OP282GS [ADI]

Dual/Quad Low Power, High Speed JFET Operational Amplifiers; 双/四通道,低功耗,高速JFET运算放大器
OP282GS
型号: OP282GS
厂家: ADI    ADI
描述:

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
双/四通道,低功耗,高速JFET运算放大器

运算放大器
文件: 总12页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad Low Power, High Speed  
JFET Operational Amplifiers  
a
OP282/OP482  
P IN CO NNECTIO NS  
FEATURES  
8-Lead Nar r ow-Body SO IC  
(S Suffix)  
8-Lead Epoxy D IP  
(P Suffix)  
High Slew Rate: 9 V/ s  
Wide Bandw idth: 4 MHz  
Low Supply Current: 250 A/ Am plifier  
Low Offset Voltage: 3 m V  
Low Bias Current: 100 pA  
Fast Settling Tim e  
1
2
3
4
8
7
6
5
V+  
V+  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
OUT A  
–IN A  
+IN A  
V–  
OP282  
OUT B  
–IN B  
OUT B  
–IN B  
OP282  
Com m on-Mode Range Includes V+  
Unity Gain Stable  
+IN B  
+IN B  
APPLICATIONS  
Active Filters  
Fast Am plifiers  
Integrators  
14-Lead Epoxy D IP  
(P Suffix)  
14-Lead Nar r ow-Body SO IC  
(S Suffix)  
Supply Current Monitoring  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
OUT A  
–IN A  
+IN A  
V+  
OUT B  
1
2
3
4
5
6
7
13 –IN D  
+IN D  
12  
GENERAL D ESCRIP TIO N  
OP482  
V–  
11  
10  
9
V–  
OP482  
T he OP282/OP482 dual and quad operational amplifiers feature  
excellent speed at exceptionally low supply currents. Slew rate  
exceeds 7 V/µs with supply current under 250 µA per amplifier.  
T hese unity gain stable amplifiers have a typical gain bandwidth  
of 4 MHz.  
+IN C  
+IN B  
–IN B  
OUT B  
+IN C  
+IN B  
–IN B  
OUT B  
–IN C  
–IN C  
OUT C  
8
OUT C  
8
T he JFET input stage of the OP282/OP482 insures bias current  
is typically a few picoamps and below 500 pA over the full  
temperature range. Offset voltage is under 3 mV for the dual  
and under 4 mV for the quad.  
With a wide output swing, within 1.5 volts of each supply, low  
power consumption and high slew rate, the OP282/OP482 are  
ideal for battery-powered systems or power restricted applica-  
tions. An input common-mode range that includes the positive  
supply makes the OP282/OP482 an excellent choice for high-  
side signal conditioning.  
T he OP282/OP482 are specified over the extended industrial  
temperature range. Both dual and quad amplifiers are available  
in plastic and ceramic DIP plus SOIC surface mount packages.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
OP282/OP482–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
S
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
VOS  
IB  
OP282  
OP282, –40 T A +85°C  
OP482  
OP482, –40 T A +85°C  
VCM = 0 V  
VCM = 0 V, Note 1  
VCM = 0 V  
0.2  
0.2  
3
3
4.5  
4
mV  
mV  
mV  
mV  
pA  
Offset Voltage  
6
Input Bias Current  
Input Offset Current  
100  
500  
50  
pA  
pA  
IOS  
1
VCM = 0 V, Note 1  
250  
+15  
pA  
V
dB  
V/mV  
V/mV  
µV/°C  
pA/°C  
Input Voltage Range  
–11  
70  
20  
Common-Mode Rejection  
Large Signal Voltage Gain  
CMR  
AVO  
–11 V VCM +15 V, –40 T A +85°C  
RL = 10 kΩ  
RL = 10 k, –40 T A +85°C  
90  
15  
Offset Voltage Drift  
Bias Current Drift  
VOS/T  
IB/T  
10  
8
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing  
Short Circuit Limit  
VO  
ISC  
RL = 10 kΩ  
Source  
Sink  
–13.5 ±13.9 13.5  
V
3
10  
mA  
mA  
–8  
–12  
200  
Open-Loop Output Impedance  
ZOUT  
f = 1 MHz  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = ±4.5 V to ±18 V,  
–40 T A +85°C  
25  
210  
316  
250  
±18  
µV/V  
µA  
V
Supply Current/Amplifier  
Supply Voltage Range  
ISY  
VS  
VO = 0 V, 40 T A +85°C  
±4.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling T ime  
Gain Bandwidth Product  
Phase Margin  
SR  
BWP  
tS  
GBP  
ØO  
RL = 10 kΩ  
1% Distortion  
T o 0.01%  
7
9
V/µs  
kHz  
µs  
MHz  
Degrees  
125  
1.6  
4
55  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.3  
36  
0.01  
µV p-p  
nV/Hz  
pA/Hz  
Current Noise Density  
NOT E  
1T he input bias and offset currents are tested at T A = TJ = +85°C. Bias and offset currents are guaranteed but not tested at –40 °C.  
Specifications subject to change without notice.  
WAFER TEST LIMITS (@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
S
A
P aram eter  
Sym bol  
Conditions  
Lim it  
Units  
Offset Voltage  
Offset Voltage  
Input Bias Current  
Input Offset Current  
Input Voltage Range1  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Range  
Supply Current/Amplifier  
VOS  
VOS  
IB  
OP282  
OP482  
VCM = 0 V  
VCM = 0 V  
3
4
mV max  
mV max  
pA max  
pA max  
V min/max  
dB min  
µV/V  
V/mV min  
V min  
µA max  
100  
50  
–11, +15  
70  
316  
20  
IOS  
CMRR  
PSRR  
AVO  
VO  
ISY  
–11 V VCM +15 V  
V = ±4.5 V to ±18 V  
RL = 10 kΩ  
RL = 10 kΩ  
VO = 0 V, RL = ∞  
±13.5  
250  
NOT ES  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
1Guaranteed by CMR test.  
Specifications subject to change without notice.  
REV. B  
–2–  
OP282/OP482  
ABSO LUTE MAXIMUM RATINGS  
D ICE CH ARACTERISTICS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage T emperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP282A, OP482A . . . . . . . . . . . . . . . . . . –55°C to +125°C  
OP282G, OP482G . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction T emperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . +300°C  
2
P ackage Type  
JA  
JC  
Units  
OP282 Die Size 0.063 ϫ 0.060 Inch, 3,780 Sq. Mils  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
14-Pin Plastic DIP (P)  
14-Pin SOIC (S)  
103  
158  
83  
43  
43  
39  
36  
°C/W  
°C/W  
°C/W  
°C/W  
120  
NOT ES  
1For supply voltages less than ±18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in  
socket for cerdip, P-DIP; θJA is specified for device soldered in circuit board for  
SOIC package.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
OP282GP  
OP282GS  
OP482GP  
OP482GS  
–40°C to +85°C 8-Pin Plastic DIP N-8  
–40°C to +85°C 8-Pin SOIC  
SO-8  
–40°C to +85°C 14-Pin Plastic DIP N-14  
–40°C to +85°C 14-Pin SOIC  
SO-14  
OP482 Die Size 0.070 ϫ 0.098 Inch, 6,860 Sq. Mils  
REV. B  
–3–  
OP282/OP482  
AP P LICATIO NS INFO RMATIO N  
P H ASE INVERSIO N  
T he OP282 and OP482 are single and dual JFET op amps that  
have been optimized for high speed at low power. T his  
combination makes these amplifiers excellent choices for battery  
powered or low power applications requiring above average  
performance. Applications benefiting from this performance  
combination include telecom, geophysical exploration, portable  
medical equipment and navigational instrumentation.  
Most JFET -input amplifiers will invert the phase of the input  
signal if either input exceeds the input common-mode range.  
For the OP282 and OP482 negative signals in excess of approxi-  
mately 14 volts will cause phase inversion. T he cause of this  
effect is saturation of the input stage leading to the forward-  
biasing of a drain-gate diode. A simple fix for this in noninverting  
applications is to place a resistor in series with the noninverting  
input. T his limits the amount of current through the forward-  
biased diode and prevents the shutting down of the output  
stage. For the OP282/OP482, a value of 200 khas been found  
to work. However, this adds a significant amount of noise.  
H IGH SID E SIGNAL CO ND ITIO NING  
T here are many applications that require the sensing of signals  
near the positive rail. OP282s and OP482s have been tested and  
guaranteed over a common-mode range (–11 V VCM +15 V)  
that includes the positive supply.  
15  
One application where this is commonly used is in the sensing of  
power supply currents. T his enables it to be used in current  
sensing applications such as the partial circuit shown in Figure  
1. In this circuit, the voltage drop across a low value resistor,  
such as the 0.1 shown here, is amplified and compared to 7.5  
volts. T he output can then be used for current limiting.  
10  
5
0
+15V  
0.1  
-5  
500k  
-10  
-15  
100k  
R
L
100k  
100k  
-15  
5
-10  
-5  
10  
0
15  
V
OUT  
1/2  
OP282  
+
Figure 2. OP282 Phase Reversal  
ACTIVE FILTERS  
T he OP282 and OP482s wide bandwidth and high slew rates  
make either an excellent choice for many filter applications.  
Figure 1. Phase Inversion  
T here are many types of active filter configurations, but the four  
most popular configurations are Butterworth, elliptical, Bessel,  
and Chebyshev. Each type has a response that is optimized for a  
given characteristic as shown in T able I.  
P RO GRAMMABLE STATE-VARIABLE FILTER  
Table I.  
Am plitude  
Am plitude  
Type  
Selectivity O vershoot  
P hase  
(P ass Band)  
(Stop Band)  
Butterworth  
Chebyshev  
Elliptical  
Moderate  
Good  
Best  
Good  
Moderate  
Poor  
Max Flat  
Nonlinear Equal Ripple  
Equal Ripple  
Equal Ripple  
Bessel (T hompson)  
Poor  
Best  
Linear  
–4–  
REV. B  
OP282/OP482  
T he circuit shown in Figure 3 can be used to accurately  
program the “Q,” the cutoff frequency fC, and the gain of a two  
pole state-variable filter. OP482s have been used in this design  
because of their high bandwidths, low power and low noise.  
T his circuit takes only three packages to build because of the  
quad configuration of the op amps and DACs.  
D1  
1
fc =  
2πR1C1 256  
where D1 is the digital code for the DAC.  
Gain of this circuit is set by adjusting D3. T he gain equation is:  
R4 D3  
T he DACs shown are all used in the voltage mode so all values  
are dependent only on the accuracy of the DAC and not on the  
absolute values of the DAC’s resistive ladders. T his make this  
circuit unusually accurate for a programmable filter.  
Gain =  
R5 256  
DAC 2 is used to set the “Q” of the circuit. Adjusting this DAC  
controls the amount of feedback from the bandpass node to the  
input summing node. Note that the digital value of the DAC is  
in the numerator, therefore zero code is not a valid operating point.  
Adjusting DAC 1 changes the signal amplitude across R1;  
therefore, the DAC attenuation times R1 determines the  
amount of signal current that charges the integrating capacitor,  
C1. T his cutoff frequency can now be expressed as:  
R2 256  
Q =  
R3 D2  
R7  
2k  
1/4  
DAC8408  
R4  
2k  
1/4  
DAC8408  
C1  
1000pF  
1/4  
DAC8408  
C1  
1000pF  
V
IN  
R5  
2k  
-
+
R1  
2k  
-
+
-
+
R1  
2k  
-
+
1/4  
OP482  
-
+
1/4  
OP482  
-
+
1/4  
OP482  
1/4  
OP482  
1/4  
OP482  
LOW  
PASS  
1/4  
OP482  
HIGH PASS  
R6  
2k  
1/4  
DAC8408  
R3  
2k  
BANDPASS  
R2  
1k  
-
-
+
+
1/4  
OP482  
1/4  
OP482  
Figure 3.  
REV. B  
–5–  
OP282/OP482  
minor changes in the circuit values. Contact ADI for a copy of  
the latest SPICE model diskette for both listings.  
O P 282/O P 482 SP ICE MACRO MO D EL  
Figure 4 shows the OP282 SPICE macro model. T he model for  
the OP482 is similar to that of the OP282, but there are some  
99  
I1  
V2  
8
4
D1  
9
IN-  
2
J1  
5
J2  
R5  
G1  
7
C3  
R2  
3
CIN  
IOS  
EOS  
C2  
98  
6
R1  
1
D2  
V3  
EREF  
10  
IN+  
R3 R4  
50  
C4  
C14  
13  
14  
19  
11  
E2  
12  
20  
E13  
21  
G2  
G3  
G11  
R6  
R21  
C13  
C5  
C6  
R8  
R9  
R19  
R22  
R7  
98  
99  
D6  
D5  
ISY  
R27  
G19  
R25  
24  
V4  
D3  
25  
23  
R23  
L5  
29  
30  
VOUT  
G15  
C15  
V5  
98  
26  
D4  
R28  
27  
28  
G20  
R26  
G18  
G17  
D7  
D8  
50  
Figure 4.  
–6–  
REV. B  
OP282/OP482  
O P 282 SP ICE MACRO MO D EL  
*
* Node assignments  
* COMMON-MODE GAIN NET WORK  
*
*
*
*
*
*
noninverting input  
inverting input  
positive supply  
negative supply  
WIT H ZERO AT 11 KHZ  
*
R21  
R22  
C14  
E13  
*
20  
21  
20  
98  
21  
98  
21  
20  
1E6  
1
14.38E-12  
3
output  
24 31.62  
24 1E-6  
.SUBCKT OP282  
*
* INPUT ST AGE & POLE AT 15 MHZ  
*
1
2
99  
50  
30  
* POLE AT 15 MHZ  
*
R23  
C15  
G15  
*
23  
23  
98  
98  
98  
23  
1E6  
10.6E-15  
19  
R1  
R2  
R3  
R4  
CIN  
C2  
I1  
IOS  
EOS  
J1  
1
2
5
6
1
5
99  
1
7
5
3
3
50  
50  
2
6
4
2
1
5E11  
5E11  
3871.3  
3871.3  
5E-12  
1.37E-12  
0.1E-3  
5E-13  
* OUT PUT ST AGE  
*
R25  
R26  
ISY  
R27  
R28  
L5  
G17  
G18  
G19  
G20  
V4  
V5  
D3  
D4  
D5  
D6  
D7  
D8  
24  
24  
99  
29  
29  
29  
27  
28  
29  
50  
25  
29  
23  
26  
99  
99  
50  
50  
99  
50  
50  
99  
50  
30  
50  
50  
99  
29  
29  
26  
25  
23  
27  
28  
27  
28  
5E6  
5E6  
107E-6  
700  
700  
1E-8  
23  
29  
99  
23  
2.8  
POLY(1) 21 24 200E-6 1  
2
7
4
4
JX  
JX  
J2  
*
6
29 1.43E-3  
23 1.43E-3  
23 1.43E-3  
50 1.43E-3  
EREF 98  
*
* GAIN ST AGE & POLE AT 124 HZ  
*
R5  
C3  
G1  
V2  
V3  
D1  
D2  
*
0
24  
0 1  
9
9
98  
99  
10  
9
98  
98  
9
8
50  
8
1.16E8  
1.11E-11  
5 6  
3.5  
DX  
DX  
DX  
DX  
DY  
DY  
2.58E-4  
1.2  
1.2  
DX  
DX  
10  
9
*
* NEGAT IVE ZERO AT 4 MHZ  
*
* MODELS USED  
*
R6  
R7  
C4  
E2  
*
11  
12  
11  
11  
12  
98  
12  
98  
1E6  
1
39.8E-15  
9
.MODEL JX PJF(BET A = 3.34E-4  
VT O = –2.000 IS = 3E-12)  
.MODEL DX D(IS = 1E-15)  
.MODEL DY D(IS = 1E-15 BV = 50)  
.ENDS OP282  
24 1E6  
24 1E-6  
24 1E-6  
24 1E-6  
* POLE AT 15 MHZ  
*
R8  
C5  
G2  
*
* POLE AT 15 MHZ  
*
R9  
C6  
G3  
*
* POLE AT 15 MHZ  
*
R19  
C13  
G11  
13  
13  
98  
98  
98  
13  
1E6  
10.6E-15  
12  
14  
14  
98  
98  
98  
14  
1E6  
10.6E-15  
13  
19  
19  
98  
98  
98  
19  
1E6  
10.6E-15  
14  
REV. B  
–7–  
OP282/OP482  
0
35  
30  
25  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
T
V
= +25°C  
= ±15V  
V
= ±15V  
A
= +1  
A
S
VCL  
NEGATIVE EDGE  
V
= ±15V  
S
S
R
V
= 2k  
= 100mV p-p  
L
R = 10k  
L
45  
90  
135  
180  
IN  
A
= +1  
20  
15  
10  
5
VCL  
POSITIVE EDGE  
0
100  
200  
300  
500  
400  
1k  
10k  
100k  
1M  
10M 100M  
0
25  
50 75 100 125  
–75 –50 –25  
LOAD CAPACITANCE – pF  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 5. Open-Loop Gain, Phase  
vs. Frequency  
Figure 8. Open-Loop Gain (V/m V)  
Figure 11. Sm all Signal Overshoot  
vs. Load Capacitance  
25  
60  
1000  
T
V
= +25°C  
= ±15V  
A
V
V
= ±15V  
= 0  
S
– SR  
50  
40  
S
A
= +100  
= +10  
CM  
VCL  
20  
100  
10  
V = ±15V  
S
R = 10k  
L
30  
C = 50pF  
L
15  
10  
5
A
VCL  
20  
10  
A
= +1  
VCL  
+ SR  
0
1.0  
0.1  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
–75 –50 –25  
0
25  
50 75 100 125  
0
25  
50 75 100 125  
–50 –25  
TEMPERATURE –°C  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 6. Closed-Loop Gain vs.  
Frequency  
Figure 9. OP282/OP482 Slew Rate  
vs. Tem perature  
Figure 12. OP282 Input Bias Current  
vs. Tem perature  
50  
4.5  
4.0  
3.5  
3.0  
60  
80  
1000  
V = ±15V  
S
V
T
= ±15V  
= +25°C  
V
= ±15V  
S
S
70  
60  
R
= 10k  
L
T
= +25°C  
A
A
55  
50  
45  
40  
100  
10  
1
50  
40  
GBW  
Ø
M
30  
20  
10  
0
0.1  
–15  
–75 –50 –25  
0
25 50  
75 100 125  
–10  
–5  
5
10  
15  
0
10  
100  
FREQUENCY – Hz  
10k  
1k  
COMMON - MODE VOLTAGE – V  
TEMPERATURE – °C  
Figure 7. OP482 Phase Margin and  
Gain Bandwidth Product vs.  
Tem perature  
Figure 13. OP282 Input Bias Current  
vs. Com m on-Mode Voltage  
Figure 10. Voltage Noise Density  
vs. Frequency  
–8–  
REV. B  
OP282/OP482  
1.15  
1.10  
1.05  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
0
T
= +25°C  
A
T
= +25°C  
= ±15V  
A
R
= 10k  
L
V
S
T
= +25°C  
A
A
= 1000  
VCL  
1.00  
0.95  
0.90  
0.85  
0
–5  
–10  
A
A
= +10  
= 1  
VCL  
A
= 100  
VCL  
–15  
–20  
VCL  
0
±5  
±10  
±15  
±20  
0
±5  
±10  
±15  
±20  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE – Volts  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
Figure 17. Output Voltage Swing  
vs. Supply Voltage  
Figure 14. Relative Supply Current  
vs. Supply Voltage  
Figure 20. OP482 Closed-Loop Out-  
put Im pedance vs. Frequency  
100  
1.20  
16  
V
= ±15V  
S
T
V = 100mV  
= +25  
T
V
= +25°C  
= ±15V  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
V
= ±15  
SUP  
14  
12  
10  
8
A
S
+ PSRR  
– PSRR  
°C  
80  
60  
40  
20  
0
A
POSITIVE  
SWING  
NEGATIVE  
SWING  
6
4
2
–20  
100  
0
1k  
10k  
100k  
1M  
–75 –50 –25  
0
25 50 75 100 125  
100  
1k  
LOAD RESISTANCE –  
10k  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 15. Relative Supply Current  
vs. Tem perature  
Figure 21. OP282 Power Supply  
Rejection Ratio (PSRR) vs. Frequency  
Figure 18. Maxim um Output Voltage  
vs. Load Resistance  
20  
30  
100  
T
V
A
R
= +25°C  
= ±15V  
= +1  
A
S
V
= ±15V  
S
V = ±15V  
S
25  
20  
15  
10  
5
80  
SINK  
VCL  
V
= 100mV  
CM  
15  
10  
5
= 10k  
L
T
= +25°C  
A
60  
40  
SOURCE  
20  
0
0
–20  
100  
–75 –50 –25  
0
25  
50 75 100 125  
10k  
100k  
1M  
1k  
1k  
10k  
100k  
1M  
TEMPERATURE – °C  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 19. Maxim um Output Swing  
vs. Frequency  
Figure 16. OP282/OP482 Short  
Circuit Current vs. Tem perature  
Figure 22. OP282 Com m on-Mode  
Rejection Ratio (CMRR) vs. Frequency  
REV. B  
–9–  
OP282/OP482  
320  
280  
240  
200  
160  
120  
80  
700  
600  
500  
400  
300  
200  
100  
0
280  
240  
200  
V = ±15V  
S
V
= ±15V  
S
T = +25°C  
-40°C T +125  
°
C
A
A
×
×
315 OP282  
300 OP482  
1200 OP AMPS  
(630 OP AMPS )  
160  
120  
80  
40  
40  
0
0
0
4
8
12 16 20  
24 28 32  
-2000 -1600 -1200 -800 -400  
0
400 800 1200 1600 2000  
0
4
8
12 16  
20 24 28  
32  
TCV – µV/°C  
V
– µV  
TCV – µV/°C  
OS  
OS  
OS  
Figure 25. OP282 TCVOS (µV/°C)  
Distribution "P" Package  
Figure 23. VOS Distribution "P"  
Package  
Figure 27. OP482 TCVOS Distribution  
"Z" Package  
280  
700  
320  
280  
240  
200  
160  
120  
80  
V
T
= ±15V  
S
V
= ±15V  
S
240  
200  
160  
120  
80  
= +25°C  
×
600  
500  
400  
300  
200  
100  
0
A
+85°C  
-40°C  
T
320 OP282  
(640 OP AMPS)  
A
×
300 OP482  
1200 OP AMPS  
40  
40  
0
0
–2000 –1600 –1200 –800–400  
0
4
8
12  
16 20 24  
28 32  
0
400 800 1200 1600 2000  
0
4
8
12 16  
20 24 28  
32  
V
OS  
– µV  
TCV – µV/°C  
TCV – µV/°C  
OS  
OS  
Figure 24. VOS Distribution "Z"  
Package  
Figure 26. OP282 TCVOS (µV/°C)  
Distribution "Z" Package  
Figure 28. TCVOS Distribution "P"  
Package  
700  
600  
700  
600  
500  
400  
300  
200  
100  
0
T
V
= +25°C  
= ±15V  
A
T
V
= +25°C  
A
S
= ±15V  
S
300 ϫ OP482  
1200 OP AMPS  
300 ϫ OP482  
1200 OP AMPS  
500  
400  
300  
200  
100  
0
–20001600 –1200800 –400  
0
400 800 1200 1600 2000  
–2000 –16001200 –800 –400  
0
400 800 1200 1600 2000  
V – µV  
OS  
V
– µV  
OS  
Figure 29. OP482 VOS Distribution “Z”  
Package  
Figure 30. OP482 VOS Distribution “P”  
Package  
–10–  
REV. B  
OP282/OP482  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead Nar r ow-Body SO IC  
(S Suffix)  
8-Lead Epoxy D IP  
(P Suffix)  
14-Lead Nar r ow-Body SO IC  
(S Suffix)  
14-Lead Epoxy D IP  
(P Suffix)  
20-P osition Chip Car r ier  
(RC Suffix)  
REV. B  
–11–  
REV. B  
–12–  

相关型号:

OP282GS-REEL

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP282GS-REEL7

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP282GSZ

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP282GSZ-REEL

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP282GSZ-REEL7

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP282_04

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP283

5 MHz Single-Supply Operational Amplifiers
ADI

OP283GBC

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 5 MHz BAND WIDTH, UUC8, 0.063 X 0.092 INCH, DIE-8, Operational Amplifier
ADI

OP283GP

5 MHz Single-Supply Operational Amplifiers
ADI

OP283GS

5 MHz Single-Supply Operational Amplifiers
ADI

OP284

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI