OP293FS-REEL [ADI]

Precision, Micropower Operational Amplifiers; 高精度,微功耗运算放大器
OP293FS-REEL
型号: OP293FS-REEL
厂家: ADI    ADI
描述:

Precision, Micropower Operational Amplifiers
高精度,微功耗运算放大器

运算放大器
文件: 总16页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Micropower  
Operational Amplifiers  
a
OP193/OP293/OP493*  
P IN CO NFIGURATIO NS  
FEATURES  
Operates from +1.7 V to ؎18 V  
Low Supply Current: 15 A/ Am plifier  
Low Offset Voltage: 75 V  
Outputs Sink and Source: ؎8 m A  
No Phase Reversal  
Single or Dual Supply Operation  
High Open-Loop Gain: 600 V/ m V  
Unity-Gain Stable  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy D IP  
(P Suffix)  
NULL  
–IN A  
+IN A  
V–  
NC  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
OP193  
V+  
OP193  
V+  
OUT A  
NULL  
OUT A  
NULL  
APPLICATIONS  
NC = NO CONNECT  
Digital Scales  
Strain Gages  
Portable Medical Equipm ent  
Battery Pow ered Instrum entation  
Tem perature Transducer Am plifier  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy D IP  
(P Suffix)  
OUT A  
–IN A  
+IN A  
V–  
V+  
GENERAL D ESCRIP TIO N  
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
OP293  
OUT B  
–IN B  
+IN B  
T he OP193 family of single-supply operational amplifiers fea-  
tures a combination of high precision, low supply current and  
the ability to operate at low voltages. For high performance in  
single supply systems the input and output ranges include  
ground, and the outputs swing from the negative rail to within  
600 mV of the positive supply. For low voltage operation the  
OP193 family can operate down to 1.7 volts or ±0.85 volts.  
OP293  
OUT B  
–IN B  
+IN B  
16-Lead Wide Body SO L  
(S Suffix)  
14-Lead Epoxy D IP  
(P Suffix)  
T he combination of high accuracy and low power operation  
make the OP193 family useful for battery powered equipment.  
Its low current drain and low voltage operation allow it to con-  
tinue performing long after other amplifiers have ceased func-  
tioning either because of battery drain or headroom.  
OUT A  
OUT D  
OUT A  
1
2
3
4
5
6
7
OUT D  
–IN D  
+IN D  
V–  
14  
13  
12  
11  
10  
9
–IN A  
+IN A  
V+  
–IN D  
+IN D  
V–  
–IN A  
+IN A  
V+  
T he OP193 family is specified for single +2 volt through dual  
±15 volt operation over the HOT (40°C to +125°C) tempera-  
ture range. T hey are available in plastic DIPs, plus SOIC sur-  
face mount packages.  
OP493  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
OP493  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
NC = NO CONNECT  
*P atent pending.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
OP193/OP293/OP493–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS(@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
S
A
E Grade  
F Grade  
Min Typ Max  
P aram eter  
Sym bol  
Conditions  
Min  
Typ Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
µV  
µV  
µV  
µV  
µV  
µV  
OP193, –40°C T A +125°C  
OP293  
OP293, –40°C T A +125°C  
OP493  
OP493, –40°C T A +125°C  
VCM = 0 V,  
–40°C T A +125°C  
VCM = 0 V,  
175  
100  
200  
125  
225  
Input Bias Current  
Input Offset Current  
IB  
15  
20  
nA  
IOS  
–40°C T A +125°C  
2
4
nA  
V
dB  
Input Voltage Range  
VCM  
–14.9  
100  
+13.5 –14.9  
97  
+13.5  
Common-Mode Rejection  
CMRR  
–14.9 VCM +14 V  
–14.9 VCM +14 V,  
–40°C T A +125°C  
RL = 100 k,  
116  
116  
97  
94  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
AVO  
AVO  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C T A +125°C  
RL = 10 k,  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C T A +125°C  
RL = 2 k,  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C T A +125°C  
Note 1  
500  
300  
500  
300  
V/mV  
V/mV  
V/mV  
300  
150  
300  
150  
100  
350  
200  
350  
200  
V/mV  
V/mV  
V/mV  
200  
125  
200  
125  
V/mV  
V/mV  
V/mV  
µV  
100  
0.2  
Long T erm Offset Voltage  
Offset Voltage Drift  
VOS  
VOS/T  
150  
1.75  
300  
Note 2  
µV/°C  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
IL = 1 mA  
+14.1 14.2  
+14.1 14.2  
V
IL = 1 mA,  
–40°C T A +125°C  
IL = 5 mA  
IL = –1 mA  
+14.0  
+13.9 14.1  
+14.0  
+13.9 14.1  
V
V
V
Output Voltage Swing Low  
VOL  
–14.7 –14.6  
-14.7 –14.6  
IL = –1 mA,  
–40°C T A +125°C  
IL = –5 mA  
–14.4  
14.2 –14.1  
±25  
–14.4  
14.2 –14.1  
±25  
V
V
mA  
Short Circuit Current  
ISC  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = ±1.5 V to ±18 V  
VS = ±1.5 V to ±18 V,  
–40°C T A +125°C  
–40°C TA +125°C, RL = ∞  
VOUT = 0 V, VS = ±18 V  
100  
97  
120  
97  
94  
120  
dB  
dB  
µA  
Supply Current/Amplifier  
ISY  
30  
30  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
15  
35  
15  
35  
V/ms  
kHz  
VOUT = 10 V p-p,  
RL = 2 k, f = 1 kHz  
120  
120  
dB  
NOT ES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–2–  
REV. A  
OP193/OP293/OP493  
(@ V = +5.0 V, V = 0.1 V, T = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
S
CM  
A
E Grade  
F Grade  
P aram eter  
Sym bol Conditions  
Min Typ Max  
Min Typ Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
V
OP193, –40°C T A +125°C  
OP293  
OP293, –40°C T A +125°C  
OP493  
OP493, –40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
175  
100  
200  
125  
225  
15  
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
2
4
4
4
0
0
96  
0.1 VCM +4 V  
0.1 VCM +4 V,  
–40°C T A +125°C  
RL = 100 k,  
0.03 VOUT +4.0 V  
–40°C T A +85°C  
–40°C T A +125°C  
RL = 10 k,  
0.03 VOUT +4.0 V  
–40°C T A +85°C  
–40°C T A +125°C  
Note 1  
100 116  
116  
dB  
92  
92  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
200  
125  
130  
200  
125  
V/mV  
V/mV  
V/mV  
130  
70  
AVO  
75  
50  
70  
75  
50  
V/mV  
V/mV  
V/mV  
µV  
Long T erm Offset Voltage  
Offset Voltage Drift  
VOS  
VOS/T  
150  
1.25  
300  
Note 2  
0.2  
µV/°C  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
IL = 100 µA  
IL = 1 mA  
4.4  
+4.1 4.4  
4.4  
+4.1 4.4  
V
V
IL = 1 mA,  
–40°C T A +125°C  
IL = 5 mA  
+4.0  
+4.0 4.4  
+4.0  
+4.0 4.4  
V
V
Output Voltage Swing Low  
VOL  
IL = –100 µA  
IL = –100 µA,  
–40°C T A +125°C  
No Load  
140 160  
140 160  
mV  
220  
5
280 400  
220  
5
280 400  
mV  
mV  
mV  
IL = –1 mA  
IL = –1 mA,  
–40°C T A +125°C  
IL = –5 mA  
500  
700 900  
±8  
500  
700 900  
±8  
mV  
mV  
mA  
Short Circuit Current  
ISC  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = ±1.7 V to ±6.0 V  
VS = ±1.5 V to ±18 V,  
–40°C T A +125°C  
VCM = 2.5 V, RL = ∞  
100 120  
94  
97  
90  
120  
dB  
dB  
µA  
Supply Current/Amplifier  
ISY  
14.5  
14.5  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
12  
35  
12  
35  
V/ms  
kHz  
NOT ES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
REV. A  
–3–  
OP193/OP293/OP493  
ELECTRICAL SPECIFICATIONS (@ V = +3.0 V, V = 0.1 V, T = +25؇C unless otherwise noted)  
S
CM  
A
E Grade  
F Grade  
P aram eter  
Sym bol Conditions  
Min Typ Max  
Min Typ Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
V
OP193, –40°C T A +125°C  
OP293  
OP293, –40°C T A +125°C  
OP493  
OP493, –40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
175  
100  
200  
125  
225  
15  
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
2
2
4
2
0
97  
0
94  
0.1 VCM +2 V  
116  
116  
100  
dB  
0.1 VCM +2 V,  
–40°C T A +125°C  
RL = 100 k, 0.03 VOUT 2 V  
–40°C T A +85°C  
–40°C T A +125°C  
Note 1  
90  
100  
75  
87  
100  
75  
dB  
Large Signal Voltage Gain  
AVO  
V/mV  
V/mV  
V/mV  
µV  
100  
0.2  
Long T erm Offset Voltage  
Offset Voltage Drift  
VOS  
150  
1.25  
300  
VOS/T Note 2  
µV/°C  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
VOL  
ISC  
IL = 1 mA  
IL = 1 mA,  
–40°C T A +125°C  
IL = 5 mA  
IL = –1 mA  
IL = –1 mA  
–40°C T A +125°C  
IL = –5 mA  
+2.1 2.14  
+2.1 2.14  
V
1.9  
+1.9 2.1  
1.9  
+1.9 2.1  
V
V
mV  
Output Voltage Swing Low  
280 400  
280 400  
500  
700 900  
±8  
500  
700 900  
±8  
mV  
mV  
mA  
Short Circuit Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +1.7 V to +6 V,  
–40°C T A +125°C  
VCM = 1.5 V, RL = ∞  
–40°C T A +125°C  
100  
94  
97  
90  
dB  
µA  
µA  
V
Supply Current/Amplifier  
Supply Voltage Range  
14.5 22  
22  
14.5 22  
22  
VS  
+2  
±18  
+2  
±18  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
10  
25  
10  
25  
V/ms  
kHz  
VOUT = 10 V p-p,  
RL = 2 k, f = 1 kHz  
120  
120  
dB  
NOT ES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–4–  
REV. A  
OP193/OP293/OP493  
ELECTRICAL SPECIFICATIONS (@ V = +2.0 V, V = 0.1 V, T = +25؇C unless otherwise noted)  
S
CM  
A
E Grade  
F Grade  
P aram eter  
Sym bol  
Conditions  
Min Typ Max  
Min Typ Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
V
V/mV  
V/mV  
µV  
OP193, –40°C T A +125°C  
OP293  
OP293, –40°C T A +125°C  
OP493  
OP493, –40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
175  
100  
175  
125  
225  
15  
Input Bias Current  
IB  
Input Offset Current  
Input Voltage Range  
Large Signal Voltage Gain  
IOS  
VCM  
AVO  
2
1
4
1
0
60  
0
60  
RL = 100 k, 0.03 VOUT 1 V  
–40°C T A +125°C  
Note 1  
70  
70  
Long T erm Offset Voltage  
POWER SUPPLY  
VOS  
150  
300  
Power Supply Rejection Ratio PSRR  
VS = +1.7 V to +6 V,  
–40°C T A +125°C  
VCM = 1.0 V, RL = ∞  
–40°C T A +125°C  
100  
94  
97  
90  
dB  
µA  
µA  
V
Supply Current/Amplifier  
Supply Voltage Range  
ISY  
VS  
13.2 20  
25  
13.2 20  
25  
+2  
±18  
+2  
±18  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
10  
25  
10  
25  
V/ms  
kHz  
(@ V = +5.0 V, V = 0.1 V, V = 2 V, T = +25؇C unless otherwise noted)  
WAFER TEST LIMITS  
P aram eter  
S
CM  
Sym bol  
VOS  
OUT  
A
Conditions  
Lim it  
Units  
Offset Voltage  
VS = ±15 V, VOUT = 0 V  
VS = +2 V, VOUT = 1.0 V  
VCM = 1.0 V  
±75  
±75  
20  
µV max  
µV max  
nA max  
nA max  
V min  
dB min  
dB min  
V/mV min  
V min  
Input Bias Current  
IB  
Input Offset Current  
IOS  
VCM = 1.0 V  
4
Input Voltage Range1  
VCM  
CMRR  
PSRR  
AVO  
VOH  
VOL  
ISY  
0 to 4  
96  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing High  
Output Voltage Swing Low  
Supply Current/Amplifier  
0 VCM 4 V  
VS = ±1.5 V to ±18 V  
RL = 100 kΩ  
IL = 1 mA  
IL = –1 mA  
100  
100  
4.1  
400  
25  
mV max  
µA max  
VO = 0 V, RL = , VS = ±18 V  
NOT ES  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
1Guaranteed by CMRR test.  
Specifications subject to change without notice.  
REV. A  
–5–  
OP193/OP293/OP493  
ABSO LUTE MAXIMUM RATINGS1  
O RD ERING GUID E  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Output Short-Circuit Duration to Gnd . . . . . . . . . . Indefinite  
Storage T emperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP193/OP293/OP493E, F . . . . . . . . . . . . –40°C to +125°C  
Junction T emperature Range  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
OP193EP  
OP193ES  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
+25°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
+25°C  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
DICE  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
DICE  
N-8  
SO-8  
SO-8  
SO-8  
N-8  
SO-8  
SO-8  
SO-8  
OP193ES-REEL  
OP193ES-REEL7  
OP193FP  
OP193FS  
OP193FS-REEL  
OP193FS-REEL7  
OP193GBC  
OP293EP  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . . +300°C  
N-8  
OP293ES  
SO-8  
SO-8  
SO-8  
N-8  
SO-8  
SO-8  
SO-8  
OP293ES-REEL  
OP293ES-REEL7  
OP293FP  
3
P ackage Type  
θJA  
θJC  
Units  
OP293FS  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
14-Pin Plastic DIP (P)  
16-Pin SOL (S)  
103  
158  
83  
43  
43  
39  
27  
°C/W  
°C/W  
°C/W  
°C/W  
OP293FS-REEL  
OP293FS-REEL7  
OP293GBC  
OP493EP  
OP493ES  
OP493ES-REEL  
OP493FP  
OP493FS  
OP493FS-REEL  
OP493GBC  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
+25°C  
14-Pin Plastic DIP N-14  
16-Pin SOL  
16-Pin SOL  
92  
SOL-16  
SOL-16  
NOT ES  
14-Pin Plastic DIP N-14  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
16-Pin SOL  
16-Pin SOL  
DICE  
SOL-16  
SOL-16  
otherwise noted.  
2For supply voltages less than ±18 V, the input voltage is limited to the supply  
voltage.  
3θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP, and θJA is specified for device soldered in circuit board for SOIC  
package.  
1
2
7
D ICE CH ARACTERISTICS  
6
1
8
3
7
4
5
OP193 Die Size 0.070 × 0.055 Inch, 3,850 Sq. Mils Substrate  
(Die Backside) Is Connected to V– Transistor Count, 55  
1
8
7
6
2
6
2
5
3
4
5
OP493 Die Size 0.106 × 0.143 Inch, 15,158 Sq. Mils Substrate  
3
4
(Die Backside) Is Connected to V– Transistor Count, 215  
OP293 Die Size 0.072 × 0.110 Inch, 7,920 Sq. Mils Substrate  
(Die Backside) Is Connected to V– Transistor Count, 105  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the OP193/OP293/OP493 feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. A  
Typical Performance Characteristics–OP193/OP293/OP493  
150  
200  
200  
160  
120  
80  
V
V
T
= +3V  
V
V
= +3V  
S
S
= 0.1V  
= 0.1V  
V
T
= ±15V  
= +25°C  
CM  
CM  
S
= +25°C  
120  
–40°C T +125°C  
A
A
160  
120  
80  
A
450 x PDIPS  
450 x PDIPS  
450 x PDIPS  
90  
60  
30  
0
40  
40  
0
0
0
0.2  
0.4  
TCV  
0.6  
0.8  
1.0  
–75 –6045 –30 –15  
0
15 30  
60 75  
45  
–7560 –45 –30 –15  
0
15 30 45 60  
75  
– µV/° C  
OFFSET – µV  
OFFSET – µV  
OS  
Figure 3. OP193 TCVOS Distribution,  
VS = +3 V  
Figure 1. OP193 Offset Distribution,  
VS = ±15 V  
Figure 2. OP193 Offset Distribution,  
VS = +3 V  
150  
120  
1
5V V 30V  
S
V
= ±15V  
S
V = +5V  
S
T
= +25°C  
–PSRR  
A
–40°C T +125°C  
100  
A
120  
90  
0
–1  
–2  
–3  
–4  
–40°C  
450 x PDIPS  
80  
60  
40  
20  
0
+PSRR  
+125°C  
60  
+25°C  
30  
0
0
0.2  
0.4  
TCV  
0.6  
0.8  
1.0  
0
1
2
3
4
5
10  
100  
1k  
10k  
– µV/° C  
COMMON MODE VOLTAGE – Volts  
OS  
FREQUENCY – Hz  
Figure 5. Input Bias Current vs.  
Com m on-Mode Voltage  
Figure 4. OP193 TCVOS Distribution,  
VS = ±15 V  
Figure 6. PSRR vs. Frequency  
25  
120  
40  
T
= +25°C  
A
100  
80  
60  
40  
20  
0
+ISC  
20  
+SR = –SR  
V
= ±15V  
S
30  
20  
10  
0
V
= ±15V  
S
V = ±15V  
S
|
V
–ISC |  
15  
10  
= ±15V  
S
+SR = –SR  
V
= +5V  
S
V
= +5V  
S
5
0
+ISC  
|
V
–ISC  
|
V
= +5V  
S
= +5V  
S
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
TEMPERATURE – °C  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 8. Slew Rate vs. Tem perature  
Figure 9. Short Circuit Current vs.  
Tem perature  
Figure 7. CMRR vs. Frequency  
REV. A  
–7–  
OP193/OP293/OP493–Typical Performance Characteristics  
25  
20  
15  
10  
5
0
0
–1  
–2  
–3  
–4  
–5  
V
= ±18V  
S
–0.5  
V
= ±15V  
S
–0.10  
–0.15  
–0.20  
–0.25  
V
V
= +2V  
S
V
V
= +2V  
S
= 0.1V  
CM  
= +1V  
CM  
V
V
= +2V  
S
= 0.1V  
CM  
V
= ±15V  
S
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE – °C  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 10. Input Offset Current vs.  
Tem perature  
Figure 12. Supply Current vs.  
Tem perature  
Figure 11. Input Bias Current vs.  
Tem perature  
1000  
10000  
1000  
5V V 30V  
S
5V V 30V  
S
T
= +25°C  
5V V 30V  
A
S
T
= +25°C  
A
T
= +25°C  
A
1000  
100  
10  
100  
10  
1
100  
10  
DELTA  
FROM V  
CC  
DELTA  
FROM V  
EE  
1
1
0.1  
0.1  
1
10  
100  
1k  
1
10  
100  
1k  
0.1  
1
10  
100  
1000 10000  
FREQUENCY – Hz  
FREQUENCY – Hz  
LOAD CURRENT – µA  
Figure 13. Voltage Noise Density vs.  
Frequency  
Figure 14. Current Noise Density vs.  
Frequency  
Figure 15. Delta Output Swing from  
Either Rail vs. Current Load  
2500  
2000  
60  
1000  
800  
T
= +25°C  
A
V
= +5V  
S
V
= ±15V  
40  
20  
V
= ±15V  
S
S
–10V V  
+10V  
–10V V  
+10V  
OUT  
OUT  
1500  
1000  
500  
0
600  
400  
200  
0
V
= +5V  
0.03V V  
V
= +5V  
S
S
4V  
0.03V V  
4V  
OUT  
OUT  
0
–20  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
TEMPERATURE – °C  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 16. Voltage Gain (RL = 100 k)  
vs. Tem perature  
Figure 17. Voltage Gain (RL = 10 k)  
vs. Tem perature  
Figure 18. Closed-Loop Gain vs.  
Frequency, VS = 5 V  
–8–  
REV. A  
OP193/OP293/OP493  
60  
50  
40  
30  
20  
10  
0
60  
40  
20  
0
60  
V
= +5V  
V
A
= +5V T = +25°C  
= 1  
S
S
A
T
V
= +25°C  
= ±15V  
A
+OS = | –OS  
= 50kΩ  
|
V
PHASE  
S
R
50mV V 150mV  
LOADS TO GND  
L
90  
45  
IN  
40  
20  
+OS  
GAIN  
R
= ∞  
L
0
0
–45  
–20  
–40  
+OS =  
| –OS |  
R
= 10kΩ  
L
–OS  
R
= ∞  
L
–90  
–20  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
10  
100  
1000  
10000  
CAPACITIVE LOAD – pF  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 21. Open Loop, Gain and  
Phase vs. Frequency  
Figure 20. Sm all Signal Overshoot  
vs. Capacitive Load  
Figure 19. Closed-Loop Gain vs.  
Frequency, VS = ±15 V  
60  
V
= ±15V  
S
90  
45  
40  
20  
PHASE  
V+  
I
1
I
2
I
3
I4  
+INPUT  
–INPUT  
2k  
2k  
GAIN  
0
0
Q5  
Q1  
Q2  
Q6  
–45  
–90  
–20  
–40  
OP293,  
OP493  
ONLY  
Q4  
Q3  
100  
1k  
10k  
100k  
1M  
TO  
Q7  
Q8  
OUTPUT  
STAGE  
FREQUENCY – Hz  
D1  
Figure 22. Open Loop, Gain and  
Phase vs. Frequency  
R1  
R2  
A
A
I
5
I6  
R1  
R2  
B
B
FUNCTIO NAL D ESCRIP TIO N  
V–  
T he OP193 family of operational amplifiers are single-supply,  
micropower, precision amplifiers whose input and output ranges  
both include ground. Input offset voltage (VOS) is only 75 µV  
maximum, while the output will deliver ±5 mA to a load. Sup-  
ply current is only 17 µA.  
NULLING  
TERMINALS  
(OP193 ONLY)  
Figure 23. OP193/OP293/OP493 Equivalent Input Circuit  
A simplified schematic of the input stage is shown in Figure 23.  
Input transistors Q1 and Q2 are PNP devices, which permit the  
inputs to operate down to ground potential. T he input transis-  
tors have resistors in series with the base terminals to protect the  
junctions from over voltage conditions. T he second stage is an  
NPN cascode which is buffered by an emitter follower before  
driving the final PNP gain stage.  
V+  
Q4  
FROM  
INPUT  
STAGE  
Q1  
Q5  
T he OP193 includes connections to taps on the input load resis-  
OUTPUT  
tors, which can be used to null the input offset voltage, VOS  
.
Q3  
T he OP293 and OP493 have two additional transistors, Q7 and  
Q8. T he behavior of these transistors is discussed in the Output  
Phase Reversal section of this data sheet.  
Q2  
I
2
I
3
I1  
V–  
T he output stage, shown in Figure 24, is a noninverting NPN  
“totem-pole” configuration. Current is sourced to the load by  
emitter follower Q1, while Q2 provides current sink capability.  
When Q2 saturates, the output is pulled to within 5 mV of  
ground without an external pull-down resistor. T he totem-pole  
output stage will supply a minimum of 5 mA to an external  
load, even when operating from a single 3.0 V power supply.  
Figure 24. OP193/OP293/OP493 Equivalent Output Circuit  
Q5 tracks the collector current of Q1. When Q1 is on, Q5 keeps  
Q4 off, and current source I1 keeps Q2 turned off. When Q1 is  
driven to cutoff (i.e., the output must move toward V–), Q5  
allows Q4 to turn on. Q4’s collector current then provides the  
base drive for Q3 and Q2, and the output low voltage swing is  
set by Q2’s VCE,SAT which is about 5 mV.  
By operating as an emitter follower, Q1 offers a high impedance  
load to the final PNP collector of the input stage. Base drive to  
Q2 is derived by monitoring Q1’s collector current. T ransistor  
REV. A  
–9–  
OP193/OP293/OP493  
D r iving Capacitive Loads  
High performance portable equipment and instruments fre-  
quently use lithium cells because of their long shelf life, light  
weight, and high energy density relative to older primary cells.  
Most lithium cells have a nominal output voltage of 3 V and are  
noted for a flat discharge characteristic. T he low supply voltage  
requirement of the OP193, combined with the flat discharge  
characteristic of the lithium cell, indicates that the OP193 can  
be operated over the entire useful life of the cell. Figure 25  
shows the typical discharge characteristic of a 1 AH lithium cell  
powering the OP193, OP293, and OP493, with each amplifier,  
in turn, driving 2.1 Volts into a 100 kload.  
OP193 family amplifiers are unconditionally stable with capaci-  
tive loads less than 200 pF. However, the small signal, unity-  
gain overshoot will improve if a resistive load is added. For  
example, transient overshoot is 20% when driving a 1000 pF/  
10 kload. When driving large capacitive loads in unity-gain  
configurations, an in-the-loop compensation technique is rec-  
ommended as illustrated in Figure 28.  
Input O ver voltage P r otection  
As previously mentioned, the OP193 family of op amps use a  
PNP input stage with protection resistors in series with the  
inverting and noninverting inputs. T he high breakdown of the  
PNP transistors, coupled with the protection resistors, provides  
a large amount of input protection from over voltage conditions.  
T he inputs can therefore be taken 20 V beyond either supply  
without damaging the amplifier.  
4
3
2
O utput P hase Rever salO P 193  
The OP193s input PNP collector-base junction can be forward-  
biased if the inputs are brought more than one diode drop  
(0.7 V) below ground. When this happens to the noninverting  
input, Q4 of the cascode stage turns on and the output goes  
high. If the positive input signal can go below ground, phase  
reversal can be prevented by clamping the input to the negative  
supply (i.e., GND) with a diode. T he reverse leakage of the  
diode will, of course, add to the input bias current of the ampli-  
fier. If input bias current is not critical, a 1N914 will add less  
than 10 nA of leakage. However, its leakage current will double  
for every 10°C increase in ambient temperature. For critical  
applications, the collector-base junction of a 2N3906 transistor  
will only add about 10 pA of additional bias current. T o limit  
the current through the diode under fault conditions, a 1 kΩ  
resistor is recommended in series with the input. (T he OP193’s  
internal current limiting resistors will not protect the external  
diode).  
OP193  
OP493  
OP293  
1
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
HOURS  
Figure 25. Lithium Sulfur Dioxide Cell Discharge Charac-  
teristic with OP193 Fam ily and 100 kLoads  
Input O ffset Voltage Nulling  
T he OP193 provides two offset nulling terminals that can be  
used to adjust the OP193’s internal VOS. In general, operational  
amplifier terminals should never be used to adjust system offset  
voltages. T he offset null circuit of Figure 26 provides about  
±7 mV of offset adjustment range. A 100 kresistor placed in  
series with the wiper arm of the offset null potentiometer, as  
shown in Figure 27, reduces the offset adjustment range to  
400 µV and is recommended for applications requiring high null  
resolution. Offset nulling does not adversely affect T CVOS per-  
formance, providing that the trimming potentiometer tempera-  
ture coefficient does not exceed ±100 ppm/°C.  
O utput P hase Rever salO P 293 and O P 493  
T he OP293 and OP493 include lateral PNP transistors Q7 and  
Q8 to protect against phase reversal. If an input is brought more  
than one diode drop (0.7 V) below ground, Q7 and Q8 com-  
bine to level shift the entire cascode stage, including the bias to  
Q3 and Q4, simultaneously. In this case Q4 will not saturate  
and the output remains low.  
T he OP293 and OP493 do not exhibit output phase reversal for  
inputs up to –5 V below V– at +25°C. T he phase reversal limit  
at +125°C is about –3 V. If the inputs can be driven below these  
levels, an external clamp diode, as discussed in the previous sec-  
tion, should be added.  
V+  
7
2
6
OP193  
Batter y P ower ed Applications  
4
OP193 series op amps can be operated on a minimum supply  
voltage of +1.7 V, and draw only 13 µA of supply current per  
amplifier from a 2.0 V supply. In many battery-powered cir-  
cuits, OP193 devices can be continuously operated for thou-  
sands of hours before requiring battery replacement, thus  
reducing equipment downtime and operating cost.  
3
5
1
100kΩ  
V–  
Figure 26. Offset Nulling Circuit  
–10–  
REV. A  
OP193/OP293/OP493  
V+  
V+  
R1  
240kΩ  
R2  
1.5MΩ  
(+2.5V TO +36V)  
7
2
3
7
C1  
1000pF  
2
3
6
OP193  
6
OP193  
4
V
OUT  
5
5
(1.23V @ 25°C)  
1
4
100kΩ  
100kΩ  
MAT-01AH  
Q1  
6
1
3
7
5
V–  
2
Q2  
Figure 27. High Resolution Offset Nulling Circuit  
V
V
BE2  
BE1  
A Micr opower False-Gr ound Gener ator  
V1  
R3 68kΩ  
V  
Some single supply circuits work best when inputs are biased  
above ground, typically at 1/2 of the supply voltage. In these  
cases a false ground can be created by using a voltage divider  
buffered by an amplifier. One such circuit is shown in Figure 28.  
BE  
R4  
130kΩ  
R5 20kΩ  
OUTPUT  
ADJUST  
T his circuit will generate a false-ground reference at 1/2 of the  
supply voltage, while drawing only about 27 µA from a 5 V sup-  
ply. T he circuit includes compensation to allow for a 1 µF by-  
pass capacitor at the false-ground output. T he benefit of a large  
capacitor is that not only does the false ground present a very  
low dc resistance to the load, but its ac impedance is low as well.  
T he OP193 can both sink and source more than 5 mA, which  
improves recovery time from transients in the load current.  
Figure 29. A Battery Powered Voltage Reference  
A Single-Supply Cur r ent Monitor  
Current monitoring essentially consists of amplifying the voltage  
drop across a resistor placed in series with the current to be  
measured. T he difficulty is that only small voltage drops can be  
tolerated, and with low precision op amps this greatly limits the  
overall resolution. T he single-supply current monitor of Figure  
30 has a resolution of 10 µA and is capable of monitoring 30  
mA of current. T his range can be adjusted by changing the cur-  
rent sense resistor R1. When measuring total system current, it  
may be necessary to include the supply current of the current  
monitor, which bypasses the current sense resistor, in the final  
result. T his current can be measured and calibrated (together  
with the residual offset) by adjustment of the offset trim potenti-  
ometer, R2. T his produces a deliberate temperature dependent  
offset. However, the supply current of the OP193 is also propor-  
tional to temperature, and the two effects tend to track. Current  
in R4 and R5, which also bypasses R1, can be adjusted via a  
gain trim.  
+5V OR +12V  
10kΩ  
0.022µF  
240kΩ  
7
2
100Ω  
+2.5V OR +6V  
6
OP193  
3
4
1µF  
1µF  
240kΩ  
Figure 28. A Micropower False-Ground Generator  
A Batter y P ower ed Voltage Refer ence  
V+  
T he circuit of Figure 29 is a battery-powered voltage reference  
that draws only 17 µA of supply current. At this level, two AA  
alkaline cells can power this reference for more than 18 months.  
At an output voltage of 1.23 V @ 25°C, drift of the reference is  
only 5.5 µV/°C over the industrial temperature range. Load  
regulation is 85 µV/mA with line regulation at 120 µV/V.  
TO CIRCUIT  
UNDER TEST  
7
3
6
OP193  
I
TEST  
V
OUT =  
4
2
Design of the reference is based on the Brokaw bandgap core  
technique. Scaling of resistors R1 and R2 produces unequal cur-  
rents in Q1 and Q2. T he resulting VBE across R3 creates a tem-  
perature-proportional voltage (PT AT ) which, in turn, produces  
a larger temperature-proportional voltage across R4 and R5, V1.  
T he temperature coefficient of V1 cancels (first order) the  
complementary to absolute temperature (CT AT ) coefficient of  
100mV/mA(I  
)
5
TEST  
1
R2  
9.9kΩ  
R2  
100kΩ  
R1  
1Ω  
R5  
100Ω  
R3  
100kΩ  
VBE1. When adjusted to 1.23 V @ +25°C, output voltage  
tempco is at a minimum. Bandgap references can have start-up  
problems. With no current in R1 and R2, the OP193 is beyond  
its positive input range limit and has an undefined output state.  
Shorting Pin 5 (an offset adjust pin) to ground forces the output  
high under these circumstances and insures reliable startup  
without significantly degrading the OP193’s offset drift.  
Figure 30. Single-Supply Current Monitor  
REV. A  
–11–  
OP193/OP293/OP493  
A Single-Supply Instr um entation Am plifier  
R1  
20k  
R2  
1.98M  
Designing a true single-supply instrumentation amplifier with  
zero-input and zero-output operation requires special care. T he  
traditional configuration, shown in Figure 31, depends upon  
amplifier A1’s output being at 0 V when the applied common-  
mode input voltage is at 0 V. Any error at the output is multi-  
plied by the gain of A2. In addition, current flows through  
resistor R3 as A2’s output voltage increases. A1’s output must  
remain at 0 V while sinking the current through R3, or a gain  
error will result. With a maximum output voltage of 4 V, the  
current through R3 is only 2 µA, but this will still produce an  
appreciable error.  
+5V  
R3  
20k  
R4  
1.98M  
V+  
A1  
1/2 OP293  
–IN  
V–  
+5V  
10k  
+5V  
V+  
Q2  
Q1  
VN2222  
V
OUT  
A2  
1/2 OP293  
+IN  
V–  
R1  
20k  
R2  
1.98M  
+5V  
Figure 32. An Im proved Single-Supply, 0 VIN, 0 VOUT  
Instrum entation Am plifier  
R3  
20k  
R4  
1.98M  
V+  
A1  
1/2 OP293  
A Low-P ower , Tem per atur e to 4–20 m A Tr ansm itter  
A simple temperature to 4–20 mA transmitter is shown in Fig-  
ure 33. After calibration, this transmitter is accurate to ±0.5°C  
over the –50°C to +150°C temperature range. T he transmitter  
operates from +8 V to +40 V with supply rejection better than  
3 ppm/V. One half of the OP293 is used to buffer the VT EMP  
pin, while the other half regulates the output current to satisfy  
the current summation at its noninverting input:  
+5V  
V+  
–IN  
V–  
I
SINK  
V
OUT  
A2  
1/2 OP293  
+IN  
V–  
Figure 31. A Conventional Instrum entation Am plifier  
One solution to this problem is to use a pull-down resistor. For  
example, if R3 = 20 k, then the pull-down resistor must be  
less than 400 . However, the pull-down resistor appears as a  
fixed load when a common-mode voltage is applied. With a 4 V  
common-mode voltage, the additional load current will be 10 mA,  
which is unacceptable in a low power application.  
VTEMP × R6 + R7  
R2 + R6 + R7  
R2 × R10  
(
)
VSET  
IOUT  
+
R2 × R10  
T he change in output current with temperature is the derivative  
of the transfer function:  
Figure 32 shows a better solution. A1’s sink current is provided  
by a pair of N-channel FET transistors, configured as a current  
mirror. With the values shown, sink current of Q2 is about  
340 µA. T hus, with a common-mode voltage of 4 V, the addi-  
tional load current is limited to 340 µA versus 10 mA with a  
400 resistor.  
VTEMP  
IOUT  
T  
(R6 + R7)  
=
T  
R2 × R10  
1N4002  
V+  
+8V TO +40V  
SPAN TRIM  
R6  
3kΩ  
R4  
REF-43BZ  
20kΩ  
R7  
5kΩ  
2
3
R2  
1kΩ  
V
2
6
3
4
IN  
8
1/2 OP293  
4
V
1
6
TEMP  
R8  
V
OUT  
1kΩ  
7
2N1711  
1/2 OP293  
V
TEMP  
R3  
100kΩ  
V
R1 10kΩ  
R5  
5kΩ  
SET  
5
R9  
100kΩ  
GND  
ZERO  
TRIM  
R10  
100Ω  
1%, 1/2 W  
ALL RESISTORS 1/4W, 5% UNLESS OTHERWISE NOTED  
I
OUT  
R
LOAD  
Figure 33. Tem perature to 4–20 m A Transm itter  
–12–  
REV. A  
OP193/OP293/OP493  
C1  
75nF  
From the formulas, it can be seen that if the span trim is ad-  
justed before the zero trim, the two trims are not interactive,  
which greatly simplifies the calibration procedure.  
+5V  
R5  
200kΩ  
+5V  
8
R1  
200kΩ  
2
3
Calibration of the transmitter is simple. First, the slope of the  
output current versus temperature is calibrated by adjusting the  
span trim, R7. A couple of iterations may be required to be sure  
the slope is correct.  
V
CONTROL  
A1  
1/2 OP293  
1
6
SQUARE  
OUT  
A2  
1/2 OP293  
7
4
R2  
200kΩ  
5
Once the span trim has been completed, the zero trim can be  
made. Remember that adjusting the zero trim will not affect the  
gain.  
R4  
200kΩ  
R3  
100kΩ  
TRIANGLE  
OUT  
R7  
200kΩ  
R6  
200kΩ  
R8  
200kΩ  
T he zero trim can be set at any known temperature by adjusting  
R5 until the output current equals:  
+5V  
IFS  
IOUT  
=
(TAMBIENT TMIN ) + 4 mA  
CD4066  
1
2
3
4
5
6
7
IN/OUT  
OUT/IN  
OUT/IN  
IN/OUT  
CONT  
14  
TOPERATING  
V
+5V  
DD  
S1  
T able I shows the values of R6 required for various temperature  
ranges.  
CONT 13  
CONT 12  
IN/OUT 11  
OUT/IN 10  
S2  
Table I. R6 Values vs. Tem perature  
Tem p Range  
R6  
0°C to +70°C  
–40°C to +85°C  
–55°C to +150°C  
10 kΩ  
6.2 kΩ  
3 kΩ  
S3  
S4  
CONT  
OUT/IN  
IN/OUT  
9
8
+5V  
A Micr opower Voltage Contr olled O scillator  
V
SS  
An OP293 in combination with an inexpensive quad CMOS  
analog switch forms the precision VCO of Figure 34. T his cir-  
cuit provides triangle and square wave outputs and draws only  
50 µA from a single 5 V supply. A1 acts as an integrator; S1  
switches the charging current symmetrically to yield positive and  
negative ramps. T he integrator is bounded by A2 which acts as  
a Schmitt trigger with a precise hysteresis of 1.67 volts, set by  
resistors R5, R6, and R7, and associated CMOS switches. T he  
resulting output of A1 is a triangle wave with upper and lower  
levels of 3.33 and 1.67 volts. T he output of A2 is a square wave  
with almost rail-to-rail swing. With the components shown, fre-  
quency of operation is given by the equation:  
Figure 34. Micropower Voltage Controlled Oscillator  
A Micr opower , Single-Supply Q uad Voltage O utput 8-Bit  
D AC  
T he circuit of Figure 35 uses the DAC8408 CMOS quad 8-bit  
DAC and the OP493 to form a single-supply quad voltage out-  
put DAC with a supply drain of only 140 µA. T he DAC8408 is  
used in the voltage switching mode and each DAC has an out-  
put resistance (10 k) independent of the digital input code.  
T he output amplifiers act as buffers to avoid loading the DACs.  
T he 100 kresistors ensure that the OP493 outputs will swing  
to within 1/2 LSB of ground, i.e.:  
fOUT = VCONTROL (Volts) × 10 Hz/V  
but this can easily be changed by varying C1. T he circuit oper-  
ates well up to 500 Hz.  
1
2
1. 23 V  
×
= 3 mV  
256  
REV. A  
–13–  
OP193/OP293/OP493  
+5V  
+5V  
4
A Single-Supply Micr opower Q uad P r ogr am m able-Gain  
Am plifier  
3.6k  
T he combination of the quad OP493 and the DAC8408 quad  
8-bit CMOS DAC creates a quad programmable gain amplifier  
with a quiescent supply drain of only 140 µA (Figure 36). T he  
digital code present at the DAC, which is easily set by a micro-  
processor, determines the ratio between the fixed DAC feedback  
resistor and the resistance that the DAC feedback ladder pre-  
sents to the op amp feedback loop. T he gain of each amplifier is:  
+5V  
AD589  
1.23V  
1
2
3
V
DD  
V
A
OUT  
A
1
I
1A  
OUT  
4
1/4 OP493  
DAC A  
1/4  
DAC8408  
V
A
REF  
2
11  
R1  
100kΩ  
VOUT  
VIN  
256  
=
n
I
2A/2B  
OUT  
5
6
where n equals the decimal equivalent of the 8-bit digital code  
present at the DAC.  
6
5
V
B
OUT  
B
7
14  
8
1/4 OP493  
DAC B  
1/4  
DAC8408  
V
V
V
B
REF  
8
R2  
100kΩ  
If the digital code present at the DAC consists of all zeros, the  
feedback loop will be open causing the op amp to saturate. T he  
10 Mresistors placed in parallel with the DAC feedback loop  
eliminates this problem with a very small reduction in gain accu-  
racy. T he 2.5 V reference biases the amplifiers to the center of  
the linear region providing maximum output swing.  
I
1B  
OUT  
13  
12  
V
C
OUT  
C
I
1C  
OUT  
25  
1/4 OP493  
DAC C  
1/4  
DAC8408  
C
27  
REF  
R3  
100kΩ  
I
2C/2D  
OUT  
24  
23  
9
V
D
OUT  
D
1/4 OP493  
DAC D  
1/4  
DAC8408  
D
10  
21  
REF  
R4  
100kΩ  
I
1D  
OUT  
OP493  
DAC DATA BUS  
PINS 9(LSB)–16(MSB)  
17  
18  
19  
20  
A/B  
R/W  
DS1  
DS2  
DIGITAL  
CONTROL  
SIGNALS  
DAC8408ET  
DGND  
28  
Figure 35. Micropower Single-Supply Quad Voltage-  
Output 8-Bit DAC  
–14–  
REV. A  
OP193/OP293/OP493  
1
V
C1  
0.1µF  
DD  
+5V  
R
A
3
FB  
4
V
A
IN  
V
I
A
2
4
REF  
R1  
10MΩ  
1A  
OUT  
2
3
DAC A  
1/4  
DAC8408  
A
1
V
A
OUT  
1/4 OP493  
I
2A/2B  
OUT  
11  
5
8
C2  
0.1µF  
R
FB  
B
7
V
IN  
B
V
B
REF  
R2  
10MΩ  
DAC B  
1/4  
DAC8408  
I
1B  
OUT  
6
5
6
B
7
V
B
OUT  
1/4 OP493  
C3  
0.1µF  
R
FB  
C
26  
V
C
IN  
V
C
REF  
27  
25  
R3  
I
10MΩ  
1C  
OUT  
9
DAC C  
1/4  
C
8
V
C
OUT  
1/4 OP493  
DAC8408  
10  
I
2C/2D  
D
OUT  
24  
21  
C4  
0.1µF  
R
D
22  
FB  
V
D
V
IN  
REF  
R4  
10MΩ  
DAC D  
1/4  
DAC8408  
I
1D  
OUT  
23  
13  
12  
D
14  
V
D
1/4 OP493  
OUT  
DAC DATA BUS  
PINS 9(LSB)–16(MSB)  
OP493  
17  
18  
19  
20  
A/B  
R/W  
DS1  
DS2  
DIGITAL  
CONTROL  
SIGNALS  
+2.5V  
REFERENCE  
VOLTAGE  
DAC8408ET  
DGND  
28  
Figure 36. Single-Supply Micropower Quad Program m able-Gain Am plifier  
REV. A  
–15–  
OP193/OP293/OP493  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead Epoxy D IP  
(P Suffix)  
8-Lead SO  
(S Suffix)  
8
5
0.280 (7.11)  
0.240 (6.10)  
8
1
5
PIN 1  
0.1574 (4.00)  
0.1497 (3.80)  
1
4
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.1968 (5.00)  
0.1890 (4.80)  
0.0196 (0.50)  
0.0099 (0.25)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
x 45°  
0.210  
(5.33)  
MAX  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.130  
(3.30)  
MIN  
0.0040 (0.10)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
8
0
°
°
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
0.100  
(2.54)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
BSC  
16-Lead Wide Body SO L  
(S Suffix)  
14-Lead Epoxy D IP  
(P Suffix)  
14  
8
0.280 (7.11)  
0.240 (6.10)  
9
16  
PIN 1  
0.2992 (7.60)  
0.2914 (7.40)  
1
7
0.325 (8.25)  
0.300 (7.62)  
0.795 (20.19)  
0.725 (18.42)  
0.4193 (10.65)  
PIN 1  
0.3937 (10.00)  
8
1
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
0.1043 (2.65)  
0.4133 (10.50)  
0.3977 (10.00)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0125 (0.32)  
0.0091 (0.23)  
–16–  
REV. A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY