OP270GP [ADI]

Dual Very Low Noise Precision Operational Amplifier; DUAL非常低的噪声精密运算放大器
OP270GP
型号: OP270GP
厂家: ADI    ADI
描述:

Dual Very Low Noise Precision Operational Amplifier
DUAL非常低的噪声精密运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Very Low Noise Precision  
Operational Amplifier  
a
OP270  
CONNECTION DIAGRAMS  
FEATURES  
Very Low Noise 5 nV/÷Hz @ 1 kHz Max  
Excellent Input Offset Voltage 75 V Max  
Low Offset Voltage Drift 1 V/؇C Max  
Very High Gain 1500 V/mV Min  
Outstanding CMR 106 dB Min  
Slew Rate 2.4 V/s Typ  
16-Lead SOIC  
(S-Suffix)  
8-Lead PDIP (P-Suffix)  
8-Lead CERDIP  
(Z-Suffix)  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
–IN A  
+IN A  
NC  
OUT A  
NC  
8
7
6
5
1
2
3
4
OUT A  
–IN A  
+IN A  
V–  
V+  
NC  
Gain Bandwidth Product 5 MHz Typ  
Industry-Standard 8-Lead Dual Pinout  
OUT B  
–IN B  
+IN B  
A
B
V–  
V+  
OP270  
NC  
12 NC  
GENERAL DESCRIPTION  
OP270  
11  
10  
9
+IN B  
–IN B  
NC  
NC  
The OP270 is a high performance, monolithic, dual operational  
amplifier with exceptionally low voltage noise, 5 nV/÷Hz max at  
1 kHz. It offers comparable performance to ADI’s industry  
standard OP27.  
OUT B  
NC  
NC = NO CONNECT  
The OP270 features an input offset voltage below 75 mV and an  
offset drift under 1 mV/C, guaranteed over the full military tem-  
perature range. Open-loop gain of the OP270 is over 1,500,000  
into a 10 kW load, ensuring excellent gain accuracy and linearity,  
even in high gain applications. Input bias current is under 20 nA,  
which reduces errors due to signal source resistance. The OP270’s  
CMR of over 106 dB and PSRR of less than 3.2 mV/V signifi-  
cantly reduce errors due to ground noise and power supply  
fluctuations. Power consumption of the dual OP270 is one-third  
less than two OP27s, a significant advantage for power conscious  
applications. The OP270 is unity-gain stable with a gain bandwidth  
product of 5 MHz and a slew rate of 2.4 V/ms.  
The OP270 offers excellent amplifier matching, which is important  
for applications such as multiple gain blocks, low noise instru-  
mentation amplifiers, dual buffers, and low noise active filters.  
The OP270 conforms to the industry-standard 8-lead DIP pinout.  
It is pin compatible with the MC1458, SE5532/A, RM4558, and  
HA5102 dual op amps, and can be used to upgrade systems  
using those devices.  
For higher speed applications, the OP271, with a slew rate of  
8 V/ms, is recommended. For a quad op amp, see the OP470.  
SIMPLIFIED SCHEMATIC  
(One of Two Amplifiers Is Shown)  
V+  
BIAS  
OUT  
+IN  
–IN  
V–  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(V = ؎15 V, T = 25؇C, unless otherwise noted.)  
OP270–SPECIFICATIONS  
S
A
OP270E  
OP270F  
OP270G  
PARAMETER  
SYMBOL CONDITIONS  
MIN TYP MAX  
MIN TYP MAX MIN TYP MAX UNIT  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
VOS  
lOS  
IB  
en p-p  
10 75  
20  
3
10  
80  
150  
15  
40  
50  
5
15  
80  
250  
20  
60  
mV  
VCM = 0 V  
VCM = 0 V  
0.1 Hz to 10 Hz  
(Note 1)  
1
5
10  
20  
nA  
nA  
nV p-p  
80 200  
200  
Input Noise  
Voltage Density  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
(Note 2)  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
(Note3)  
3.6 6.5  
3.2 5.5  
3.2 5.0  
3.6  
3.2  
3.2  
6.5  
5.5  
5.0  
3.6  
3.2  
3.2  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
en  
in  
Input Noise  
Current Density  
1.1  
0.7  
0.6  
1.1  
0.7  
0.6  
1.1  
0.7  
0.6  
pA/÷Hz  
pA/÷Hz  
pA/÷Hz  
Large-Signal  
Voltage Gain  
AVO  
IVR  
1500 2300  
1000 1700  
500 900  
±12 ±12.5  
±12 ±13.5  
750  
350  
±12  
±12  
1500  
700  
±12.5  
±13.5  
V/mV  
V/mV  
V
750 1200  
±12 ±12.5  
±12 ±13.5  
Input Voltage Range  
Output Voltage Swing VO  
Common-Mode  
RL 2 kW  
V
Rejection  
Power Supply  
Rejection Ratio  
CMR  
VCM = ±11 V  
106 125  
100 120  
1.0  
90  
110  
1.5  
dB  
PSRR  
VS = ±4.5 V  
to ±18 V  
0.56 3.2  
5.6  
6.5  
6
mV/V  
Slew Rate  
SR  
ISY  
1.7 2.4  
4
1.7  
2.4  
4
1.7  
2.4  
4
V/ms  
mA  
Supply Current  
(All Amplifiers)  
Gain Bandwidth  
Product  
No Load  
6.5  
6.5  
GBP  
CS  
5
5
5
MHz  
dB  
Channel Separation  
VO = ±20 V p-p  
fO = 10 Hz  
(Note 1)  
125 175  
125 175  
175  
Input Capacitance  
Input Resistance  
Differential-Mode  
Input Resistance  
Common-Mode  
Settling Time  
CIN  
RIN  
3
0.4  
3
0.4  
3
0.4  
pF  
MW  
RINCM  
tS  
20  
5
20  
5
20  
5
GW  
ms  
AV = +1, 10 V  
Step to 0.01%  
NOTES  
1. Guaranteed but not 100% tested.  
2. Sample tested.  
3. Guaranteed by CMR test.  
Specifications subject to change without notice.  
–2–  
REV. C  
OP270  
SPECIFICATIONS  
(Vs = ؎15 V, –40C £ TA £ 85؇C, unless otherwise noted.)  
ELECTRICAL SPECIFICATIONS  
OP270E  
OP270F  
OP270G  
PARAMETER  
SYMBOL CONDITIONS  
VOS  
MIN TYP MAX  
MIN TYP MAX MIN TYP MAX UNIT  
Input Offset Voltage  
Average Input  
25 150  
45  
275  
100 400  
mV  
Offset Voltage Drift TCVOS  
0.2  
1.5 30  
6
1
0.4  
5
15  
2
40  
70  
0.7  
15  
19  
3
50  
80  
mV/C  
nA  
nA  
Input Offset Current  
Input Bias Voltage  
Large-Signal  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
60  
Voltage Gain  
AVO  
1000 1800  
500 900  
±12 ±12.5  
±12 ±13.5  
600 1400  
300 700  
±12 ±12.5  
±12 ±13.5  
400  
225  
±12  
±12  
1250  
670  
±12.5  
±13.5  
V/mV  
V/mV  
V
Input Voltage Range* IVR  
Output Voltage Swing VO  
Common-Mode  
RL 2 kW  
V
Rejection  
Power Supply  
Rejection Ratio  
CMR  
VCM = ±11 V  
100 120  
94  
115  
1.8  
4.4  
90  
100  
2.0  
4.4  
dB  
PSRR  
ISY  
VS = ±4.5 V  
to ±18 V  
No Load  
0.7 5.6  
4.4 7.2  
10  
1.5  
7.2  
mV/V  
mA  
Supply Current  
(All Amplifiers)  
7.2  
* Guaranteed by CMR test.  
Specifications subject to change without notice.  
–3–  
REV. C  
OP270  
ABSOLUTE MAXIMUM RATINGS1  
Operating Temperature Range  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . 1.0 V  
Differential Input Current2 . . . . . . . . . . . . . . . . . . . . 25 mA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration . . . . . . . . . . . . . . .Continuous  
Storage Temperature Range  
P, S, Z Package . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C  
OP270E, OP270F, OP270G . . . . . . . . . . . –40°C to +85°C  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 The OP270’s inputs are protected by back-to-back diodes. Current limiting  
resistors are not used, in order to achieve low noise performance. If differential  
voltage exceeds +10 V, the input current should be limited to 25 mA.  
ORDERING GUIDE  
TA = +25°C  
VOS Max  
(V)  
θJC  
C/W)  
θJA  
*
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
(
°
(
°
C/W)  
OP270EZ  
OP270FZ  
OP270GP  
OP270GS  
75  
12  
12  
37  
27  
134  
134  
96  
XIND  
XIND  
XIND  
XIND  
8-Lead CERDIP Q-8 (Z-Suffix)  
8-Lead CERDIP Q-8 (Z-Suffix)  
150  
250  
250  
8-Lead PDIP  
N-8 (P-Suffix)  
RW-16 (S-Suffix)  
92  
16-Lead SOIC  
*θJA is specified for worst-case mounting conditions, i.e., θJA is specified for device  
in socket for CERDIP and PDIP packages; θJA is specified for device soldered to  
printed circuit board for SOIC package.  
For military processed devices, please refer to the Standard  
Microcircuit Drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp.  
SMD Part Number  
ADI Equivalent  
5962-8872101PA  
OP270AZMDA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP270 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. C  
OP270  
Typical Performance Characteristics–  
10  
9
5
4
3
2
1
0.1HzTO 10Hz NOISE  
T
= 25؇C  
= ؎15V  
A
S
T
= 25؇C  
A
V
8
7
6
5
4
AT 10Hz  
AT 1kHz  
3
2
1/f CORNER = 5Hz  
1
1
10  
100  
1k  
0
؎5  
؎10  
؎15  
؎20  
TIME (1sec/DIV)  
T
= 25؇C  
= ؎15V  
A
S
SUPPLYVOLTAGE (V)  
FREQUENCY (Hz)  
V
TPC 2. Voltage Noise Density  
vs. Supply Voltage  
TPC 1. Voltage Noise Density  
vs. Frequency  
TPC 3. 0.1 Hz to 10 Hz Input  
Voltage Noise  
5
40  
10  
T
V
= 25؇C  
= ؎15V  
A
V
= ؎15V  
T
= 25؇C  
S
A
S
V
= ؎15V  
30  
20  
S
4
3
2
1
0
10  
1.0  
0.1  
0
–10  
–20  
–30  
1/f CORNER = 200Hz  
0
1
2
3
4
5
–75 –50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
TIME (Minutes)  
TEMPERATURE (؇C)  
FREQUENCY (Hz)  
TPC 4. Current Noise Density  
vs. Frequency  
TPC 6. Warm-Up Offset Voltage  
Drift  
TPC 5. Input Offset Voltage vs.  
Temperature  
7
5
7
V
V
= ؎15V  
V
= ؎15V  
S
= 0V  
T
V
= 25؇C  
= ؎15V  
S
A
= 0V  
V
CM  
CM  
S
6
5
4
3
2
4
3
2
1
0
6
5
4
3
2
–75 –50 –25  
0
25  
50  
75 100 125  
–75 –50 –25  
0
25  
50  
75 100 125  
–10.0  
–12.5  
–5.0  
0.0  
5.0  
10.0  
–7.5  
–2.5  
2.5  
7.5  
12.5  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
COMMON-MODEVOLTAGE (V)  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
TPC 7. Input Bias Current vs.  
Temperature  
TPC 8. Input Offset Current vs.  
Temperature  
–5–  
REV. C  
OP270  
130  
120  
110  
100  
90  
6
5
4
3
2
8
7
6
5
4
3
2
1
0
T
V
= 25؇C  
= ؎15V  
A
V
= ؎15V  
S
S
80  
70  
+125؇C  
+25؇C  
–55؇C  
60  
50  
40  
30  
20  
10  
1
10  
100  
1k  
10k  
100k  
1M  
0
؎5  
؎10  
؎15  
؎20  
–75 –50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
SUPPLYVOLTAGE (V)  
TEMPERATURE (؇C)  
TPC 10. CMR vs. Frequency  
TPC 11. Total Supply Current  
vs. Supply Voltage  
TPC 12. Total Supply Current  
vs. Temperature  
140  
120  
100  
80  
80  
140  
T
V
= 25؇C  
= ؎15V  
T
V
= 25؇C  
= ؎15V  
S
T
= 25؇C  
A
A
A
S
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
–PSR  
60  
+PSR  
40  
20  
0
–20  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
TPC 13. PSR vs. Frequency  
TPC 14. Open-Loop Gain vs.  
Frequency  
TPC 15. Closed-Loop Gain vs.  
Frequency  
25  
80  
5000  
4000  
3000  
2000  
1000  
0
80  
70  
T
V
= 25؇C  
= ؎15V  
A
8
7
6
5
4
S
20  
15  
10  
5
100  
120  
140  
160  
180  
PHASE  
GAIN  
PHASE  
MARGIN = 62؇  
60  
0
GBP  
50  
–5  
–10  
40  
1
2
3
4
5
6 7 8 910  
–75 –50 –25  
0
25 50 75 100 125 150  
0
؎5  
؎10  
؎15  
؎20  
؎25  
FREQUENCY (Hz)  
TEMPERATURE ( C)  
؇
SUPPLY VOLTAGE (V)  
TPC 16. Open-Loop Gain Phase  
Shift vs. Frequency  
TPC 17. Open-Loop Gain vs.  
Supply Voltage  
TPC 18. Gain-Bandwidth Phase  
Margin vs. Temperature  
–6–  
REV. C  
OP270  
28  
24  
20  
16  
12  
8
15  
14  
13  
12  
11  
10  
9
50  
40  
30  
20  
10  
0
T
= 25؇C  
T
= 25؇C  
= ؎15V  
T
= 25؇C  
= ؎15V  
= 100mV  
= +1  
POSITIVE  
SWING  
A
S
A
S
A
S
IN  
V
V
= ؎15V  
V
V
V
THD = 1%  
A
NEGATIVE  
SWING  
8
7
4
6
0
5
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
0
200  
400  
600  
800  
1000  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
CAPACITIVE LOAD (pF)  
TPC 19. Maximum Output  
Swing vs. Frequency  
TPC 20. Maximum Output  
Voltage vs. Load Resistance  
TPC 21. Small-Signal Overshoot  
vs. Capacitive Load  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
100  
75  
50  
25  
0
V
= ؎15V  
T
= +25؇C  
= ؎15V  
S
A
S
V
A
= 1  
V
A
= 10  
V
–SR  
+SR  
A
= 100  
100k  
V
T
= 25؇C  
A
S
O
V
V
= ؎15V  
80  
70  
= 20V p-pTO 10kHz  
–75 –50 –25  
0
25  
50  
75 100 125  
1k  
10k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (؇C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 22. Output Impedance vs.  
Frequency  
TPC 23. Slew Rate vs.  
Temperature  
TPC 24. Channel Separation vs.  
Frequency  
0.1  
T
= 25؇C  
A
S
O
L
V
V
= ؎15V  
= 20V p-p  
=2k⍀  
R
A
= 10  
V
0.01  
A
= 1  
V
20s  
5V  
50mV  
200nS  
T
= 25؇C  
T
= 25؇C  
0.001  
A
S
V
L
A
S
V
L
10  
100  
1k  
10k  
V
= ؎15V  
= +1  
V
= ؎15V  
= +1  
A
R
A
R
FREQUENCY (Hz)  
= 2k⍀  
= 2k⍀  
TPC 25. Total Harmonic Distor-  
tion vs. Frequency  
TPC 26. Large Signal Transcient  
Response  
TPC 27. Small-Signal  
Transient Response  
–7–  
REV. C  
OP270  
5k⍀  
TOTAL NOISE AND SOURCE RESISTANCE  
The total noise of an op amp can be calculated by:  
500⍀  
1/2  
OP270  
2
2
2
V
20V  
p-p  
1
En =  
e
n
+ i R  
+ e  
(
)
(
)
( )  
n
S
t
where:  
5k⍀  
En = total input referred noise  
en = op amp voltage noise  
in = op amp current noise  
50⍀  
1/2  
OP270  
V
2
et = source resistance thermal noise  
RS = source resistance  
V
1
CHANNEL SEPARATION = 20 log  
V /1000  
2
The total noise is referred to the input and at the output would  
be amplified by the circuit gain.  
Figure 1. Channel Separation Test Circuit  
+18V  
Figure 3 shows the relationship between total noise at 1 kHz  
and source resistance. For RS < 1 kW the total noise is dominated  
by the voltage noise of the OP270. As RS rises above 1 kW, total  
noise increases and is dominated by resistor noise rather than by  
the voltage or current noise of the OP270. When RS exceeds  
20 kW, current noise of the OP270 becomes the major contributor  
to total noise.  
8
100k⍀  
2
1
1/2  
OP270  
3
200k⍀  
100  
6
7
1/2  
OP270  
5
100k⍀  
OP200  
10  
4
–18V  
OP270  
Figure 2. Burn-In Circuit  
RESISTOR  
NOISE ONLY  
1
100  
APPLICATIONS INFORMATION  
VOLTAGE AND CURRENT NOISE  
1k  
10k  
100k  
R
– SOURCE RESISTANCE ()  
S
The OP270 is a very low noise dual op amp, exhibiting atypical  
voltage noise of only 3.2 nV/÷Hz @ 1 kHz. The exceptionally  
low noise characteristic of the OP270 is achieved in part by  
operating the input transistors at high collector currents since  
the voltage noise is inversely proportional to the square root of  
the collector current. Current noise, however, is directly propor-  
tional to the square root of the collector current. As a result, the  
outstanding voltage noise performance of the OP270 is gained  
at the expense of current noise performance, which is normal for  
low noise amplifiers.  
Figure 3. Total Noise vs. Source Resistance  
(Including Resistor Noise) at 1 kHz  
Figure 4 also shows the relationship between total noise and  
source resistance, but at 10 Hz. Total noise increases more  
quickly than shown in Figure 3 because current noise is inversely  
proportional to the square root of frequency. In Figure 4, current  
noise of the OP270 dominates the total noise when RS > 5 kW.  
Figures 3 and 4 show that to reduce total noise, source resistance  
must be kept to a minimum. In applications with a high source  
resistance, the OP200, with lower current noise than the OP270,  
will provide lower total noise.  
To obtain the best noise performance in a circuit, it is vital to  
understand the relationship between voltage noise (en), current  
noise (in), and resistor noise (et).  
–8–  
REV. C  
OP270  
100  
10  
1
Figure 5 shows peak-to-peak noise versus source resistance over the  
0.1 Hz to 10 Hz range. Once again, at low values of RS, the voltage  
noise of the OP270 is the major contributor to peak-to-peak  
noise, with current noise the major contributor as RS increases.  
The crossover point between the OP270 and the OP200 for  
peak-to-peak noise is at RS = 17 kW.  
The OP271 is a higher speed version of the OP270, with a slew  
rate of 8 V/ms. Noise of the OP271 is slightly higher than that of  
the OP270. Like the OP270, the OP271 is unity-gain stable.  
OP200  
OP270  
For reference, typical source resistances of some signal sources  
are listed in Table I.  
RESISTOR  
NOISE ONLY  
Table I.  
Source  
100  
1k  
10k  
100k  
R
– SOURCE RESISTANCE ()  
S
Device  
Impedance Comments  
Figure 4. Total Noise vs. Source Resistance  
(Including Resistor Noise) at 10 Hz  
Strain gage  
<500 W  
Typically used in low  
frequency applications.  
Magnetic  
tapehead,  
microphone  
<1500 W  
Low IB very important to reduce  
self-magnetization problems  
when direct coupling is used.  
OP270 IB can be neglected.  
1000  
100  
10  
OP200  
Magnetic  
phonograph  
cartridge  
<1500 W  
Similar need for low IB in  
direct coupled applications.  
OP270 will not introduce any  
self-magnetization problem.  
OP270  
Linear variable <1500 W  
differential  
transformer  
Used in rugged servo-feedback  
applications. Bandwidth of  
interest is 400 Hz to 5 kHz.  
RESISTOR  
NOISE ONLY  
100  
1k  
10k  
100k  
R
– SOURCE RESISTANCE ()  
S
Figure 5. Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs.  
Source Resistance (Includes Resistor Noise)  
R3  
1.24k  
R1  
5⍀  
C1  
2F  
OP270  
DUT  
+
+
R2  
5⍀  
C4  
OP27E  
0.22F  
D1, D2  
1N4148  
R6  
600⍀  
R5  
909⍀  
R10  
65.4k⍀  
R11  
65.4k⍀  
+
R14  
4.99k⍀  
+
OP27E  
R4  
200⍀  
C3  
0.22F  
e
OP42E  
OUT  
R9  
C5  
306k⍀  
R13  
5.9k⍀  
1F  
R8  
10k⍀  
R12  
10k⍀  
C2  
0.032F  
GAIN = 50,000  
= ؎15V  
V
S
Figure 6. Peak-to-Peak Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
REV. C  
–9–  
OP270  
NOISE MEASUREMENTS  
Noise Measurement — Noise Voltage Density  
Peak-to-Peak Voltage Noise  
The circuit of Figure 8 shows a quick and reliable method of  
measuring the noise voltage density of dual op amps. The first  
amplifier is in unity-gain, with the final amplifier in a noninverting  
gain of 101. As noise voltages of each amplifier are uncorrelated,  
they add in rms fashion to yield:  
The circuit of Figure 6 is a test setup for measuring peak-to-peak  
voltage noise. To measure the 200 nV peak-to-peak noise specifica-  
tion of the OP270 in the 0.1 Hz to 10 Hz range, the following  
precautions must be observed:  
1. The device has to be warmed up for at least five minutes. As  
shown in the warm-up drift curve, the offset voltage typically  
changes 2 mV due to increasing chip temperature after power-up.  
In the 10-second measurement interval, these temperature  
induced effects can exceed tens of nanovolts.  
2
2
Ê
ˆ
eOUT = 101  
e
+ e  
(
)
(
)
Á
Ë
˜
¯
nA  
nB  
The OP270 is a monolithic device with two identical amplifi-  
ers. The noise voltage density of each individual amplifier will  
match, giving:  
2. For similar reasons, the device has to be well shielded from  
air currents. Shielding also minimizes thermocouple effects.  
2
Ê
ˆ
eOUT = 101 2en = 101 2en  
Á
˜
3. Sudden motion in the vicinity of the device can also “feed  
through” to increase the observed noise.  
(
)
Ë
¯
4. The test time to measure noise of 0.1 Hz to 10 Hz should not  
exceed 10 seconds. As shown in the noise-tester frequency  
response curve of Figure 7, the 0.1 Hz corner is defined by  
only one pole. The test time of 10 seconds acts as an additional  
pole to eliminate noise contribution from the frequency band  
below 0.1 Hz.  
R1  
R2  
100  
10k  
1/2  
OP270  
+
eOUT  
1/2  
TO SPECTRUM ANALYZER  
en  
OP270  
+
eOUT (nV/ Hz) =101 (  
2
)
100  
80  
60  
40  
20  
0
V
= 15V  
S
Figure 8. Noise Voltage Density Test Circuit  
R3  
1.24k  
R1  
5⍀  
R2  
100k⍀  
OP270  
DUT  
enOUT  
OP27E  
+
TO SPECTRUM ANALYZER  
+
R5  
8.06k⍀  
R4  
GAIN = 10,000  
= ؎15V  
200⍀  
V
S
0.01  
0.1  
1.0  
10  
100  
FREQUENCY (Hz)  
Figure 9. Current Noise Density Test Circuit  
Figure 7. 0.1 Hz to 10 Hz Peak-to-Peak Voltage  
Noise Test Circuit Frequency Response  
Noise Measurement — Current Noise Density  
The test circuit shown in Figure 9 can be used to measure cur-  
rent noise density. The formula relating the voltage output to  
current noise density is:  
5. A noise-voltage-density test is recommended when measuring  
noise on a large number of units. A 10 Hz noise-voltage-density  
measurement will correlate well with a 0.1 Hz to 10 Hz  
peak-to-peak noise reading, since both results are determined by  
the white noise and the location of the 1/f corner frequency.  
2
Ê
ˆ2  
enOUT  
G
- 40 nV/ Hz  
Á
Ë
˜
¯
(
)
in =  
6. Power should be supplied to the test circuit by well bypassed  
low noise supplies, e.g., batteries. They will minimize output  
noise introduced via the amplifier supply pins.  
RS  
where:  
G = gain of 10,000  
RS = 100 kW source resistance  
–10–  
REV. C  
OP270  
CAPACITIVE LOAD DRIVING AND POWER SUPPLY  
CONSIDERATIONS  
APPLICATIONS  
Low Phase Error Amplifier  
The OP270 is unity-gain stable and capable of driving large  
capacitive loads without oscillating. Nonetheless, good supply  
bypassing is highly recommended. Proper supply bypassing  
reduces problems caused by supply line noise and improves the  
capacitive load driving capability of the OP270.  
The simple amplifier depicted in Figure 12 utilizes a monolithic  
dual operational amplifier and a few resistors to substantially  
reduce phase error compared to conventional amplifier designs.  
At a given gain, the frequency range for a specified phase accuracy is  
over a decade greater than for a standard single op amp amplifier.  
In the standard feedback amplifier, the op amp’s output resis-  
tance combines with the load capacitance to form a low-pass  
filter that adds phase shift in the feedback network and reduces  
stability. A simple circuit to eliminate this effect is shown in  
Figure 10. The added components, C1 and R3, decouple the  
amplifier from the load capacitance and provide additional  
stability. The values of C1 and R3 shown in Figure 10 are for a  
load capacitance of up to 1,000 pF when used with the OP270.  
The low phase error amplifier performs second-order frequency  
compensation through the response of op amp A2 in the feed-  
back loop of A1. Both op amps must be extremely well matched  
in frequency response. At low frequencies, the A1 feedback  
loop forces V2 /(K1 + 1) = VIN. The A2 feedback loop forces  
Vo/(K1 + 1) = V2 /(K1 + 1), yielding an overall transfer function  
of VO/VIN = K1 + 1. The dc gain is determined by the resistor  
divider at the output, VO, and is not directly affected by the resis-  
tor divider around A2. Note that like a conventional single op amp  
amplifier, the dc gain is set by resistor ratios only. Minimum  
gain for the low phase error amplifier is 10.  
V+  
+
C3  
0.1F  
C2  
10F  
R2  
R2 = R1  
R2  
K1  
R2  
1/2  
OP270E  
A2  
C1  
200pF  
R1  
V
R3  
50⍀  
IN  
V
2
V
OP270  
OUT  
+
+
C1  
1000pF  
C5  
0.1F  
C4  
1/2  
OP270E  
A1  
R1  
K1  
10F  
+
R2  
PLACE SUPPLY DECOUPLING  
CAPACITOR AT OP270  
V–  
+
V
IN  
V
O
Figure 10. Driving Large Capacitive Loads  
ASSUME A1 AND A1 ARE MATCHED.  
V = (K + 1)V  
O 1  
IN  
T
s
A
(s) =  
O
UNITY-GAIN BUFFER APPLICATIONS  
When Rf £ 100 W and the input is driven with a fast, large  
signal pulse (>1 V), the output waveform will look like the one  
in Figure 11.  
Figure 12. Low Phase Error Amplifier  
Figure 13 compares the phase error performance of the low  
phase error amplifier with a conventional single op amp ampli-  
fier and a cascaded two-stage amplifier. The low phase error  
amplifier shows a much lower phase error, particularly for fre-  
quencies where w/bwT < 0.1. For example, phase error of –0.1  
occurs at 0.002 w/bwT for the single op amp amplifier, but at  
0.11 w/bwT for the low phase error amplifier.  
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input, and a  
current, limited only by the output short-circuit protection, will be  
drawn by the signal generator. With Rf 500 W, the output is  
capable of handling the current requirements (IL £ 20 mA at 10 V);  
the amplifier will stay in its active mode and a smooth transition  
will occur.  
When Rf > 3 kW, a pole created by Rf and the amplifier’s input  
capacitance (3 pF) creates additional phase shift and reduces  
phase margin. A small capacitor (20 pF to 50 pF) in parallel  
with Rf helps eliminate this problem.  
Figure 11. Pulsed Operation  
REV. C  
–11–  
OP270  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
FIVE-BAND LOW NOISE STEREO GRAPHIC EQUALIZER  
The graphic equalizer circuit shown in Figure 14 provides 15 dB of  
boost or cut over a 5-band range. Signal-to-noise ratio over a 20 kHz  
bandwidth is better than 100 dB and referred to a 3 V rms input.  
Larger inductors can be replaced by active inductors, but this  
reduces the signal-to-noise ratio.  
SINGLE OP AMP.  
CONVENTIONAL DESIGN  
CASCADED  
(TWO STAGES)  
DIGITAL PANNING CONTROL  
Figure 15 uses a DAC8221, a dual 12-bit CMOS DAC, to pan  
a signal between two channels. One channel is formed by the  
current output of DAC A driving one-half of an OP270 in a  
current-to-voltage converter configuration. The other channel is  
formed by the complementary output current of DAC A, which  
normally flows to ground through the AGND pin. This comple-  
mentary current is converted to a voltage by the other half of the  
OP-270, which also holds AGND at virtual ground.  
LOW PHASE ERROR  
AMPLIFIER  
0.001  
0.01  
0.1  
1.0  
0.005  
0.05  
0.5  
FREQUENCY RATIO (1/␤␻)(/)  
T
Gain error due to mismatching between the internal DAC ladder  
resistors and the current-to-voltage feedback resistors is elimi-  
nated by using feedback resistors internal to the DAC8221. Only  
DAC A passes a signal; DAC B provides the second feedback  
resistor. With VREFB unconnected, the current-to-voltage converter,  
using RFBB, is accurate and not influenced by digital data reach-  
ing DAC B. Distortion of the digital panning control is less than  
0.002% over the 20 Hz to 20 kHz audio range. Figure 16 shows  
the complementary outputs for a 1 kHz input signal and a digital  
ramp applied to the DAC data input.  
Figure 13. Phase Error Comparison  
C1  
0.47F  
V
+
IN  
R2  
3.3k⍀  
R1  
47k⍀  
1/2  
+
OP270E  
R14  
100⍀  
1/2  
OP270E  
V
OUT  
R4  
1k⍀  
C2  
R3  
680⍀  
R13  
3.3k⍀  
6.8F  
L1  
1H  
60Hz  
+
TANTALUM  
DUAL PROGRAMMABLE GAIN AMPLIFIER  
R6  
1k⍀  
The dual OP270 and the DAC8221, a dual 12-bit CMOS  
DAC, can be combined to form a space-saving dual program-  
mable amplifier. The digital code present at the DAC, which is  
easily set by a microprocessor, determines the ratio between the  
internal feedback resistor and the resistance the DAC ladder  
presents to the op amp feedback loop. Gain of each amplifier is  
C3  
R5  
680⍀  
1F  
L2  
200Hz  
+
600mH  
TANTALUM  
R8  
1k⍀  
C4  
0.22F  
R7  
680⍀  
L3  
800Hz  
3kHz  
180mH  
VOUT  
VIN  
4096  
n
R10  
1k⍀  
= –  
C5  
0.047F  
R9  
680⍀  
L4  
where n equals the decimal equivalent of the 12-bit digital code  
present at the DAC. If the digital code present at the DAC  
consists of all zeros, the feedback loop will open, causing the op  
amp output to saturate. A 20 MW resistor placed in parallel with  
the DAC feedback loop eliminates this problem with only a very  
small reduction in gain accuracy.  
60mH  
R12  
1k⍀  
C6  
0.022F  
R11  
680⍀  
L5  
10kHz  
10mH  
Figure 14. 5-Band Low Noise Graphic Equalizer  
–12–  
REV. C  
OP270  
+5V  
21  
+15V  
+15V  
+5V  
21  
V
DAC8221HP  
DD  
0.01F  
V
DD  
DAC8221HP  
V
A
4
2
0.01F  
10F  
REF  
R
A
FB  
3
R
A
FB  
3
+
V
A
IN  
20M⍀  
10F  
+
I
A
OUT  
2
8
DAC A  
V
A
I
A
4
2
1
REF  
OUT  
2
3
8
V
1/2  
OP270EZ  
DAC A  
1
IN  
1/2  
OP270GP  
V
A
1
OUT  
OUT  
3
+
4
AGND  
+
4
DAC DATA BUS  
PINS 6 (MSB) - 17 (LSB)  
AGND  
+
1
0.1F  
10F  
R
B
FB  
23  
+
V
B
IN  
0.1F  
10F  
–15V  
R
B
–15V  
FB  
I
B
23  
24  
24  
OUT  
6
DAC B  
1/2  
7
V
B
I
B
22  
18  
REF  
OUT  
6
5
OP270GP  
NC  
DAC B  
V
B
OUT  
5
20M⍀  
1/2  
OP270GP  
7
+
OUT  
DAC DATA BUS  
PINS 6 (MSB) - 17 (LSB)  
DAC A/DAC B  
+
V
B
22  
REF  
18  
19  
20  
WRITE  
CONTROL  
19  
20  
CS  
WRITE  
CONTROL  
DGND  
5
WR  
DGND  
5
Figure 17. Dual Programmable Gain Amplifier  
Figure 15. Digital Panning Control  
A OUT  
A OUT  
5V 5V  
1ms  
Figure 16. Digital Panning Control Output  
REV. C  
–13–  
OP270  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
P-Suffix  
(N-8)  
Z-Suffix  
(Q-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
0.005 (0.13) 0.055 (1.40)  
MIN  
MAX  
8
5
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.060 (1.52)  
0.015 (0.38)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.200 (5.08)  
MAX  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
16-Lead Standard Small Outline Package [SOIC]  
Wide Body  
S-Suffix  
(RW-16)  
Dimensions shown in millimeters and (inches)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
BSC  
؋
 45؇  
0.30 (0.0118)  
0.10 (0.0039)  
8؇  
0؇  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–14–  
REV. C  
OP270  
Revision History  
Location  
Page  
4/03—Data Sheet changed from REV. B to REV. C.  
Deletion of OP270A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to CONNECTION DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Deletion of WAFER LIMITS and DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to equations in Noise Measurements section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Change to Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
11/02—Data Sheet changed from REV. A to REV. B.  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9/02—Data Sheet changed from REV. 0 to REV. A.  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
REV. C  
–15–  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY