OP271EZ [ADI]

High-Speed, Dual Operational Amplifier; 高速,双路运算放大器
OP271EZ
型号: OP271EZ
厂家: ADI    ADI
描述:

High-Speed, Dual Operational Amplifier
高速,双路运算放大器

运算放大器
文件: 总12页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Speed, Dual  
Operational Amplifier  
a
OP271  
PIN CONNECTIONS  
FEATURES  
Excellent Speed: 8.5 V/  
Fast Settling (0.01%): 2  
Unity-Gain Stable  
m
s Typ  
s Typ  
m
OUT A  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
–IN A  
+IN A  
NC  
High-Gain Bandwidth: 5 MHz Typ  
Low Input Offset Voltage: 200 V Max  
V/ C Max  
m
NC  
Low Offset Voltage Drift: 21  
High Gain: 400 V/mV Min  
m
V–  
NC  
V+  
12 NC  
11 NC  
Outstanding CMR: 106 dB Min  
Industry Standard 8-Pin Dual Pinout  
Available in Die Form  
+IN B  
–IN B  
NC  
OUT B  
10  
9
NC  
NC = NO CONNECT  
GENERAL DESCRIPTION  
The OP271 is a unity-gain stable monolithic dual op amp  
featuring excellent speed, 8.5 V/ms typical, and fast settling  
time, 2 ms typical to 0. 01%. The OP271 has a gain bandwidth  
of 5 MHz with a high phase margin of 62.  
16-Pin SOL  
(S-Suffix)  
Input offset voltage of the OP271 is under 200 mV with input  
offset voltage drift below 2 mV/C, guaranteed over the full  
military temperature range. Open-loop gain exceeds 400,000  
into a 10 kW load ensuring outstanding gain accuracy and  
linearity. The input bias current is under 20 nA limiting  
errors due to source resistance. The OP271’s outstanding  
CMR, over 106 dB, and low PSRR, under 5.6 mV/V, reduce  
errors caused by ground noise and power supply fluctuations.  
In addition, the OP27l exhibits high CMR and PSRR over a  
wide frequency range, further improving system accuracy.  
1
2
3
4
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
A
B
+
OUT B  
–IN B  
+IN B  
+
Epoxy Mini-DIP  
(P-Suffix)  
8-Pin Hermetic DIP  
(Z-Suffix)  
V+  
BIAS  
OUT  
–IN  
+IN  
V–  
Figure 1. Simplified Schematic  
(One of the two amplifiers is shown.)  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP271–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = ±15 V, TA = 25C, unless otherwise noted.)  
OP271A/E  
OP271F  
Typ Max Min  
OP271G  
Typ Max  
Parameter  
Symbol Conditions  
Min Typ Max Min  
Unit  
mV  
INPUT OFFSET  
VOLTAGE  
VOS  
75  
1
200  
10  
150  
4
300  
15  
200  
7
400  
20  
INPUT OFFSET  
CURRENT  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
nA  
INPUT BIAS  
CURRENT  
4
20  
6
40  
12  
60  
nA  
INPUT NOISE  
VOLTAGE  
DENSITY  
en  
fO = 1 kHz  
7.6  
7.6  
7.6  
nV/Hz  
LARGE-SIGNAL  
VOLTAGE  
GAIN  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
AVO  
400  
300  
650  
500  
300  
200  
500  
300  
250  
175  
400  
250  
V/mV  
V/mV  
INPUT VOLTAGE  
RANGE  
IVR  
±12  
±12  
106  
±12.5  
±13  
120  
±12  
±12  
100  
±12.5  
±13  
115  
±12  
±12  
90  
±12.5  
±13  
105  
V
OUTPUT  
VOLTAGE SWING VO  
RL 2 kW  
V
COMMON-MODE  
REJECTION  
CMR  
VCM = ±12 V  
dB  
mV/V  
POWER SUPPLY  
REJECTION  
RATIO  
PSRR  
VS = ±4.5 V  
to ±18 V  
0.6  
3.2  
6.5  
1.8  
5.6  
6.5  
2.4  
7.0  
6.5  
SLEW RATE  
SR  
um  
5.5  
8.5  
62  
5.5  
8.5  
62  
5.5  
8.5  
62  
V/ms  
PHASE MARGIN  
AV = +1  
No Load  
degrees  
SUPPLY CURRENT  
(ALL AMPLIFIERS) ISY  
4 5  
4.5  
4.5  
mA  
GAIN  
BANDWIDTH  
PRODUCT  
GBW  
5
5
5
MHz  
CHANNEL  
SEPARATION  
CS  
VO = 20 Vp-p  
fO = 10 Hz  
125  
125  
175  
175  
125  
125  
175  
175  
175  
175  
dB  
dB  
INPUT  
CAPACITANCE  
CIN  
3
3
3
pF  
INPUT  
RESISTANCE  
DIFFERENTIAL-  
MODE  
RIN  
0.4  
0.4  
0.4  
MW  
INPUT  
RESISTANCE  
COMMON  
MODE  
RINCM  
20  
2
20  
2
20  
2
GW  
ms  
SETTLING TIME tS  
AV = +1,  
10 V Step  
to 0.01%  
NOTES  
1Guaranteed by CMR test.  
2Guaranteed but not 100% tested.  
–2–  
REV. A  
OP271  
ELECTRICAL CHARACTERISTICS (VS = ±15 V, –55C £ TA £ 125C for OP271A, unless otherwise noted.)  
OP271A  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
VOS  
115  
400  
mV  
AVERAGE INPUT OFFSET  
VOLTAGE DRIFT  
TCVOS  
IOS  
0.4  
1.5  
7
2
mV/C  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VCM = 0 V  
VCM = 0 V  
30  
60  
IB  
nA  
LARGE-SIGNAL VOLTAGE  
GAIN  
AVO  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
300  
200  
600  
500  
V/mV  
V/mV  
INPUT VOLTAGE RANGE1  
OUTPUT VOLTAGE SWING  
COMMON-MODE REJECTION  
IVR  
VO  
±12  
±12  
100  
±12.5  
±13  
V
RL 2 kW  
V
CMR  
VCM = ±12 V  
120  
dB  
POWER SUPPLY REJECTION  
RATIO  
PSRR  
ISY  
VS = ±4.5 V to ±18 V  
1.0  
5.3  
5.6  
75  
mV/V  
SUPPLY CURRENT  
(ALL AMPLIFIERS)  
No Load  
mA  
NOTE  
1Guaranteed by CMR test.  
(VS = ±15 V, –40C £ TA £ +85C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP271A/E  
Typ Max Min  
OP271F  
Typ Max Min  
OP271G  
Typ Max  
Parameter  
Symbol Conditions Min  
Unit  
INPUT OFFSET  
VOLTAGE  
VOS  
100  
330  
215  
560  
300  
700  
mV  
AVERAGE INPUT  
OFFSET  
VOLTAGE DRIFT TCVOS  
0.4  
1
2
1
4
2.0  
15  
15  
5
mV/C  
nA  
INPUT OFFSET  
CURRENT  
IOS  
VCM = 0 V  
VCM = 0 V  
30  
60  
5
40  
70  
50  
80  
INPUT BIAS  
CURRENT  
IB  
6
10  
nA  
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
VO = ± 10 V  
RL = 10 kW  
RL = 2 kW  
300  
200  
600  
500  
200  
100  
500  
400  
150  
90  
400  
300  
V/mV  
V/mV  
INPUT VOLTAGE  
RANGE1  
IVR  
±12  
±12  
±12.5  
±13  
120  
±12  
±12  
94  
±12.5  
±13  
±12  
±12  
90  
±12.5  
±13  
V
OUTPUT  
VOLTAGE SWING VO  
RL 2 kW  
V
COMMON-MODE  
REJECTION  
CMR  
PSRR  
VCM = ±12 V 100  
115  
100  
dB  
mV/V  
POWER SUPPLY  
REJECTION  
RATIO  
VS = ±4.5 V  
to ±18 V  
0.7  
5.6  
7.2  
51.8  
10  
2.0  
15  
SUPPLY CURRENT  
(ALL AMPLIFIERS) ISY  
No Load  
5.2  
5.2  
7.2  
5.2  
7.2  
mA  
NOTE  
1Guaranteed by CMR test.  
–3–  
REV. A  
OP271  
(Continued from Page 1)  
ORDERING GUIDE  
Package  
The OP271 offers outstanding dc and ac matching between chan-  
nels. This is especially valuable for applications such as multiple  
gain blocks, high-speed instrumentation and amplifiers, buffers  
and active filters.  
TA = 25C  
VOS Max  
Operating  
Temperature  
Range  
CERDIP  
(
mV)  
8-Pin  
Plastic  
The OP271 conforms to the industry standard, 8-pin dual op amp  
pinout. It is pin compatible with the TL072, TL082, LF412,  
and 1458/1558 dual op amps and can be used to significantly  
improve systems using these devices.  
200  
200  
300  
400  
400  
*OP271AZ  
*OP271EZ  
*OP271FZ  
MIL  
XND  
XND  
XND  
XND  
OP271GP  
For applications requiring lower voltage noise, see the OP270.  
For a quad version of the OP271, see the OP471.  
*OP271GS  
*Not for new design, obsolete April 2002.  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . ±1.0 V  
Differential Input Current2 . . . . . . . . . . . . . . . . . . . . ±25 mA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . 300C  
Junction Temperature (Tj) . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
OP271A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125C  
OP271E, OP271F, OP271G . . . . . . . . . . . –40C to +85C  
3
Package Type  
jA  
jC  
Unit  
8-Pin Hermetic DIP (Z)  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
134  
96  
92  
12  
37  
27  
C/W  
C/W  
C/W  
NOTES  
1Absolute maximum ratings apply to packaged parts, unless otherwise noted.  
2The OP271’s inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low-noise performance. If differential  
voltage exceeds ±1.0 V, the input current should be limited to ±25 mA.  
3
jA is specified for worst case mounting conditions, i.e., jA is specified for  
device in socket for CERDIP and P-DIP packages; jA is specified for device  
soldered to printed circuit board for SOIC package.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP271 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
OP271  
Typical Performance Characteristics–  
25  
20  
15  
10  
5
100  
0.1  
T
= 25C  
T
= 25C  
A
S
O
L
T
= 25C  
= 15V  
A
A
S
V
V
= 15V  
V
= 10V  
p-p  
A
= 100  
40  
20  
10  
V
R
= 2kꢃ  
AT 10Hz  
A
A
= 10  
= 1  
0.01  
V
V
5
4
3
1/f CORNER = 40Hz  
AT 1kHz  
2
1
0.001  
1
100  
1k  
0
5  
10  
100  
1k  
10k  
10  
15  
20  
10  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 2. Voltage Noise Density vs.  
Supply Voltage  
TPC 1. Voltage Noise Density vs.  
Frequency  
TPC 3. Total Harmonic Distortion vs.  
Frequency  
10  
120  
10.0  
T
= 25C  
= 15V  
V
= 15V  
A
S
T
= 25C  
= 15V  
S
9
8
7
6
5
4
3
2
1
0
A
S
V
V
100  
80  
60  
40  
20  
0
1.0  
0.1  
1/f CORNER = 40Hz  
100  
–20  
0
1
2
3
4
5
10  
1k  
10k  
–75 –50 –25  
0
25  
50  
75 100 125  
TIME – Minutes  
TEMPERATURE – C  
FREQUENCY – Hz  
TPC 4. Current Noise Density vs.  
Frequency  
TPC 5. Input Offset Voltage vs.  
Temperature  
TPC 6. Warm-Up Offset Voltage Drift  
10  
5
4
3
2
1
0
7
T
= 25C  
= 15V  
V
V
= 15V  
CM  
A
S
S
V
= 0V  
8
6
6
5
4
3
2
4
–1  
2
–2  
–3  
–4  
–5  
0
–2  
–75 –50 –25  
0
25  
50  
75 100 125  
–75 –50 –25  
0
25  
50  
75 100 125  
–12.5  
–7.5  
–2.5  
0
2.5  
7.5  
12.5  
TEMPERATURE – C  
TEMPERATURE – C  
COMMON MODE VOLTAGE – Volts  
TPC 7. Input Bias Current vs.  
Temperature  
TPC 8. Input Offset Current vs.  
Temperature  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
–5–  
REV. A  
OP271  
130  
120  
110  
100  
90  
7
6
5
4
3
7
6
5
4
3
V
= 15V  
S
T
= +125C  
= +25C  
A
80  
70  
60  
50  
T
A
40  
30  
T
= 25C  
A
S
20  
10  
V
= 15V  
T
= –55C  
15  
A
1M  
–75 –50 –25  
0
25  
50  
75 100 125  
1
10  
100  
1k  
10k  
100k  
0
5  
10  
20  
FREQUENCY – Hz  
SUPPLY VOLTAGE – Volts  
TEMPERATURE – C  
TPC 10. CMR vs. Frequency  
TPC 11. Total Supply Current vs.  
Supply Voltage  
TPC 12. Total Supply Current vs.  
Temperature  
140  
140  
80  
T
= 25C  
T
= 25C  
T
= 25C  
= 15V  
A
S
A
A
S
V
= 15V  
V
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
–PSR  
+PSR  
–20  
1
10  
100 1k 10k 100k 1M 10M 100M  
FREQUENCY – Hz  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1
10 100 1k  
100k  
10M 100M  
1M  
10k  
FREQUENCY – Hz  
TPC 13. PSR vs. Frequency  
TPC 14. Open-Loop Gain vs.  
Frequency  
TPC 15. Closed-Loop Gain vs.  
Frequency  
25  
20  
15  
10  
5
8
6
4
2
0
80  
2000  
1500  
1000  
T
= 25C  
V
= 15V  
A
S
S
T
= 25C  
A
L
V
= 15V  
100  
120  
140  
160  
180  
PHASE  
GAIN  
R
= 10kꢃ  
70  
60  
50  
40  
GBW  
PHASE MARGIN = 62C  
m
0
500  
0
–5  
–10  
1
2
3
4
5
6 7 8 10  
–75 –50 –25  
25 50 75 100 125 150  
TEMPERATURE – C  
0
5  
10  
15  
20  
0
FREQUENCY – MHz  
SUPPLY VOLTAGE – Volts  
TPC 16. Open-Loop Gain, Phase Shift  
vs. Frequency  
TPC 18. Gain-Bandwidth Product,  
Phase Margin vs. Temperature  
TPC 17. Open-Loop Gain vs. Supply  
Voltage  
–6–  
REV. A  
OP271  
28  
24  
20  
16  
12  
8
180  
160  
140  
120  
100  
80  
20  
18  
16  
14  
12  
10  
8
T
= 25C  
T
= 25C  
T
= 25C  
= 15V  
A
S
A
S
A
S
V
= 15V  
V
= 15V  
V
THD = 1%  
R
POSITIVE SWING  
= 10kꢃ  
L
NEGATIVE SWING  
A
= 1  
60  
V
6
40  
4
4
A
= 100  
10k  
20  
V
2
0
0
0
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
100k  
1M  
10M  
100  
1k  
10k  
FREQUENCY – Hz  
LOAD RESISTANCE – ꢃ  
TPC 19. Maximum Output Swing  
vs. Frequency  
TPC 21. Output Impedance vs.  
Frequency  
TPC 20. Maximum Output Voltage  
vs. Load Resistance  
12  
190  
180  
170  
160  
T
= 25C  
= 15V  
A
S
V
= 15V  
S
V
11  
10  
9
150  
140  
130  
120  
110  
100  
90  
–SR  
+SR  
8
7
80  
6
70  
10  
100  
1k  
10k  
100k  
1M  
10M  
–75 –50 –25  
0
25  
50  
75 100 125  
TEMPERATURE – C  
FREQUENCY – Hz  
TPC 22. Slew Rate vs. Temperature  
TPC 23. Channel Separation vs.  
Frequency  
T
= 25C  
= 15V  
= +1  
T
= 25C  
= 15V  
= +1  
A
S
V
A
V
V
S
A
A
V
5V  
5s  
50mV  
200ns  
TPC 24. Large-Signal Transient  
Response  
TPC 25. Small Signal Transient  
Response  
–7–  
REV. A  
OP271  
When Rf > 3 k, a pole created by Rf and the amplifier’s  
input capacitance (3 pF) creates additional phase shift and  
reduces phase margin. A small capacitor in parallel with Rf  
helps eliminate this problem.  
APPLICATION INFORMATION  
Capacitive Load Driving and Power Supply Considerations  
The OP217 is unity-gain stable and is capable of driving large  
capacitive loads without oscillating. Nonetheless, good supply  
bypassing is highly recommended. Proper supply bypassing  
reduces problems caused by supply line noise and improves  
the capacitive load driving capability of the OP271.  
Computer Simulations  
Many electronic design and analysis programs include models  
for op amps which calculate AC performance from the location  
of poles and zeros. As an aid to designers utilizing such a  
program, major poles and zeros of the OP271 are listed below.  
Their location will vary slightly between production lots.  
Typically, they will be within ؎15% of the frequency listed.  
Use of this data will enable the designer to evaluate gross  
circuit performance quickly, but should not supplant rigorous  
characterization of a breadboard circuit.  
In the standard feedback amplifier, the op amp’s output resistance  
combines with the load capacitance to form a low-pass filter that  
adds phase shift in the feedback network and reduces stability. A  
simple circuit to eliminate this effect is shown in Figure 2. The  
added components, C1 and R3, decouple the amplifier from the  
load capacitance and provide additional stability. The values of  
C1 and R3 shown in Figure 8 are for a load capacitance of up to  
1000 pF when used with the OP271.  
POLES  
15Hz  
1.2 MHz  
2 X 32 MHz  
8 X 40 MHz  
ZEROS  
2.5 MHz  
4 X 23 MHz  
V+  
C2  
10F  
-
-
+
APPLICATIONS  
Low Phase Error Amplifier  
C3  
0.1F  
R2  
The simple amplifier depicted in Figure 4, utilizes a monolithic  
dual operational amplifier and a few resistors to substantially  
reduce phase error compared to conventional amplifier designs.  
At a given gain, the frequency range for a specified phase  
accuracy is over a decade greater than for a standard single op  
amp amplifier.  
C1  
200pF  
R1  
R3  
V
IN  
50⍀  
V
OP271  
OUT  
C4  
C
L
10F  
1000pF  
+
The low phase error amplifier performs second-order frequency  
compensation through the response of op amp A2 in the  
feedback loop of A1. Both op amps must be extremely well  
matched in frequency response. At low frequencies, the A1  
feedback loop forces V2/(K1 + 1)=VIN. The A2 feedback loop  
forces VO/VIN=K1 + 1. The DC gain is determined by the  
resistor divider around A2. Note that, like a conventional  
single op amp amplifier, the DC gain is set by resistor ratios  
only. Minimum gain for the low phase error amplifier is 10.  
C5  
PLACE SUPPLY DECOUPLING  
CAPACITORS AT OP271  
0.1F  
V–  
Figure 2. Driving Large Capacitive Loads  
Unity-Gain Buffer Applications  
When Rf Յ 100 and the input is driven with a fast, large-signal  
pulse (>1 V), the output waveform will look as shown in Figure  
3.  
R2  
R2 = R1  
R2  
K1  
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input, and a  
current, limited only by the output short-circuit protection, will  
be drawn by the signal generator. With Rf Ն 500 , the output is  
capable of handling the current requirements (IL Յ 20 mA at  
10 V); the amplifier will stay in its active mode and a smooth  
transition will occur.  
1/2  
OP271E  
A2  
V
2
R1  
K1  
1/2  
R1  
R1  
OP271E  
A1  
V
IN  
V
O
ASSUME: A1 AND A2 ARE MATCHED.  
V
= (K +1) V  
1
8.5V/s  
O
IN  
A
(s) =  
O
s
OP271  
Figure 4. Low Phase Error Amplifier  
Figure 3. Pulsed Operation  
–8–  
REV. A  
OP271  
Dual 12-Bit Voltage Output DAC  
0
The dual voltage output DAC shown in Figure 6 will settle to  
12-bit accuracy from zero to full scale in 2 s typically. The  
CMOS DAC-8222 utilizes a 12-bit, double-buffered input  
structure allowing faster digital throughput and minimizing  
digital feedback.  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
SINGLE OP AMP,  
CONVENTIONAL  
DESIGN  
Fast Current Pump  
CASCADED  
(TWO STAGES)  
Maximum output current of the fast current pump shown in  
Figure 7 is 11 mA. Voltage compliance exceeds 10 V with  
15 V supplies. The current pump has an output resistance  
of over 3 Mand maintains 12-bit linearity over its entire  
output range.  
LOW PHASE ERROR  
AMPLIFIER  
0.001  
0.01  
0.1  
1.0  
0.005  
0.005  
0.5  
R3  
FREQUENCY RATIO – 1/ꢅ ꢆ/ꢆ  
10kꢃ  
Figure 5. Phase Error Comparison  
R1  
Figure 5 compares the phase error performance of the low  
phase error amplifier with a conventional single op amp  
amplifier and a cascaded two-stage amplifier. The low phase  
error amplifier shows a much lower phase error, particularly for  
frequencies where ꢆꢇꢈꢆT<0.1. For example, phase error of  
-0.1occurs at 0.002 ꢆꢇꢈꢆT for the single op amplifier, but  
at 0.11 ꢆꢇꢈꢆT for the low phase error amplifier.  
10kꢃ  
2
3
R5  
100ꢃ  
1/2  
1
I
OUT  
11mA  
V
OP271FZ  
IN  
R2  
10kꢃ  
+15V  
8
5
R4  
1/2  
10kꢃ  
7
OP271FZ  
4
For more detailed information on the low phase error amplifier,  
see Application Note AN-107.  
6
V
V
IN  
IN  
=
10mA/V  
I
=
=
OUT  
RS 100ꢃ  
–15V  
Figure 7. Fast Current Pump  
+15V  
10F  
5V  
21  
0.1F  
V
DD  
R
A
FB  
3
2
DAC-8222EW  
8
10V  
REFERENCE  
VOLTAGE  
10pF  
I
A
V
A
OUT  
4
REF  
2
3
DAC A  
1/2  
V
A
OP271EZ  
OUT  
+
1
AGND  
4
7
–15V  
12-BIT DATABUS PINS 6–17  
0.1F  
10F  
I
B
V
B
OUT  
24  
23  
6
5
22 REF  
DAC B  
1/2  
V
B
10pF  
OP271EZ  
OUT  
R
B
FB  
18  
DAC A/DAC B  
+
19  
20  
DAC  
LDAC  
WR  
CONTROL  
DGND  
Figure 6. Dual 12-Bit Voltage Output DAC  
REV. A  
–9–  
OP271  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual-in-Line Package [PDIP]  
8-Lead Ceramic Dip-Glass Hermetic Seal [CERDIP]  
(Q-8)  
(N-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) 0.055 (1.40)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
MIN  
MAX  
8
5
8
1
5
0.310 (7.87)  
0.220 (5.59)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
PIN 1  
1
4
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.060 (1.52)  
0.015 (0.38)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.200 (5.08)  
MAX  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES)  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(RN-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢀ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢀ  
0.51 (0.0201)  
0.33 (0.0130)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–10–  
REV. A  
OP271  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. 0 to REV. A.  
Deleted PIN CONNECTIONS Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
REV. A  
–11–  
–12–  

相关型号:

OP271FZ

High-Speed, Dual Operational Amplifier
ADI

OP271GBC

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 5 MHz BAND WIDTH, UUC8, 2.39 X 2.34 MM, DIE-8, Operational Amplifier
ADI

OP271GP

High-Speed, Dual Operational Amplifier
ADI

OP271GPZ

IC DUAL OP-AMP, 700 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDIP8, PLASTIC, MO-095AA, DIP-8, Operational Amplifier
ADI

OP271GS

High-Speed, Dual Operational Amplifier
ADI

OP271GS-REEL7

IC DUAL OP-AMP, 700 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16, Operational Amplifier
ADI

OP271_02

High-Speed, Dual Operational Amplifier
ADI

OP275

Dual Bipolar/JFET, Audio Operational Amplifier
ADI

OP275AZ/883

Voltage-Feedback Operational Amplifier
ETC

OP275GBC

Dual Bipolar/JFET, Audio Operational Amplifier
ADI

OP275GP

Dual Bipolar/JFET, Audio Operational Amplifier
ADI

OP275GPZ

暂无描述
ADI