  
OP262HRU-REEL  
OP262HRUZ-REEL1  
OP462DRU-REEL  
OP462DRUZ-REEL1  
OP462DS  
OP462DS-REEL  
OP462DS-REEL7  
OP462DSZ1  
OP462DSZ-REEL1  
OP462DSZ-REEL71  
OP462GS  
OP462GS-REEL  
OP462GS-REEL7  
OP462GSZ1  
OP462GSZ-REEL1  
OP462GSZ-REEL71  
OP462HRU-REEL  
OP462HRUZ-REEL1  
8-Lead SOIC  
8-Lead TSSOP  
8-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
RU-8  
RU-14  
RU-14  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
S-Suffix (R-14ꢀ  
RU-14  
RU-14  
1
Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00288–0–1/05(F)  
Rev. F | Page 20 of 20  
 
 
 

相关型号:

OP262GSZ

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262GSZ-REEL

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262GSZ-REEL7

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262GSZ-REEL7

DUAL OP-AMP, 800 uV OFFSET-MAX, 15 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

OP262HRU

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262HRU-REEL

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262HRUZ

DUAL OP-AMP, 1000 uV OFFSET-MAX, 15 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, TSSOP-8
ROCHESTER

OP262HRUZ-REEL

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP262HRUZ-REEL

DUAL OP-AMP, 1000 uV OFFSET-MAX, 15 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-153AA, TSSOP-8
ROCHESTER

OP262TRZ-EP-R7

15 MHz Rail-to-Rail Operational Dual Op Amp
ADI

OP265FAA

Plastic Infrared Emitting Diode
TTELEC

OP265FAB

Plastic Infrared Emitting Diode
TTELEC