OP270GSZ-REEL2 [ADI]

Dual Very Low Noise Precision Operational Amplifier; DUAL非常低的噪声精密运算放大器
OP270GSZ-REEL2
型号: OP270GSZ-REEL2
厂家: ADI    ADI
描述:

Dual Very Low Noise Precision Operational Amplifier
DUAL非常低的噪声精密运算放大器

运算放大器
文件: 总20页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Very Low Noise Precision  
Operational Amplifier  
OP270  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Very low noise density of 5 nV/√Hz at 1 kHz maximum  
Excellent input offset voltage of 75 μV maximum  
Low offset voltage drift of 1 μV/°C maximum  
Very high gain of 1500 V/mV minimum  
Outstanding CMR of 106 dB minimum  
Slew rate of 2.4 V/μs typical  
–IN A  
+IN A  
NC  
1
2
3
4
5
6
7
8
16 OUT A  
15 NC  
14 NC  
V–  
13 V+  
OP270  
NC  
12 NC  
+IN B  
–IN B  
NC  
11 NC  
10 OUT B  
Gain bandwidth product of 5 MHz typical  
Industry-standard 8-lead dual pinout  
9
NC  
NC = NO CONNECT  
Figure 1. 16-Lead SOIC  
(S-Suffix)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
A
B
OUT B  
–IN B  
+IN B  
OP270  
Figure 2. 8-Lead PDIP (P-Suffix)  
8-Lead CERDIP  
(Z-Suffix)  
GENERAL DESCRIPTION  
The OP270 is a high performance, monolithic, dual operational  
amplifier with exceptionally low voltage noise density (5 nV/√Hz  
maximum at 1 kHz). It offers comparable performance to the  
industry-standard OP27 from Analog Devices, Inc.  
devices, a significant advantage for power conscious applications.  
The OP270 is unity-gain stable with a gain bandwidth product  
of 5 MHz and a slew rate of 2.4 V/μs.  
The OP270 offers excellent amplifier matching, which is  
important for applications such as multiple gain blocks, low  
noise instrumentation amplifiers, dual buffers, and low noise  
active filters.  
The OP270 features an input offset voltage of less than 75 μV  
and an offset drift of less than 1 μV/°C, guaranteed over the full  
military temperature range. Open-loop gain of the OP270 is more  
than 1,500,000 into a 10 kΩ load, ensuring excellent gain accuracy  
and linearity, even in high gain applications. The input bias  
current is less than 20 nA, which reduces errors due to signal  
source resistance. With a common-mode rejection (CMR) of  
greater than 106 dB and a power supply rejection ratio (PSRR)  
of less than 3.2 μV/V, the OP270 significantly reduces errors  
due to ground noise and power supply fluctuations. The power  
consumption of the dual OP270 is one-third less than two OP27  
The OP270 conforms to the industry-standard 8-lead DIP  
pinout. It is pin compatible with the MC1458, SE5532/A,  
RM4558, and HA5102 dual op amps, and can be used to  
upgrade systems using those devices.  
For higher speed applications, the ADA4004-2 or the AD8676 are  
recommended. For a quad op amp, see the OP470 data sheet.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2001–2010 Analog Devices, Inc. All rights reserved.  
 
OP270  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage and Current Noise........................................................ 12  
Total Noise and Source Resistance........................................... 12  
Noise Measurements.................................................................. 14  
Capacitive Load Driving and Power Supply Considerations.. 15  
Unity-Gain Buffer Applications ............................................... 15  
Low Phase Error Amplifier....................................................... 16  
Five-Band, Low Noise, Stereo Graphic Equalizer.................. 16  
Digital Panning Control............................................................ 17  
Dual Programmable Gain Amplifier....................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits..................................................................................... 11  
Applications Information .............................................................. 12  
REVISION HISTORY  
2/10—Rev. D to Rev. E  
4/03—Rev. B to Rev. C  
Change to General Description Section........................................ 1  
Change to Input Noise Current Density Parameter, Table 1 ...... 3  
Change to Figure 18 ......................................................................... 8  
Changes to Total Noise and Source Resistance Section ............ 13  
Changes to Figure 41...................................................................... 16  
Deletion of OP270A model...............................................Universal  
Edits to Features.................................................................................1  
Changes to Specifications.................................................................2  
Deletion of Wafer Limits and Dice Characteristics ......................4  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Changes to Equations in Noise Measurements section............. 10  
Change to Figure 10 ....................................................................... 11  
Updated Outline Dimensions....................................................... 14  
2/09—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Reorganized Layout............................................................Universal  
Changes to Figure 7.......................................................................... 6  
Changes to Figure 22........................................................................ 9  
Deleted Applications Heading ...................................................... 11  
Changes to Figure 44...................................................................... 17  
Changes to Figure 46...................................................................... 18  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
11/02—Rev. A to Rev. B  
Updated Ordering Guide .............................................................. 15  
9/02—Rev. 0 to Rev. A  
Edits to Absolute Maximum Ratings..............................................5  
Edits to Ordering Guide ................................................................ 15  
2/01—Revision 0: Initial Version  
Rev. E | Page 2 of 20  
 
OP270  
SPECIFICATIONS  
VS = ±±1 V, TA = 21°C, unless otherwise noted.  
Table 1.  
OP270E  
Typ  
10  
1
5
OP270F  
Typ  
20  
3
10  
OP270G  
Max Min Typ Max Unit  
Parameter  
Symbol Test Conditions  
Min  
Max Min  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage1  
VOS  
IOS  
75  
10  
20  
200  
6.5  
5.5  
5.0  
150  
15  
50  
5
250  
20  
μV  
nA  
VCM = 0 V  
IB  
VCM = 0 V  
40  
15  
60  
nA  
en p-p  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
80  
80  
200  
6.5  
5.5  
5.0  
80  
3.6  
3.2  
3.2  
1.1  
nV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
V/mV  
Input Noise Voltage Density2 en  
3.6  
3.2  
3.2  
1.1  
0.7  
0.6  
3.6  
3.2  
3.2  
1.1  
0.7  
0.6  
en  
en  
Input Noise Current Density in  
in  
in  
0.7  
0.6  
Large-Signal Voltage Gain  
AVO  
VO = 10 V,  
RL = 10 kΩ  
1500 2300  
1000 1700  
750 1500  
VO = 10 V,  
RL = 2 kΩ  
750  
1200  
500  
900  
350 700  
V/mV  
Input Voltage Range3  
Output Voltage Swing  
Common-Mode Rejection  
Power Supply Rejection  
Ratio  
Slew Rate  
Supply Current  
(All Amplifiers)  
IVR  
VO  
CMR  
PSRR  
12  
12  
106  
12.5  
13.5  
125  
12  
12  
100  
12.5  
13.5  
120  
12  
12  
90  
12.5  
13.5  
110  
V
V
dB  
μV/V  
RL ≥ 2 kΩ  
VCM = 11 V  
VS = 4.5 V  
to 18 V  
0.56  
3.2  
6.5  
1.0  
5.6  
6.5  
1.5  
5.6  
6.5  
SR  
ISY  
1.7  
2.4  
4
1.7  
2.4  
4
1.7  
2.4  
4
V/μs  
mA  
No load  
Gain Bandwidth Product  
Channel Separation1  
GBP  
CS  
5
175  
5
175  
5
175  
MHz  
dB  
VO = 20 V p-p,  
fO = 10 Hz  
125  
125  
Input Capacitance  
Input Resistance  
Differential Mode  
Common Mode  
Settling Time  
CIN  
3
3
3
pF  
RIN  
RINCM  
tS  
0.4  
20  
5
0.4  
20  
5
0.4  
20  
5
MΩ  
GΩ  
μs  
AV = +1, 10 V,  
step to 0.01%  
1 Guaranteed but not 100% tested.  
2 Sample tested.  
3 Guaranteed by CMR test.  
Rev. E | Page 3 of 20  
 
 
 
OP270  
ELECTRICAL SPECIFICATIONS  
VS = ±±1 V, 40°C ≤ TA ≤ 81°C, unless otherwise noted.  
Table 2.  
OP270E  
Typ  
OP270F  
Max Min Typ  
OP270G  
Max Min Typ Max Unit  
Parameter  
Symbol Test Conditions  
Min  
Input Offset Voltage  
Average Input Offset  
Voltage Drift  
VOS  
TCVOS  
25  
0.2  
150  
1
45  
0.4  
275  
2
100  
0.7  
400  
3
μV  
μV/°C  
Input Offset Current  
Input Bias Voltage  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
1.5  
6
30  
60  
5
15  
40  
70  
15  
19  
50  
80  
nA  
nA  
Large-Signal Voltage Gain AVO  
VO = 10 V,  
RL = 10 kΩ  
1000 1800  
600 1400  
400 1250  
V/mV  
AVO  
VO = 10 V,  
RL = 2 kΩ  
500  
900  
300 700  
225 670  
V/mV  
Input Voltage Range1  
Output Voltage Swing  
Common-Mode Rejection CMR  
Power Supply Rejection  
Ratio  
Supply Current  
(All Amplifiers)  
IVR  
VO  
12  
12  
100  
12.5  
13.5  
120  
12  
12  
94  
12.5  
13.5  
115  
12  
12  
90  
12.5  
13.5  
100  
V
V
dB  
μV/V  
RL ≥ 2 kΩ  
VCM = 11 V  
VS = 4.5 V to 18 V  
PSRR  
0.7  
5.6  
7.2  
1.8  
10  
2.0  
1.5  
7.2  
ISY  
No load  
4.4  
4.4  
7.2  
4.4  
mA  
1 Guaranteed by CMR test.  
Rev. E | Page 4 of 20  
 
OP270  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
Differential Input Voltage1  
Differential Input Current1  
Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
Junction Temperature (TJ)  
Operating Temperature Range  
1.0 V  
25 mA  
Supply voltage  
Continuous  
−65°C to +150°C  
300°C  
−65°C to +150°C  
−40°C to +85°C  
For military processed devices, refer to the Standard Micro-  
circuit Drawing (SMD) available at the Defense Logistics  
Agency website.  
Table 4. Analog Devices Equivalent to SMD  
1 The OP270 inputs are protected by back-to-back diodes. To achieve low noise  
performance, current-limiting resistors are not used. If the differential voltage  
exceeds +10 V, the input current should be limited to 25 mA.  
SMD Part Number  
Analog Devices Equivalent  
5962-8872101PA  
OP270AZMDA  
ESD CAUTION  
Rev. E | Page 5 of 20  
 
OP270  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
10  
T
V
= 25°C  
= ±15V  
T
= 25°C  
= ±15V  
9
8
7
A
A
V
S
S
6
5
4
3
1
1/f CORNER = 5Hz  
2
1/f CORNER = 200Hz  
1
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
125  
5
Figure 3. Voltage Noise Density vs. Frequency  
Figure 6. Current Noise Density vs. Frequency  
5
4
3
2
1
40  
30  
20  
10  
0
V
= ±15V  
T
A
= 25°C  
S
AT 10kHz  
AT 1kHz  
–10  
–20  
–30  
0
±5  
±10  
±15  
±20  
–75  
–50  
–25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 4. Voltage Noise Density vs. Supply Voltage  
Figure 7. Input Offset Voltage vs. Temperature  
0.1Hz TO 10Hz NOISE  
5
4
3
2
T
= 25°C  
= ±15V  
A
V
S
1
0
T
T
= 25°C  
= ±15V  
A
S
0
1
2
3
4
TIME (Minutes)  
TIME (1 sec/DIV)  
Figure 5. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 8. Warm-Up Offset Voltage Drift  
Rev. E | Page 6 of 20  
 
 
OP270  
7
6
5
4
130  
120  
110  
100  
V
V
= ±15V  
= 0V  
T
V
= 25°C  
= ±15V  
S
A
CM  
S
90  
80  
70  
60  
50  
40  
30  
20  
3
2
10  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. CMR vs. Frequency  
5
4
3
2
6
5
4
3
2
V
V
= ±15V  
S
= 0V  
CM  
+125°C  
+25°C  
–55°C  
1
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
0
±5  
±10  
±15  
±20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 10. Input Offset Current vs. Temperature  
Figure 13. Total Supply Current vs. Supply Voltage  
7
6
5
4
8
7
V
= ±15V  
T
V
= +25°C  
= ±15V  
S
A
S
6
5
4
3
2
1
0
3
2
–10.0  
–5.0  
0
5.0  
10.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–12.5  
–7.5  
–2.5  
2.5  
7.5  
12.5  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
Figure 11. Input Bias Current vs. Common-Mode Voltage  
Figure 14. Total Supply Current vs. Temperature  
Rev. E | Page 7 of 20  
OP270  
80  
140  
120  
100  
80  
25  
20  
15  
T
= 25°C  
A
T
V
= 25°C  
= ±15V  
A
S
100  
120  
140  
160  
180  
PHASE  
–PSR  
10  
5
PHASE  
MARGIN = 62°  
+PSR  
60  
GAIN  
40  
0
20  
–5  
–10  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
3
4
5
6
7
8
9 10  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 15. PSR vs. Frequency  
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency  
140  
120  
100  
80  
5000  
4000  
3000  
2000  
1000  
0
T
V
= 25°C  
= ±15V  
A
S
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
±5  
±10  
±15  
±20  
±25  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 16. Open-Loop Gain vs. Frequency  
Figure 19. Open-Loop Gain vs. Supply Voltage  
80  
60  
80  
T
V
= 25°C  
= ±15V  
A
8
7
S
70  
60  
50  
40  
40  
20  
0
Ф
6
5
GBP  
4
–20  
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Closed-Loop Gain vs. Frequency  
Figure 20. Phase Margin and Gain Bandwidth Product vs. Temperature  
Rev. E | Page 8 of 20  
OP270  
28  
24  
20  
16  
12  
8
100  
75  
50  
25  
0
T
V
= 25°C  
= ±15V  
T
= 25°C  
V = ±15V  
S
A
A
S
THD = 1%  
A
= 1  
V
A
= 10  
V
A
= 100  
V
4
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
125  
1M  
FREQUENCY (Hz)  
Figure 21. Maximum Output Swing vs. Frequency  
Figure 24. Output Impedance vs. Frequency  
15  
14  
13  
12  
11  
10  
9
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
T
V
= 25°C  
= ±15V  
V
= ±15V  
A
S
POSITIVE  
SWING  
S
NEGATIVE  
SWING  
–SR  
+SR  
8
7
6
5
100  
1k  
10k  
–75  
–50  
–25  
0
25  
50  
75  
100  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
Figure 22. Maximum Output Voltage vs. Load Resistance  
Figure 25. Slew Rate vs. Temperature  
50  
40  
30  
20  
10  
0
190  
180  
170  
160  
150  
T
V
V
= 25°C  
= ±15V  
= 100mV  
= +1  
A
S
IN  
A
V
140  
130  
120  
110  
100  
90  
T
= 25°C  
= ±15V  
A
V
V
S
80  
= 20V p-p TO 10kHz  
O
70  
0
200  
400  
600  
800  
1000  
1
10  
100  
1k  
10k  
100k  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
Figure 23. Small-Signal Overshoot vs. Capacitive Load  
Figure 26. Channel Separation vs. Frequency  
Rev. E | Page 9 of 20  
OP270  
0.1  
T
V
V
= 25°C  
= ±15V  
= 20V p-p  
= 2k  
T
V
S
A
R
= 25°C  
= ±15V  
= +1  
A
A
S
O
V
L
R
= 2k  
L
A
= 10  
V
0.01  
A
= 1  
V
50mV  
200ns  
0.001  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 29. Small-Signal Transient Response  
Figure 27. Total Harmonic Distortion vs. Frequency  
T
V
A
R
= 25°C  
= ±15V  
= +1  
A
S
V
L
= 2kΩ  
5V  
20µs  
Figure 28. Large-Signal Transient Response  
Rev. E | Page 10 of 20  
OP270  
TEST CIRCUITS  
5k  
500Ω  
1/2  
OP270  
V
20V  
p-p  
1
5kΩ  
50Ω  
1/2  
OP270  
V
2
V
1
CHANNEL SEPARATION = 20 LOG  
V /1000  
2
Figure 30. Channel Separation Test Circuit  
+18V  
8
100kΩ  
2
3
1/2  
OP270  
1
200kΩ  
100kΩ  
6
5
1/2  
OP270  
7
4
–18V  
Figure 31. Burn-In Circuit  
Rev. E | Page 11 of 20  
 
OP270  
APPLICATIONS INFORMATION  
Figure 33 also shows the relationship between total noise and  
source resistance, but at ±0 Hz. Total noise increases more  
quickly than shown in Figure 32 because current noise is  
inversely proportional to the square root of frequency. In  
Figure 33, the current noise of the OP270 dominates the total  
noise when RS is greater than 1 kΩ.  
VOLTAGE AND CURRENT NOISE  
The OP270 is a very low noise dual op amp, exhibiting a typical  
voltage noise density of only 3.2 nV/√Hz at ± kHz. Because the  
voltage noise is inversely proportional to the square root of the  
collector current, the exceptionally low noise characteristic of  
the OP270 is achieved in part by operating the input transistors  
at high collector currents. Current noise, however, is directly  
proportional to the square root of the collector current. As a  
result, the outstanding voltage noise density performance of the  
OP270 is gained at the expense of current noise performance,  
which is normal for low noise amplifiers.  
Figure 32 and Figure 33 show that to reduce total noise, source  
resistance must be kept to a minimum. In applications with a  
high source resistance, the OP200, with lower current noise  
than the OP270, can provide lower total noise.  
100  
To obtain the best noise performance in a circuit, it is vital to  
understand the relationships among voltage noise (en), current  
noise (in), and resistor noise (et).  
TOTAL NOISE AND SOURCE RESISTANCE  
OP200  
10  
The total noise of an op amp can be calculated by  
En = (en )2 + (inRs )2 + (et )2  
OP270  
where:  
En is the total input-referred noise.  
en is the op amp voltage noise.  
in is the op amp current noise.  
et is the source resistance thermal noise.  
RS is the source resistance.  
RESISTOR  
NOISE ONLY  
1
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
Figure 33. Total Noise vs. Source Resistance  
(Including Resistor Noise) at 10 Hz  
The total noise is referred to the input and at the output is  
amplified by the circuit gain.  
Figure 34 shows peak-to-peak noise vs. source resistance over  
the 0.± Hz to ±0 Hz range. At low values of RS, the voltage noise  
of the OP270 is the major contributor to peak-to-peak noise,  
with current noise becoming the major contributor as RS  
increases. The crossover point between the OP270 and the  
OP200 for peak-to-peak noise is at a source resistance of ±7 kΩ.  
1k  
Figure 32 shows the relationship between total noise at ± kHz  
and source resistance. When RS is less than ± kΩ, the total noise  
is dominated by the voltage noise of the OP270. As RS rises  
above ± kΩ, total noise increases and is dominated by resistor  
noise rather than by the voltage or current noise of the OP270.  
When RS exceeds 20 kΩ, the current noise of the OP270  
becomes the major contributor to total noise.  
OP200  
100  
100  
OP200  
10  
OP270  
RESISTOR  
NOISE ONLY  
OP270  
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
RESISTOR  
NOISE ONLY  
Figure 34. Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs. Source Resistance  
(Including Resistor Noise)  
1
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
Figure 32. Total Noise vs. Source Resistance  
(Including Resistor Noise) at 1 kHz  
Rev. E | Page 12 of 20  
 
 
 
 
OP270  
For reference, typical source resistances of some signal sources are listed in Table 5.  
Table 5. Typical Source Resistances  
Device  
Source Impedance Comments  
Strain Gage  
<500 Ω  
Typically used in low frequency applications.  
Magnetic Tapehead, Microphone  
<1500 Ω  
Low IB is very important to reduce self-magnetization problems when  
direct coupling is used. OP270 IB can be disregarded.  
Magnetic Phonograph Cartridge  
<1500 Ω  
Low IB is important to reduce self-magnetization problems in direct-coupled  
applications. OP270 does not introduce any self-magnetization problems.  
Linear Variable Differential Transformer <1500 Ω  
Used in rugged servo-feedback applications. The bandwidth of interest is  
400 Hz to 5 kHz.  
R3  
1.24k  
R1  
5Ω  
OP270  
DUT  
C1  
C4  
R2  
5Ω  
2µF  
0.22µF  
OP27E  
D1, D2  
1N4148  
R10  
65.4kΩ  
R11  
R6  
600Ω  
R5  
909Ω  
65.4kΩ  
R14  
OP27E  
4.99kΩ  
e
C3  
0.22µF  
OUT  
OP42E  
R4  
200Ω  
R9  
306Ω  
C5  
1µF  
R13  
5.9kΩ  
R8  
10kΩ  
R12  
10kΩ  
C2  
0.032µF  
GAIN = 50,000  
V
= ±15V  
S
Figure 35. Peak-to-Peak Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
Rev. E | Page 13 of 20  
 
 
OP270  
Noise Measurement—Noise Voltage Density  
NOISE MEASUREMENTS  
The circuit of Figure 37 shows a quick and reliable method for  
measuring the noise voltage density of dual op amps. The first  
amplifier is in unity gain, with the final amplifier in a noninverting  
gain of ±0±. Because the noise voltages of the amplifiers are  
uncorrelated, they add in rms to yield  
Peak-to-Peak Voltage Noise  
The circuit of Figure 31 is a test setup for measuring peak-to-  
peak voltage noise. To measure the 200 nV peak-to-peak noise  
specification of the OP270 in the 0.± Hz to ±0 Hz range, the  
following precautions must be observed:  
2
2
eOUT =±0±  
(
(
e
)
+ e  
nB  
(
)
)
The device has to be warmed up for at least five minutes.  
As shown in the warm-up drift curve (see Figure 8), the  
offset voltage typically changes 2 μV due to increasing chip  
temperature after power-up. In the ±0 sec measurement  
interval, these temperature-induced effects can exceed tens  
of nanovolts.  
nA  
The OP270 is a monolithic device with two identical amplifiers.  
Therefore, the noise voltage densities of the amplifiers match,  
giving  
2
eOUT =±0±  
(
2en  
)
=±0±  
(
2en  
)
For similar reasons, the device has to be well shielded from  
air currents. Shielding also minimizes thermocouple effects.  
R1  
R2  
10kΩ  
100Ω  
Sudden motion in the vicinity of the device can also feed  
through to increase the observed noise.  
1/2  
OP270  
e
OUT  
The test time to measure noise of 0.± Hz to ±0 Hz should  
not exceed ±0 sec. As shown in the noise-tester frequency  
response curve of Figure 36, the 0.± Hz corner is defined by  
only one pole. The test time of ±0 sec acts as an additional  
pole to eliminate noise contribution from the frequency  
band below 0.± Hz.  
1/2  
TO SPECTRUM ANALYZER  
OP270  
e
(nV/Hz) 101 (2e )  
n
OUT  
V
= ±15V  
S
Figure 37. Noise Voltage Density Test Circuit  
Noise Measurement—Current Noise Density  
A noise voltage density test is recommended when measuring  
noise on several units. A ±0 Hz noise voltage density mea-  
surement correlates well with a 0.± Hz to ±0 Hz peak-to-peak  
noise reading because both results are determined by the  
white noise and the location of the ±/f corner frequency.  
The test circuit shown in Figure 38 can be used to measure current  
noise density. The formula relating the voltage output to the current  
noise density is  
2
e
2
nOUT  
(
40nV / Hz  
)
G
Power should be supplied to the test circuit by well bypassed  
low noise supplies, such as batteries. Such supplies will min-  
imize output noise introduced via the amplifier supply pins.  
100  
in =  
RS  
where:  
G is a gain of ±0,000.  
RS = ±00 kΩ source resistance.  
80  
60  
40  
20  
0
R3  
1.24k  
R1  
R2  
5100kΩ  
OP270  
DUT  
e
OP27E  
nOUT  
TO SPECTRUM ANALYZER  
R5  
8.06kΩ  
GAIN = 10,000  
R4  
200Ω  
V
= ±15V  
S
0.01  
0.1  
1
10  
100  
Figure 38. Current Noise Density Test Circuit  
FREQUENCY (Hz)  
Figure 36. 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise  
Test Circuit Frequency Response  
Rev. E | Page 14 of 20  
 
 
 
 
OP270  
CAPACITIVE LOAD DRIVING AND POWER SUPPLY  
CONSIDERATIONS  
UNITY-GAIN BUFFER APPLICATIONS  
When Rf ≤ ±00 Ω and the input is driven with a fast, large signal  
pulse (>± V), the output waveform looks like the one in Figure 40.  
The OP270 is unity-gain stable and capable of driving large  
capacitive loads without oscillating. Nonetheless, good supply  
bypassing is highly recommended. Proper supply bypassing  
reduces problems caused by supply line noise and improves the  
capacitive load driving capability of the OP270.  
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input, and  
a current, limited only by the output short-circuit protection, is  
drawn by the signal generator. With Rf ≥ 100 Ω, the output is  
capable of handling the current requirements (IL ≤ 20 mA at ±0 V);  
the amplifier stays in its active mode and a smooth transition occurs.  
In the standard feedback amplifier, the output resistance of the  
op amp combines with the load capacitance to form a low-pass  
filter that adds phase shift in the feedback network and reduces  
stability. A simple circuit to eliminate this effect is shown in  
Figure 39. The components C± and R3 decouple the amplifier  
from the load capacitance and provide additional stability. The  
values of C± and R3 shown in Figure 39 are for a load capacitance  
of up to ±000 pF when used with the OP270.  
When Rf > 3 kΩ, a pole created by Rf and the input capacitance  
(3 pF) of the amplifier creates additional phase shift and reduces  
phase margin. A small capacitor (20 pF to 10 pF) in parallel with  
Rf helps eliminate this problem.  
R
f
V+  
+
C2  
10µF  
OP270  
2.4V/µs  
C3  
0.1µF  
R2  
C1  
200pF  
R1  
V
R3  
50Ω  
IN  
Figure 40. Pulsed Operation  
OP270  
V
OUT  
C1  
1000pF  
C5  
0.1µF  
C4  
10µF  
+
PLACE SUPPLY DECOUPLING  
CAPACITOR AT OP270  
V–  
Figure 39. Driving Large Capacitive Loads  
Rev. E | Page 15 of 20  
 
 
 
OP270  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
LOW PHASE ERROR AMPLIFIER  
The simple amplifier depicted in Figure 41 utilizes a monolithic  
dual operational amplifier and a few resistors to substantially  
reduce phase error compared with conventional amplifier  
designs. At a given gain, the frequency range for a specified  
phase accuracy is more than a decade greater than that of a  
standard single op amp amplifier.  
SINGLE OP AMP.  
CONVENTIONAL DESIGN  
CASCADED  
(TWO STAGES)  
The low phase error amplifier performs second-order fre-  
quency compensation through the response of Op Amp A2 in  
the feedback loop of A1. Both op amps must be extremely well  
matched in frequency response. At low frequencies, the A1  
feedback loop forces V2/(K1 + 1) = VIN. The A2 feedback loop  
forces VO/(K1 + 1) = V2/(K1 + 1), yielding an overall transfer  
function of VO/VIN = K1 + 1. The dc gain is determined by the  
resistor divider at the output, VO, and is not directly affected by  
the resistor divider around A2. Note that, like a conventional  
single op amp amplifier, the dc gain is set by resistor ratios only.  
Minimum gain for the low phase error amplifier is 10.  
LOW PHASE ERROR  
AMPLIFIER  
0.001  
0.01  
0.1  
1
0.005  
0.05  
0.5  
FREQUENCY RATIO (1/βω)(ω/ω )  
T
Figure 42. Phase Error Comparison  
FIVE-BAND, LOW NOISE, STEREO GRAPHIC  
EQUALIZER  
The graphic equalizer circuit shown in Figure 43 provides 15 dB  
of boost or cut over a five-band range. Signal-to-noise ratio over  
a 20 kHz bandwidth is better than 100 dB and referred to a 3 V  
rms input. Larger inductors can be replaced by active inductors,  
but consequently reduces the signal-to-noise ratio.  
R2  
R2 = R1  
R2  
K2  
1/2  
OP270E  
A2  
V
2
C1  
0.47µF  
V
R2  
3.3k  
IN  
1/2  
R14  
100Ω  
R1  
47kΩ  
OP270E  
1/2  
V
OUT  
OP270E  
R1  
K1  
R4  
1kΩ  
1/2  
OP270E  
A1  
R1  
C2  
6.8µF  
+
R3  
680Ω  
R13  
3.3kΩ  
L1  
60Hz  
V
IN  
1H  
TANTALUM  
V
O
R6  
1kΩ  
ASSUME A1 AND A2 ARE MATCHED.  
V
= (K + 1)V  
IN  
O
1
C3  
1µF  
+
ω
R5  
680Ω  
T
L2  
200Hz  
A
(s) =  
O
s
600mH  
TANTALUM  
Figure 41. Low Phase Error Amplifier  
R8  
1kΩ  
C4  
0.22µF  
+
Figure 42 compares the phase error performance of the low  
phase error amplifier with a conventional single op amp  
amplifier and a cascaded two-stage amplifier. The low phase  
error amplifier shows a much lower phase error, particularly for  
frequencies where ω/βωT < 0.1. For example, a phase error of  
−0.1° occurs at 0.002 ω/βωT for the single op amp amplifier, but  
at 0.11 ω/βωT for the low phase error amplifier.  
R7  
L3  
800Hz  
3kHz  
680Ω  
180mH  
R10  
1kΩ  
C5  
0.047µF  
+
R9  
680Ω  
L4  
60mH  
R12  
1kΩ  
C6  
0.022µF  
+
R11  
680Ω  
L5  
10kHz  
10mH  
Figure 43. Five-Band, Low Noise Graphic Equalizer  
Rev. E | Page 16 of 20  
 
 
 
 
OP270  
+5V  
21  
DIGITAL PANNING CONTROL  
+15V  
Figure 44 uses a DAC822± (a dual ±2-bit CMOS DAC) to pan a  
signal between two channels. One channel is formed by the  
current output of DAC A driving one-half of an OP270 in a  
current-to-voltage converter configuration. The other channel  
is formed by the complementary output current of DAC A,  
which normally flows to ground through the AGND pin. This  
complementary current is converted to a voltage by the other  
half of the OP270, which also holds AGND at virtual ground.  
V
DD  
DAC8221P  
0.01µF  
R
FBA  
3
+
10µF  
I
A
V
A
8
OUT  
4
2
1
REF  
2
3
V
DAC A  
IN  
1/2  
OP270GP  
1
OUT  
AGND  
4
DAC DATA BUS  
PINS 6 (MSB) TO 17 (LSB)  
Gain error due to mismatching between the internal DAC  
ladder resistors and the current-to-voltage feedback resistors is  
eliminated by using feedback resistors internal to the DAC822±.  
Only DAC A passes a signal; DAC B provides the second  
feedback resistor. With VREFB unconnected, the current-to-  
voltage converter, using RFBB, is accurate and not influenced by  
digital data reaching DAC B. Distortion of the digital panning  
control is less than 0.002% over the 20 Hz to 20 kHz audio  
range. Figure 41 shows the complementary outputs for a ± kHz  
input signal and a digital ramp applied to the DAC data input.  
+
0.1µF  
10µF  
–15V  
R
FBB  
23  
24  
V
B
I
B
REF  
22  
18  
OUT  
6
NC  
DAC B  
1/2  
OP270GP  
7
OUT  
5
DAC A/DAC B  
19  
20  
CS  
WRITE  
CONTROL  
WR  
DGND  
5
DUAL PROGRAMMABLE GAIN AMPLIFIER  
Figure 44. Digital Panning Control  
The dual OP270 and the DAC822± (a dual ±2-bit CMOS DAC)  
can be combined to form a space-saving, dual programmable  
amplifier. The digital code present at the DAC, which is easily  
set by a microprocessor, determines the ratio between the internal  
feedback resistor and the resistance that the DAC ladder presents  
to the op amp feedback loop. Gain of each amplifier is  
A OUT  
VO  
VIN  
4096  
n
= −  
A OUT  
where n is the decimal equivalent of the ±2-bit digital code  
present at the DAC.  
5V  
5V  
1ms  
If the digital code present at the DAC consists of all 0s, the  
feedback loop opens, causing the op amp output to saturate. A  
20 MΩ resistor placed in parallel with the DAC feedback loop  
eliminates this problem with only a very small reduction in gain  
accuracy.  
Figure 45. Digital Panning Control Output  
Rev. E | Page 17 of 20  
 
 
 
OP270  
+15V  
+5V  
21  
0.01µF  
V
DD  
DAC8221P  
R
V
I
A
REF  
4
FBA  
3
+
V
A
IN  
10µF  
20MΩ  
A
2
2
OUT  
8
DAC A  
1/2  
OP270EZ  
1
V
+
A
OUT  
3
4
AGND  
1
0.1µF  
10µF  
R
FBB  
23  
–15V  
V
B
IN  
I
B
24  
OUT  
6
5
DAC B  
1/2  
OP270GP  
7
V
B
OUT  
20MΩ  
DAC DATA BUS  
PINS 6 (MSB) TO 17 (LSB)  
V
B
REF 22  
18  
19  
WRITE  
CONTROL  
20  
DGND  
5
Figure 46. Dual Programmable Gain Amplifier  
V+  
BIAS  
OUT  
–IN  
+IN  
V–  
Figure 47. Simplified Schematic  
(One of Two Amplifiers Is Shown)  
Rev. E | Page 18 of 20  
OP270  
OUTLINE DIMENSIONS  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
Z-Suffix  
(Q-8)  
Dimensions shown in inches and (millimeters)  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 49. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
P-Suffix  
(N-8)  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 19 of 20  
 
OP270  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
S-Suffix  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
1
TA = +25°C  
VOS Max (μV)  
θJC  
(°C/W)  
θJA  
Package  
Option  
Model  
(°C/W)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead PDIP  
OP270EZ  
75  
12  
12  
37  
134  
134  
96  
Q-8 (Z-Suffix)  
Q-8 (Z-Suffix)  
N-8 (P-Suffix)  
N-8 (P-Suffix)  
RW-16 (S-Suffix)  
RW-16 (S-Suffix)  
RW-16 (S-Suffix)  
RW-16 (S-Suffix)  
OP270FZ  
OP270GP  
OP270GPZ2  
150  
250  
8-Lead PDIP  
OP270GS  
250  
27  
92  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
OP270GS-REEL  
OP270GSZ2  
OP270GSZ-REEL2  
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to  
printed circuit board for SOIC package.  
2 Z = RoHS Compliant Part.  
©2001–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00325-0-2/10(E)  
Rev. E | Page 20 of 20  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY