OP296HRUZ-REEL [ADI]

Micropower RRIO Operational Amplifiers; 微功耗RRIO运算放大器
OP296HRUZ-REEL
型号: OP296HRUZ-REEL
厂家: ADI    ADI
描述:

Micropower RRIO Operational Amplifiers
微功耗RRIO运算放大器

运算放大器 光电二极管
文件: 总19页 (文件大小:2373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower RRIO  
Operational Amplifiers  
a
OP196/OP296/OP496  
FEATURES  
PIN CONFIGURATIONS  
Rail-to-Rail Input and Output Swing  
Low Power: 60 A/Amplifier  
Gain Bandwidth Product: 450 kHz  
Single-Supply Operation: 3 V to 12 V  
Low Offset Voltage: 300 V max  
High Open-Loop Gain: 500 V/mV  
Unity-Gain Stable  
8-Lead Narrow-Body SO  
8-Lead Narrow-Body SO  
1
2
3
4
8
7
6
5
V+  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
OUT A  
IN A  
+IN A  
V–  
OUT B  
IN B  
+IN B  
V+  
OP296  
OP196  
OUT A  
NULL  
NC = NO CONNECT  
No Phase Reversal  
APPLICATIONS  
Battery Monitoring  
Sensor Conditioners  
Portable Power Supply Control  
Portable Instrumentation  
8-Lead TSSOP  
1
8
V+  
OUT A  
IN A  
+IN A  
V–  
OUT B  
IN B  
+IN B  
OP296  
4
5
GENERAL DESCRIPTION  
The OP196 family of CBCMOS operational amplifiers features  
micropower operation and rail-to-rail input and output ranges.  
The extremely low power requirements and guaranteed opera-  
tion from 3 V to 12 V make these amplifiers perfectly suited to  
monitor battery usage and to control battery charging. Their  
dynamic performance, including 26 nV/Hz voltage noise  
density, recommends them for battery-powered audio applica-  
tions. Capacitive loads to 200 pF are handled without oscillation.  
14-Lead Narrow-Body SO  
OUT A  
1
2
OUT D  
14  
13  
extended  
The OP196/OP296/OP496 are specified over the  
industrial (–40°C to +125°C) temperature range. 3 V operation  
IN A  
IN D  
+IN D  
V–  
+IN A  
V+  
3
4
12  
11  
is specified over the 0°C to 125°C temperature range.  
OP496  
+IN B  
5
6
+IN C  
10  
9
The single OP196 and the dual OP296 are available in 8-lead  
SOIC and TSSOP packages. The quad OP496 is available in  
14-lead SOIC and TSSOP packages.  
IN B  
IN C  
OUT B  
7
OUT C  
8
14-Lead TSSOP  
(RU Suffix)  
1
14  
OUT A  
IN A  
+IN A  
V+  
+IN B  
IN B  
OUT B  
OUT D  
IN D  
+IN D  
V–  
+IN C  
IN C  
OUT C  
OP496  
7
8
E
REV.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/  
www.analog.com  
2002-2011 Analog Devices, Inc.  
461-3113  
©
OP196/OP296/OP496–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ VS = 5.0 V, VCM = 2.5 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
–40°C TA +125°C  
OP296H, OP496H  
–40°C TA +125°C  
–40°C TA +125°C  
35  
300  
650  
800  
1.2  
50  
8
20  
µV  
µV  
µV  
mV  
nA  
nA  
nA  
V
Input Bias Current  
Input Offset Current  
IB  
IOS  
10  
1.5  
–40°C TA +125°C  
Input Voltage Range  
VCM  
0
5.0  
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 5.0 V,  
–40°C TA +125°C  
RL = 100 k,  
65  
dB  
Large Signal Voltage Gain  
AVO  
0.30 V VOUT 4.7 V,  
–40°C TA +125°C  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
150  
200  
V/mV  
µV  
Long-Term Offset Voltage  
Offset Voltage Drift  
VOS  
550  
1
mV  
VOS/T  
1.5  
2
µV/°C  
µV/°C  
H Grade, Note 2  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
+
VOH  
VOL  
IOUT  
IL = 100 µA  
4.85  
4.30  
4.92  
4.56  
4.1  
36  
350  
750  
4
V
V
V
mV  
mV  
mV  
mA  
IL = 1 mA  
IL = 2 mA  
IL = –  
IL = –1 mA  
IL = –2 mA  
100 μA  
Output Voltage Swing Low  
70  
550  
Output Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
2.5 V VS 6 V,  
–40°C TA +125°C  
85  
dB  
µA  
µA  
Supply Current per Amplifier  
VOUT = 2.5 V, RL =  
–40°C TA +125°C  
60  
80  
45  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.3  
350  
47  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
Current Noise Density  
NOTES  
1Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 12 5°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
REV.E  
–2–  
OP196/OP296/OP496  
(@ VS = 3.0 V, VCM = 1.5 V, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
0°C TA 125°C  
OP296H, OP496H  
0°C TA 125°C  
35  
300  
650  
800  
1.2  
50  
µV  
µV  
µV  
mV  
nA  
nA  
V
Input Bias Current  
Input Offset Current  
Input Voltage Range  
IB  
IOS  
VCM  
10  
1
8
3.0  
0
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 3.0 V,  
0°C TA 125°C  
RL = 100 kΩ  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
H Grade, Note 2  
60  
80  
dB  
Large Signal Voltage Gain  
Long-Term Offset Voltage  
AVO  
VOS  
200  
V/mV  
µV  
mV  
µV/°C  
µV/°C  
550  
1
Offset Voltage Drift  
VOS/T  
1.5  
2
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
Output Voltage Swing Low  
VOH  
VOL  
IL = 100 µA  
IL = –100 µA  
2.85  
V
mV  
70  
POWER SUPPLY  
Supply Current per Amplifier  
ISY  
VOUT = 1.5 V, RL =  
0°C TA 125°C  
40  
60  
80  
µA  
µA  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.25  
350  
45  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
Current Noise Density  
NOTES  
1Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 12 5°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the 0°C to 25°C delta and the 25°C to 125°C delta.  
Specifications subject to change without notice.  
REV.  
E
–3–  
 
OP196/OP296/OP496  
(@ V = 12.0 V, VCM = 6 V, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL SPECIFICATIONS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
0°C TA 125°C  
35  
300  
650  
800  
1.2  
50  
8
15  
µV  
µV  
µV  
mV  
nA  
nA  
nA  
V
OP296H, OP496H  
0°C TA 125°C  
–40°C TA +125°C  
Input Bias Current  
Input Offset Current  
IB  
IOS  
10  
1
–40°C TA +125°C  
Input Voltage Range  
VCM  
0
12  
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 12 V,  
–40°C TA +125°C  
RL = 100 kΩ  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
H Grade, Note 2  
65  
300  
dB  
Large Signal Voltage Gain  
Long-Term Offset Voltage  
AVO  
VOS  
1000  
V/mV  
µV  
mV  
µV/°C  
µV/°C  
550  
1
Offset Voltage Drift  
VOS/T  
1.5  
2
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IOUT  
IL = 100 µA  
11.85  
11.30  
V
V
mV  
mV  
mA  
IL = 1 mA  
100 μA  
Output Voltage Swing Low  
IL = –  
70  
550  
IL = –1 mA  
Output Current  
4
POWER SUPPLY  
Supply Current per Amplifier  
ISY  
VS  
VOUT = 6 V, RL =  
–40°C TA +125°C  
60  
80  
12  
µA  
µA  
V
Supply Voltage Range  
3
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.3  
450  
50  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
NOTES  
1Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–4–  
REV.  
E
 
OP196/OP296/OP496  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
S, RU Package . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP196G, OP296G, OP496G, H . . . . . . . 40°C to +125°C  
Junction Temperature Range  
S, RU Package . . . . . . . . . . . . . . . . . . . 65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
3
Package Type  
JA  
JC  
Unit  
8-Lead SOIC  
8-Lead TSSOP  
158  
240  
43  
43  
°C/W  
°C/W  
14-Lead SOIC  
14-Lead TSSOP  
120  
180  
36  
35  
°C/W  
°C/W  
NOTES  
1Absolute maximum ratings apply to  
packaged parts, unless otherwise noted.  
2For supply voltages less than 15 V, the absolute maximum input voltage is  
equal to the supply voltage.  
3θJA is specified for the worst case conditions  
; θJA is specified for device soldered in circuit board for SOIC and TSSOP packages.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the OP196/OP296/OP496 feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. E  
–5–  
 
OP196/OP296/OP496Typical Performance Characteristics  
25  
20  
15  
10  
5
250  
200  
150  
V
V
= 5V  
S
= 2.5V  
CM  
V
T
= 3V  
= 25؇C  
S
T
= 40؇C TO ؉125؇C  
A
A
COUNT = 400  
100  
50  
0
0
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0  
250 200 150 100 50  
0
50  
100 150 200 250  
INPUT OFFSET DRIFT, TCV V/؇C  
INPUT OFFSET VOLTAGE V  
OS  
TPC 1. Input Offset Voltage Distribution  
TPC 4. Input Offset Voltage Distribution (TCVOS)  
25  
250  
200  
150  
100  
50  
V
V
= 12V  
S
= 6V  
V
T
= 5V  
= 25؇C  
CM  
S
T = 40؇C TO ؉125؇C  
A
20  
15  
10  
5
A
COUNT = 400  
0
0
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5  
250 200 150 100 50  
0
50  
100 150 200 250  
INPUT OFFSET DRIFT, TCV V/؇C  
INPUT OFFSET VOLTAGE V  
OS  
TPC 2. Input Offset Voltage Distribution  
TPC 5. Input Offset Voltage Distribution (TCVOS  
)
250  
200  
150  
100  
50  
600  
V
T
= 12V  
= 25؇C  
S
3V  
V
12V  
S
400  
200  
0
A
V
S
COUNT = 400  
V
=
CM  
2
200  
0
400  
250 200 150 100 50  
0
50  
100 150 200 250  
75  
50  
25  
0
25  
50  
75  
100  
125  
150  
INPUT OFFSET VOLTAGE V  
TEMPERATURE ؇C  
TPC 3. Input Offset Voltage Distribution  
TPC 6. Input Offset Voltage vs. Temperature  
–6–  
REV.  
E
OP196/OP296/OP496  
25  
20  
15  
10  
5
1000  
V
V
= 5V  
S
= 2.5V  
CM  
V
= ؎1.5V  
S
100  
10  
1
SOURCE  
SINK  
0
75  
50  
25  
0
25  
50  
75  
100  
125  
150  
0.001  
0.01  
0.1  
LOAD CURRENT mA  
1
10  
TEMPERATURE ؇C  
TPC 7. Input Bias Current vs. Temperature  
TPC 10. Output Voltage to Supply Rail vs. Load Current  
1000  
16  
V
= ؎2.5V  
S
12  
100  
10  
1
SOURCE  
SINK  
8
4
2
3
5
12  
14  
0.001  
0.01  
0.1  
LOAD CURRENT mA  
1
10  
SUPPLY VOLTAGE V  
TPC 8. Input Bias Current vs. Supply Voltage  
TPC 11. Output Voltage to Supply Rail vs. Load Current  
40  
1000  
V
T
= ؎2.5V  
= 25؇C  
S
A
30  
20  
V
= ؎6V  
S
100  
10  
SOURCE  
0
SINK  
10  
20  
30  
40  
10  
1
0.001  
2.5 2.0 1.5 1.0 0.5  
0
0.5  
1.0 1.5  
2.0 2.5  
0.01  
0.1  
LOAD CURRENT mA  
1
10  
COMMON-MODE VOLTAGE V  
TPC 9. Input Bias Current vs. Common-Mode Voltage  
TPC 12. Output Voltage to Supply Rail vs. Load Current  
REV. E  
–7–  
OP196/OP296/OP496  
4.95  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 100A  
L
V
= ؎2.5V  
= 40؇C  
S
T
A
4.70  
4.45  
4.2  
= 1mA  
L
GAIN  
0
I
= 2mA  
45  
L
90  
V
= 5V  
S
PHASE  
3.85  
3.7  
135  
180  
225  
10  
75  
50  
25  
0
25  
50  
75  
100 125  
150  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE ؇C  
FREQUENCY Hz  
TPC 13. Output Voltage Swing vs. Temperature  
TPC 16. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
0.80  
90  
V
= 5V  
S
V
T
= ؎2.5V  
= 125؇C  
S
A
80  
70  
60  
50  
40  
30  
20  
10  
0
0.60  
0.50  
0.30  
0.10  
I
= 1mA  
L
GAIN  
0
45  
90  
PHASE  
135  
180  
225  
I
= 100A  
L
10  
75 50  
25  
0
25  
50  
75  
100  
125  
150  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE ؇C  
FREQUENCY Hz  
TPC 14. Output Voltage Swing vs. Temperature  
TPC 17. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
90  
950  
V
= 5V  
V
T
= ؎2.5V  
= 25؇C  
S
S
80  
70  
60  
50  
40  
30  
20  
10  
0
0.3V  
< V < 4.7V  
O
= 100k⍀  
A
800  
650  
500  
350  
200  
R
L
GAIN  
0
45  
90  
PHASE  
135  
180  
225  
10  
10  
100  
1k  
10k  
100k  
1M  
75  
50  
25  
0
25  
50  
75  
100  
125 150  
FREQUENCY Hz  
TEMPERATURE ؇C  
TPC 18. Open-Loop Gain vs. Temperature  
TPC 15. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
–8–  
REV.  
E
OP196/OP296/OP496  
160  
140  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
V
= ؎2.5V  
= 25؇C  
S
V
T
= 5V  
S
T
A
= 25؇C  
ALL CHANNELS  
A
60  
40  
20  
0
20  
40  
150  
100  
50  
10  
2
1
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
LOAD k⍀  
TPC 19. Open-Loop Gain vs. Resistive Load  
TPC 22. CMRR vs. Frequency  
70  
160  
140  
120  
100  
80  
V
T
= 5V  
= 25؇C  
V
= ؎2.5V  
= 10k⍀  
= 25؇C  
S
A
S
60  
50  
R
T
L
A
40  
30  
+PSRR  
20  
60  
10  
40  
PSRR  
0
20  
10  
20  
30  
0
20  
40  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 23. PSRR vs. Frequency  
TPC 20. Closed-Loop Gain vs. Frequency  
6
5
4
3
2
1000  
V
V
A
R
= ؎2.5V  
= 5V p-p  
= 1  
S
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IN  
V
T
= ؎2.5V  
= 25؇C  
S
A
V
L
= 100k⍀  
A
= 10  
CL  
A
= 1  
CL  
1
0
1k  
10k  
100k  
FREQUENCY Hz  
1M  
100  
1k  
10k  
FREQUENCY Hz  
100k  
1M  
TPC 21. Output Impedance vs. Frequency  
TPC 24. Maximum Output Swing vs. Frequency  
REV. E  
–9–  
OP196/OP296/OP496  
90  
80  
70  
60  
50  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
T
= ؎2.5V  
= 25؇C  
= 0V  
S
A
V
CM  
V
= 12V  
S
V
= 5V  
S
V
= 3V  
S
30  
20  
75 50 40 25  
0
25 50  
75  
85 100 125 150  
1
10  
100  
FREQUENCY Hz  
1k  
TEMPERATURE ؇C  
TPC 25. Supply Current/Amplifier vs. Temperature  
TPC 28. Input Bias Current Noise Density vs. Frequency  
55  
10  
T
= 25؇C  
V
= ؎6V  
= 25؇C  
8
6
A
S
T
A
TO 0.1%  
؉OUTPUT SWING  
50  
45  
40  
35  
4
2
0
2  
4  
6  
8  
10  
OUTPUT SWING  
1
3
5
7
9
11  
12  
13  
0
5
10  
15  
20  
25  
30  
SETTLING TIME s  
SUPPLY VOLTAGE V  
TPC 29. Settling Time to 0.1% vs. Step Size  
TPC 26. Supply Current/Amplifier vs. Supply Voltage  
80  
V
T
= ؎2.5V  
= 25؇C  
= 0V  
S
70  
60  
50  
40  
30  
20  
10  
0
2mV  
A
1s  
V
CM  
100  
90  
10  
V
= ؎2.5V  
S
0%  
A
= 10k  
V
e
= 0.8V p-p  
n
1
10  
100  
FREQUENCY Hz  
1k  
TPC 30. 0.1 Hz to 10 Hz Noise  
TPC 27. Voltage Noise Density vs. Frequency  
–10–  
REV.  
E
OP196/OP296/OP496  
V
R
= ؎2.5V  
= 10k⍀  
L
S
100  
90  
100mV  
100  
90  
V
=
2.5V  
S
A
R
C
= 1  
V
L
10  
= 10k  
= 100pF  
= 25؇C  
10  
0%  
0V  
0%  
L
T
A
20mV  
2s  
1V  
10s  
TPC 31. Small Signal Transient Response  
TPC 33. Large Signal Transient Response  
V
= ؎2.5V  
= 100k⍀  
S
R
100  
90  
L
100  
100mV  
90  
V
= ؎2.5V  
= 1  
S
A
R
C
T
V
L
L
10  
10  
= 100k⍀  
= 100pF  
= 25؇C  
0%  
0%  
0V  
1V  
10s  
20mV  
A
2s  
TPC 32. Small Signal Transient Response  
TPC 34. Large Signal Transient Response  
CH A: 40.0V FS  
MKR: 36.8V/ Hz  
5.00V/DIV  
10Hz  
0Hz  
MKR: 1.00Hz  
BW: 145mHz  
TPC 35. 1/f Noise Corner, VS = 5 V, AV = 1,000  
V
CC  
R2  
R1  
R8  
R7  
I1  
R6  
I4  
I5  
D3  
Q22  
D9  
QL1  
Q11  
Q12  
Q6  
Q5  
Q7  
D4  
Q17  
D8  
Q21  
2x  
2x  
Q4  
QC1  
Q3  
CC2  
OUT  
1x  
1x  
CF1  
1x  
1x  
CF2  
Q13  
Q14  
Q8  
2x  
D5  
D6  
2x  
Q10  
Q18  
Q19  
1x  
Q9  
2x  
+IN  
Q1  
Q2  
QC2  
Q23  
R5  
IN  
CC1  
R9  
R3A  
R3B  
R4A  
R4B  
Q20  
1.5x  
I3  
I2  
Q16  
Q15  
D7  
D10  
1x  
V
EE  
1
*
5
*
*OP196 ONLY  
TPC 36. Simplified Schematic  
–11–  
REV. E  
 
OP196/OP296/OP496  
APPLICATIONS INFORMATION  
Functional Description  
the supply rails. In the circuit of Figure 2, the source ampli-  
tude is 15 V, while the supply voltage is only 5 V. In this  
case, a 2 ksource resistor limits the input current to 5 mA.  
The OP196 family of operational amplifiers is comprised of single-  
supply, micropower, rail-to-rail input and output amplifiers. Input  
offset voltage (VOS) is only 300 µV maximum, while the output  
will deliver 5 mA to a load. Supply current is only 50 µA, while  
bandwidth is over 450 kHz and slew rate is 0.3 V/µs. TPC 36 is  
a simplified schematic of the OP196—it displays the novel cir-  
cuit design techniques used to achieve this performance.  
5V  
V
5V  
S
A
= 1  
V
100  
90  
V
IN  
0
Input Overvoltage Protection  
V
OUT  
The OPx96 family of op amps uses a composite PNP/NPN  
input stage. Transistor Q1 in Figure 36 has a collector-base  
voltage of 0 V if +IN = VEE. If +IN then exceeds VEE, the junc-  
tion will be forward biased and large diode currents will flow,  
which may damage the device. The same situation applies to  
+IN on the base of transistor Q5 being driven above VCC. There-  
fore, the inverting and noninverting inputs must not be driven  
above or below either supply rail unless the input current is  
limited.  
10  
0
0%  
5V  
1ms  
TIME 1ns/DIV  
Figure 2. Output Voltage Phase Reversal Behavior  
Input Offset Voltage Nulling  
The OP196 provides two offset adjust terminals that can be  
used to null the amplifier’s internal VOS. In general, operational  
amplifier terminals should never be used to adjust system offset  
voltages. A 100 kpotentiometer, connected as shown in Fig-  
ure 3, is recommended to null the OP196’s offset voltage. Offset  
nulling does not adversely affect TCVOS performance, providing  
that the trimming potentiometer temperature coefficient does  
not exceed 100 ppm/°C.  
Figure 1 shows the input characteristics for the OPx96 family.  
This photograph was generated with the power supply pins  
connected to ground and a curve tracer’s collector output drive  
connected to the input. As shown in the figure, when the input  
voltage exceeds either supply by more than 0.6 V, internal  
pn-junctions energize and permit current flow from the inputs  
to the supplies. If the current is not limited, the amplifier may  
be damaged. To prevent damage, the input current should be  
limited to no more than 5 mA.  
V+  
7
2
8
OP196  
6
6
4
100  
3
5
90  
4
1
2
0
100k⍀  
V–  
2  
10  
4  
Figure 3. Offset Nulling Circuit  
Driving Capacitive Loads  
OP196 family amplifiers are unconditionally stable with capaci-  
tive loads less than 170 pF. When driving large capacitive loads  
in unity-gain configurations, an in-the-loop compensation  
technique is recommended, as illustrated in Figure 4.  
0%  
6  
8  
1.5 1 0.5  
0
0.5  
1
1.5  
INPUT VOLTAGE V  
Figure 1. Input Overvoltage I-V Characteristics of the  
OPx96 Family  
R
R
G
F
Output Phase Reversal  
V
IN  
Some other operational amplifiers designed for single-supply  
operation exhibit an output voltage phase reversal when their  
inputs are driven beyond their useful common-mode range.  
Typically for single-supply bipolar op amps, the negative supply  
determines the lower limit of their common-mode range. With  
these common-mode limited devices, external clamping diodes  
are required to prevent input signal excursions from exceeding  
the device’s negative supply rail (i.e., GND) and triggering  
output phase reversal.  
C
F
R
X
V
OP296  
OUT  
C
L
R
R
G
O
R
=
WHERE R = OPEN-LOOP OUTPUT RESISTANCE  
O
X
R
F
) (R  
|
)
C R  
L O  
+ R  
I
F
G
C
I +  
(
|A  
R
CL  
F
The OPx96 family of op amps is free from output phase reversal  
effects due to its novel input structure. Figure 2 illustrates the  
performance of the OPx96 op amps when the input is driven  
beyond the supply rails. As previously mentioned, amplifier  
input current must be limited if the inputs are driven beyond  
Figure 4. In-the-Loop Compensation Technique for  
Driving Capacitive Loads  
–12–  
REV. E  
 
 
 
 
OP196/OP296/OP496  
A Micropower False-Ground Generator  
same potential and no current flows in R1. Since there is no  
current flow in R1, the same condition must exist in R2; thus,  
the output of the circuit tracks the input signal. When the input  
signal is below 0 V, the output voltage of A1 is forced to 0 V.  
This condition now forces A2 to operate as an inverting voltage  
follower because the noninverting terminal of A2 is also at 0 V.  
The output voltage of VOUTA is then a full-wave rectified  
version of the input signal. A resistor in series with A1’s  
noninverting input protects the ESD diodes when the input  
signal goes below ground.  
Some single supply circuits work best when inputs are biased  
above ground, typically at 1/2 of the supply voltage. In these  
cases, a false-ground can be created by using a voltage divider  
buffered by an amplifier. One such circuit is shown in Figure 5.  
This circuit will generate a false-ground reference at 1/2 of the  
supply voltage, while drawing only about 55 µA from a 5 V  
supply. The circuit includes compensation to allow for a 1 µF  
bypass capacitor at the false-ground output. The benefit of a  
large capacitor is that not only does the false-ground present a  
very low dc resistance to the load, but its ac impedance is low as well.  
Square Wave Oscillator  
The oscillator circuit in Figure 7 demonstrates how a rail-to-rail  
output swing can reduce the effects of power supply variations  
on the oscillator’s frequency. This feature is especially valuable  
in battery powered applications, where voltage regulation may  
not be available. The output frequency remains stable as the  
supply voltage changes because the RC charging current, which  
is derived from the rail-to-rail output, is proportional to the  
supply voltage. Since the Schmitt trigger threshold level is also  
proportional to supply voltage, the frequency remains relatively  
independent of supply voltage. For a supply voltage change  
from 9 V to 5 V, the output frequency only changes about 4 Hz.  
The slew rate of the amplifier limits the oscillation frequency to  
a maximum of about 200 Hz at a supply voltage of 5 V.  
5V OR 12V  
10k⍀  
0.022F  
240k⍀  
2
3
7
100⍀  
6
2.5V OR 6V  
OP196  
1F  
4
240k⍀  
1F  
Figure 5. A Micropower False-Ground Generator  
Single-Supply Half-Wave and Full-Wave Rectifiers  
An OP296, configured as a voltage follower operating from a  
single supply, can be used as a simple half-wave rectifier in low  
frequency (<400 Hz) applications. A full-wave rectifier can be  
configured with a pair of OP296s as illustrated in Figure 6.  
V+  
100k⍀  
59k⍀  
8
4
3
2
R2  
R1  
1
FREQ OUT  
1
100k⍀  
100k  
100k⍀  
1/2  
f
=
< 200Hz @ V+ = 5V  
RC  
OSC  
OP296/  
OP496  
5V  
8
R
V
A
6
5
OUT  
2k⍀  
2Vp-p  
500Hz  
FULL-WAVE  
RECTIFIED  
OUTPUT  
A2  
7
3
2
C
<
1
A1  
1/2  
OP296  
4
1/2  
OP296  
Figure 7. Square Wave Oscillator Has Stable Frequency  
Regardless of Supply Voltage Changes  
V
B
OUT  
HALF-WAVE  
RECTIFIED  
OUTPUT  
A 3 V Low Dropout, Linear Voltage Regulator  
Figure 8 shows a simple 3 V voltage regulator design. The regu-  
lator can deliver 50 mA load current while allowing a 0.2 V  
dropout voltage. The OP296’s rail-to-rail output swing easily  
drives the MJE350 pass transistor without requiring special  
drive circuitry. With no load, its output can swing to less than  
the pass transistor’s base-emitter voltage, turning the device  
nearly off. At full load, and at low emitter-collector voltages, the  
transistor beta tends to decrease. The additional base current is  
easily handled by the OP296 output.  
1V  
500mV  
500µs  
100  
90  
INPUT  
V
B
OUT  
(HALF-WAVE  
OUTPUT)  
f = 500Hz  
10  
V
A
0%  
OUT  
(FULL-WAVE  
OUTPUT)  
500mV  
The AD589 provides a 1.235 V reference voltage for the regula-  
tor. The OP296, operating with a noninverting gain of 2.43,  
drives the base of the MJE350 to produce an output voltage of  
3.0 V. Since the MJE350 operates in an inverting (common-  
emitter) mode, the output feedback is applied to the OP296’s  
noninverting input.  
Figure 6. Single-Supply Half-Wave and Full-Wave  
Rectifiers Using an OP296  
The circuit works as follows: When the input signal is above  
0 V, the output of amplifier A1 follows the input signal. Since  
the noninverting input of amplifier A2 is connected to A1’s  
output, op amp loop control forces A2’s inverting input to the  
same potential. The result is that both terminals of R1 are at the  
REV. E  
–13–  
 
 
OP196/OP296/OP496  
The next two DACs, B and C, sum their outputs into the other  
OP296 amplifier. In this circuit DAC C provides the coarse  
output voltage setting and DAC B is used for fine adjustment.  
The insertion of R1 in series with DAC B attenuates its contri-  
bution to the voltage sum node at the DAC C output.  
I
<
50mA  
L
MJE 350  
V
O
V
IN  
44.2k⍀  
1%  
100F  
5V TO 3.2V  
8
3
2
30.9k⍀  
1%  
1/2  
OP296  
1
A High-Side Current Monitor  
4
In the design of power supply control circuits, a great deal of  
design effort is focused on ensuring a pass transistor’s long-term  
reliability over a wide range of load current conditions. As a result,  
monitoring and limiting device power dissipation is of prime  
importance in these designs. The circuit illustrated in Figure 11  
is an example of a 5 V, single-supply high-side current monitor  
that can be incorporated into the design of a voltage regulator  
with fold-back current limiting or a high current power supply  
with crowbar protection. This design uses an OP296’s rail-to-  
rail input voltage range to sense the voltage drop across a 0.1 Ω  
current shunt. A p-channel MOSFET is used as the feedback  
element in the circuit to convert the op amp’s differential input  
voltage into a current. This current is then applied to R2 to gen-  
erate a voltage that is a linear representation of the load current.  
The transfer equation for the current monitor is given by:  
1000pF  
43k⍀  
1.235V  
AD589  
Figure 8. 3 V Low Dropout Voltage Regulator  
Figure 9 shows the regulator’s recovery characteristics when its  
output underwent a 20 mA to 50 mA step current change.  
2V  
50mA  
STEP  
CURRENT  
CONTROL  
100  
90  
WAVEFORM  
30mA  
RSENSE  
10  
× I  
L
OUTPUT  
Monitor Output = R2 ×  
0%  
R1  
10mV  
50µs  
For the element values shown, the Monitor Output’s transfer  
characteristic is 2.5 V/A.  
Figure 9. Output Step Load Current Recovery  
R
SENSE  
I
L
0.1  
Buffering a DAC Output  
5V  
5V  
®
Multichannel TrimDACs such as the AD8801/AD8803, are  
5V  
8
widely used for digital nulling and similar applications. These  
DACs have rail-to-rail output swings, with a nominal output  
resistance of 5 k. If a lower output impedance is required, an  
OP296 amplifier can be added. Two examples are shown in  
Figure 10. One amplifier of an OP296 is used as a simple buffer  
to reduce the output resistance of DAC A. The OP296 provides  
rail-to-rail output drive while operating down to a 3 V supply  
and requiring only 50 µA of supply current.  
R1  
100⍀  
3
2
1/2  
OP296  
4
1
S
D
G
M1  
3N163  
MONITOR  
OUTPUT  
R2  
2.49k⍀  
5V  
Figure 11. A High-Side Load Current Monitor  
V
V
REFH DD  
A Single-Supply RTD Amplifier  
OP296  
V
H
The circuit in Figure 12 uses three op amps on the OP496 to  
produce a bridge driver for an RTD amplifier while operating  
from a single 5 V supply. The circuit takes advantage of the  
OP496’s wide output swing to generate a bridge excitation  
voltage of 3.9 V. An AD589 provides a 1.235 V reference for  
the bridge current. Op amp A1 drives the bridge to maintain  
1.235 V across the parallel combination of the 6.19 kand  
2.55 Mresistors, which generates a 200 µA current source.  
This current divides evenly and flows through both halves of  
the bridge. Thus, 100 µA flows through the RTD to generate  
an output voltage which is proportional to its resistance. For  
improved accuracy, a 3-wire RTD is recommended to balance  
the line resistance in both 100 legs of the bridge.  
V
SIMPLE BUFFER  
0V TO 5V  
L
+4.983V  
V
H
+1.1mV  
V
L
R1  
100k  
V
H
SUMMER CIRCUIT  
WITH FINE TRIM  
ADJUSTMENT  
V
L
AD8801/  
AD8803  
V
GND  
REFL  
DIGITAL INTERFACING  
OMITTED FOR CLARITY  
Figure 10. Buffering a TrimDAC OutputTPC  
TrimDAC is a registered trademark of Analog Devices Inc.  
–14–  
REV. E  
 
 
 
 
OP196/OP296/OP496  
Amplifiers A2 and A3 are configured in a two op amp instru-  
mentation amplifier configuration. For ease of measurement,  
the IA resistors are chosen to produce a gain of 259, so that  
each 1°C increase in temperature results in a 10 mV increase in  
the output voltage. To reduce measurement noise, the band-  
width of the amplifier is limited. A 0.1 µF capacitor, connected  
in parallel with the 100 kresistor on amplifier A3, creates a  
pole at 16 Hz.  
GAIN = 259  
5V  
200⍀  
10-TURNS  
26.7k⍀  
26.7k⍀  
1/4  
OP496  
1/4  
OP496  
A3  
V
100⍀  
RTD  
OUT  
A2  
100⍀  
2.55M⍀  
392⍀  
100k⍀  
0.1F  
392⍀  
1/4  
OP496  
6.17k⍀  
20k⍀  
100k⍀  
A1  
NOTE:  
AD589  
37.4k⍀  
ALL RESISTORS 1% OR BETTER  
5V  
Figure 12. A Single-Supply RTD Amplifier  
CIN  
1
2
1P  
* OP496 SPICE Macro-model  
REV. C, 5/95  
ARG / ADSC  
*
*
*
* GAIN STAGE  
*
* Copyright 1995 by Analog Devices, Inc.  
EREF 98  
0
POLY(2)  
POLY(2)  
251.641MEG  
8P  
DX  
DX  
(99,0) (50,0) 0 0.5 0.5  
(6,5) (13,12) 0 10U 10U  
*
G1  
R10  
CC  
D1  
D2  
*
98  
15  
15  
15  
50  
15  
98  
49  
99  
15  
* Refer to “README.DOC” file for License Statement.  
* Use of this model indicates your acceptance of the  
* terms and provisions in the License Statement.  
*
* Node assignments  
*
Noninverting input  
Inverting input  
* COMMON-MODE STAGE  
*
*
*
Positive supply  
ECM 16  
98  
17  
98  
POLY(2)  
1MEG  
10  
(1,98) (2,98)  
0
0.5 0.5  
*
Negative supply  
Output  
R11  
R12  
*
16  
17  
*
*
*
* OUTPUT STAGE  
*
ISY  
.SUBCKT OP496  
1
2
99  
50  
49  
*
99  
50  
50  
35  
37  
37  
39  
38  
42  
40  
40  
41  
41  
43  
42  
43  
43  
45  
46  
46  
47  
47  
48  
51  
46  
48  
44  
20U  
POLY(1)  
* INPUT STAGE  
*
EIN 35  
Q24 37  
QD4 37  
Q27 40  
R5  
R6  
Q26 39  
QD5 40  
Q28 41  
QL1 37  
R7  
I4  
(15,98) 1.42735  
1
36  
50  
99  
99  
QN  
QP  
QP  
1
1
1
IREF 21  
QB1 21  
QB2 22  
50  
21  
21  
21  
22  
22  
4
1U  
99  
99  
99  
50  
50  
7
38  
99  
99  
99  
50  
50  
50  
50  
50  
50  
99  
99  
QP  
QP  
QP  
QN  
QN  
QN  
QN  
QN  
QN  
QP  
QP  
1
1
38  
36  
99  
150K  
45K  
50  
QB3  
4
1.5  
QB4 22  
QB5 11  
2
3
2
2
1
1
2
2
50  
50  
50  
99  
QN  
QN  
QN  
QP  
3
1
1
1
39  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
EOS  
Q7  
Q8  
Q9  
5
44  
6
4
8
99  
4
4
4
7
99  
99  
10.7K  
2U  
50  
4
8
50  
50  
3
99  
99  
12  
1
7
QD7 42  
QD6 43  
Q29 47  
Q30 44  
QD10 45  
50  
50  
50  
50  
50  
QN  
QN  
QN  
QN  
QN  
2
3
8
42  
2
2
POLY(1)  
(17,98) 35U  
1
44  
1
1.5  
1
1
9
50  
QN  
QN  
QP  
QP  
QP  
QP  
2
2
2
2
1
1
50  
3
10  
50  
99  
99  
99  
99  
50  
11  
11  
11  
11  
5
9
R9  
45  
175  
48  
Q10 13  
Q11 11  
Q12 11  
10  
Q31 46  
QD8 47  
QD9 48  
99  
99  
99  
QP  
QP  
QP  
1
1
5
9
48  
51  
10  
R1  
99  
99  
12  
13  
1
50K  
50K  
50K  
50K  
0.75N  
3.183P  
3.183P  
R8  
I5  
99  
99  
2.9K  
1U  
99  
R2  
6
R3  
R4  
IOS  
C10  
C11 12  
50  
50  
2
Q32 49  
Q33 49  
.MODEL  
.MODEL  
.MODEL  
.ENDS  
99  
50  
QP  
QN  
10  
4
50  
DX D()  
QN NPN(BF=120VAF=100)  
QP PNP(BF=80 VAF=60)  
5
6
13  
REV. E  
–15–  
 
OP196/OP296/OP496  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure13. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 14. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
–18–  
REV. E  
OP196/OP296/OP496  
3.10  
3.00  
2.90  
8
5
4
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
0.15  
0.05  
1.20  
MAX  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
Figure 15. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 16. 14-Lead Thin Shrink Small Outline Package  
(RU-14)  
Dimensions shown in millimeters  
REV. E  
–17–  
OP196/OP296/OP496  
ORDERING GUIDE  
Model1, 2  
OP196GSZ  
OP196GSZ-REEL  
OP196GSZ-REEL7  
OP296GSZ  
OP296GSZ-REEL  
OP296GSZ-REEL7  
OP296HRUZ-REEL  
OP496GS  
OP496GS-REEL  
OP496GS-REEL7  
OP496GSZ  
OP496GSZ-REEL  
OP496GSZ-REEL7  
OP496HRUZ-REEL  
Temperature Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead TSSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
Package Option  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
−40°C to +85°C (Ambient)  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RU-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
1 Z = RoHS Compliant Part.  
2 Note OP496GS, OP496GS-REEL, and OP496GS-REEL7 are not RoHS compliant parts.  
–18–  
REV. E  
 
 
OP196/OP296/OP496  
12/10—Rev. C to Rev. D  
REVISION HISTORY  
Change to Data Sheet Title ..............................................................1  
Deleted DIP Pin Configuration Figures.........................................1  
Changes to Absolute Maximum Ratings Table and Package  
Type Table, Moved Ordering Guide ...............................................5  
Updated Outline Dimensions........................................................16  
Changes to Ordering Guide...........................................................16  
9/11—Rev. D to Rev. E  
Changes to General Description Section.......................................1  
Changes to Electrical Specifications Table (@VS = 5.0 V),  
Output Voltage Swing High and Output Swing Low Parameters,  
Conditions Column ..........................................................................2  
Change to Electrical Specifications Table (@VS = 12.0 V),  
Output Swing Low Parameter, Conditions Column ....................4  
Changes to Ordering Guide...........................................................18  
1/02—Rev. B to Rev. C  
Edits to Typical Performance Characteristics .............................10  
©2002–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00312-0-9/11(E)  
REV. E  
–19–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY