OP297FS-REEL7 [ADI]

Dual Low Bias Current Precision Operational Amplifier; 双通道,低偏置电流精密运算放大器
OP297FS-REEL7
型号: OP297FS-REEL7
厂家: ADI    ADI
描述:

Dual Low Bias Current Precision Operational Amplifier
双通道,低偏置电流精密运算放大器

运算放大器
文件: 总16页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/21/97 4:00 PM  
Dual Low Bias Current  
Precision Operational Amplifier  
a
OP297  
FEATURES  
PIN CONNECTIONS  
Precision Performance in Standard SO-8 Pinout  
Low Offset Voltage: 50 V max  
Low Offset Voltage Drift: 0.6 V/؇C max  
Very Low Bias Current:  
Plastic Epoxy-DIP (P Suffix)  
8-Pin Cerdip (Z Suffix)  
8-Pin Narrow Body SOIC (S Suffix)  
␣ ␣ +25؇C (100 pA max)  
␣␣55؇C to +125؇C (450 pA max)  
Very High Open-Loop Gain (2000 V/mV min)  
Low Supply Current (Per Amplifier): 625 A max  
Operates From 62 V to 620 V Supplies  
High Common-Mode Rejection: 120 dB min  
Pin Compatible to LT1013, AD706, AD708, OP221,  
␣ ␣ LM158, and MC1458/1558 with Improved Performance  
OUT A 1  
8 V+  
B
A
–IN A  
+IN A  
V–  
2
3
4
7 OUT B  
6 –IN B  
5
+IN B  
APPLICATIONS  
Strain Gauge and Bridge Amplifiers  
High Stability Thermocouple Amplifiers  
Instrumentation Amplifiers  
Photo-Current Monitors  
High-Gain Linearity Amplifiers  
Long-Term Integrators/Filters  
Sample-and-Hold Amplifiers  
Peak Detectors  
Errors due to common-mode signals are eliminated by the  
OP297’s common-mode rejection of over 120 dB. The  
OP297’s power supply rejection of over 120 dB minimizes  
offset voltage changes experienced in battery powered systems.  
Supply current of the OP297 is under 625 µA per amplifier and  
it can operate with supply voltages as low as ±2 V.  
The OP297 utilizes a super-beta input stage with bias current  
cancellation to maintain picoamp bias currents at all tempera-  
tures. This is in contrast to FET input op amps whose bias  
currents start in the picoamp range at 25°C, but double for  
every 10°C rise in temperature, to reach the nanoamp range  
above 85°C. Input bias current of the OP 297 is under 100 pA  
at 25°C and is under 450 pA over the military temperature  
range.  
Logarithmic Amplifiers  
Battery-Powered Systems  
GENERAL DESCRIPTION  
The OP297 is the first dual op amp to pack precision perfor-  
mance into the space-saving, industry standard 8-pin SO pack-  
age. Its combination of precision with low power and extremely  
low input bias current makes the dual OP297 useful in a wide  
variety of applications.  
Combining precision, low power and low bias current, the  
OP297 is ideal for a number of applications including instru-  
mentation amplifiers, log amplifiers, photodiode preamplifiers  
and long-term integrators. For a single device, see the OP97;  
for a quad, see the OP497.  
Precision performance of the OP297 includes very low offset,  
under 50 µV, and low drift, below 0.6 µV/°C. Open-loop gain  
exceeds 2000 V/mV insuring high linearity in every application.  
400  
60  
I
B
1200 UNITS  
V
V
= ±15V  
T
V
V
= +25°C  
= ±15V  
S
A
= 0V  
CM  
S
40  
20  
= 0V  
CM  
300  
200  
100  
0
I
+
B
0
I
OS  
20  
–40  
–60  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
–75 50 –25  
0
25 50 75 100 125  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 1. Low Bias Current Over Temperature  
REV. D  
Figure 2. Very Low Offset  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1997  
8/21/97 4:00 PM  
OP297–SPECIFICATIONS  
(@ VS = ؎15 V, TA = +25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP297A/E  
OP297F  
OP297G  
Parameter  
Symbol Conditions  
Min Typ Max Min Typ Max Min Typ Max  
Units  
Input Offset Voltage  
Long-Term Input  
Voltage Stability  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise  
Voltage Density  
Input Noise Current Density  
Input Resistance  
VOS  
25  
50  
50  
100  
80  
200  
µV  
0.1  
20  
20  
0.5  
20  
17  
20  
0.1  
35  
35  
0.5  
20  
17  
20  
0.1  
50  
50  
0.5  
20  
17  
20  
µV/mo  
pA  
pA  
µV p-p  
nV/Hz  
nV/Hz  
fAHz  
IOS  
IB  
en p-p  
en  
en  
in  
VCM = 0 V  
VCM = 0 V  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 1000 Hz  
fO = 10 Hz  
100  
±100  
150  
±150  
200  
±200  
Differential Mode  
Input Resistance  
Common-Mode  
RIN  
30  
30  
30  
MΩ  
GΩ  
RINCM  
500  
500  
500  
Large-Signal  
VO = ±10 V  
Voltage Gain  
AVO  
IVR  
CMR  
PSR  
VO  
RL = 2 kΩ  
(Note 1)  
VCM = ±13 V  
VS = ±2 V to ±20 V 120  
RL = 10 kΩ  
RL = 2 kΩ  
2000 4000  
±13 ±14  
1500 3200  
±13 ±14  
1200 3200  
±13 ±14  
V/mV  
V
dB  
dB  
V
V
µA  
V
Input Voltage Range  
Common-Mode Rejection  
Power Supply Rejection  
Output Voltage Swing  
120  
140  
130  
114  
114  
135  
125  
114  
114  
135  
125  
±13 ±14  
±13 ±13.7  
525  
±13 ±14  
±13 ±13.7  
525  
±13 ±14  
±13 ±13.7  
525  
VO  
Supply Current Per Amplifier ISY  
Supply Voltage  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
No Load  
Operating Range  
625  
625  
625  
±20  
VS  
SR  
±2  
±20 ±2  
0.05 0.15  
±20 ±2  
0.05 0.15  
0.05 0.15  
500  
V/µs  
kHz  
dB  
GBWP AV = +1  
CS  
500  
150  
500  
150  
V
O = 20 V p–p  
150  
fO = 10 Hz  
Input Capacitance  
CIN  
3
3
3
pF  
NOTES  
1Guaranteed by CMR test.  
Specifications subject to change without notice.  
(@ VS = ؎15 V, –55؇C TA +125؇C for OP297A, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP297A  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Input Offset Voltage  
Average Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
Large-Signal Voltage Gain  
Input Voltage Range  
Common-Mode Rejection  
Power Supply Rejection  
Output Voltage Swing  
Supply Current Per Amplifier  
Supply Voltage  
VOS  
TCVOS  
IOS  
45  
0.2  
60  
60  
2700  
±13.5  
130  
125  
±13.4  
575  
100  
0.6  
450  
±450  
µV  
µV/°C  
pA  
pA  
V/mV  
V
dB  
dB  
V
VCM = 0 V  
VCM = 0 V  
VO = ±10 V, RL = 2 kΩ  
(Note 1)  
VCM = ±13  
VS = ±2.5 V to ±20 V  
RL = 10 kΩ  
No Load  
IB  
AVO  
IVR  
CMR  
PSR  
VO  
ISY  
VS  
1200  
±13  
114  
114  
±13  
750  
±20  
µA  
V
Operating Range  
±2.5  
NOTES  
1Guaranteed by CMR test.  
Specifications subject to change without notice.  
–2–  
REV. D  
8/21/97 4:00 PM  
OP297  
(@ V = ؎15 V, –40؇C T +85؇C for OP297E/F/G, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP297E  
Min Typ Max  
OP297F  
Min Typ  
OP297G  
Max Min Typ Max  
Parameter  
Symbol  
Conditions  
Units  
Input Offset Voltage  
Average Input Offset  
Voltage Drift  
Input Offset Current  
Input Bias Current  
Large-Signal Voltage Gain  
VOS  
35  
100  
80  
300  
110  
400  
µV  
TCVOS  
IOS  
IB  
0.2  
50  
50  
0.6  
450  
±450  
0.5  
80  
80  
2.0  
750  
±750  
0.6  
80  
80  
2.0  
750  
±750 pA  
µV/°C  
pA  
VCM = 0 V  
VCM = 0 V  
VO = ±10 V,  
RL = 2 kΩ  
(Note 1)  
VCM = ±13  
VS = ±2.5 V  
to ±20 V  
AVO  
1200 3200  
1000 2500  
±13 ±13.5  
700  
±13  
108  
2500  
±13.5  
130  
V/mV  
V
dB  
Input Voltage Range  
Common-Mode Rejection  
Power Supply Rejection  
IVR  
CMR  
PSR  
±13  
114  
±13.5  
130  
108  
130  
114  
±13  
0.15  
±13.4  
550  
108  
0.15  
±13 ±13.4  
550  
108  
±13  
0.3  
±13.4  
550  
dB  
V
µA  
V
Output Voltage Swing  
Supply Current Per Amplifier ISY  
Supply Voltage  
VO  
RL = 10 kΩ  
No Load  
Operating Range ±2.5  
750  
±20  
750  
±20  
750  
±20  
VS  
±2.5  
±2.5  
NOTES  
1Guaranteed by CMR test.  
Specifications subject to change without notice.  
(@ VS = ؎15 V, TA = +25؇C, unless otherwise noted.)  
Wafer Test Limits  
Parameter  
Symbol  
Conditions  
Limit  
Units  
Input Offset Voltage  
Input Offset Current  
VOS  
IOS  
200  
200  
µV max  
pA max  
VCM = 0 V  
VCM = 0 V  
VO = ±10 V, RL = 2 kΩ  
(Note 1)  
Input Bias Current  
IB  
±200  
1200  
±13  
114  
114  
±13  
625  
pA max  
V/mV min  
V min  
dB min  
dB min  
V min  
Large-Signal Voltage Gain  
Input Voltage Range  
Common-Mode Rejection  
Power Supply  
Output Voltage Swing  
Supply Current Per Amplifier  
AVO  
IVR  
CMR  
PSR  
VO  
VCM = ±13 V  
VS = ±2 V to ±l 8 V  
RL = 2 kΩ  
No Load  
ISY  
µA max  
NOTES  
1. Guaranteed by CMR test.  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
DICE CHARACTERISTICS  
Dimension shown in inches and (mm).  
Contact factory for latest dimensions  
+V  
OUTPUT A  
S
0.118 (3.00)  
–INPUT A  
+INPUT A  
OUTPUT B  
–INPUT B  
+INPUT B  
–V  
S
0.074 (1.88)  
REV. D  
–3–  
8/21/97 4:00 PM  
OP297  
ABSOLUTE MAXIMUM RATINGS1  
3
Package Type  
Units  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 40 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP297A (Z) . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
OP297E, F (Z) . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
OP297F, G (P, S) . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature  
8-Pin Cerdip (Z)  
8-Pin Plastic DIP (P)  
8-Pin SO (S)  
134  
96  
150  
12  
37  
41  
°C/W  
°C/W  
°C/W  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than ±20 V, the absolute maximum input voltage is equal  
to the supply voltage.  
3θJA is specified for worst case mounting conditions, i.e., θJA is specified for device in  
socket for cerdip and P-DIP, packages; θJA is specified for device soldered to printed  
circuit board for SO package.  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . .+300°C  
ORDERING GUIDE1  
Temperature Package  
Range  
Package  
Option1  
Model  
Description  
OP297AZ  
OP297EZ  
OP297EP  
OP297FP  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Plastic DIP  
8-Pin Plastic DIP  
8-Pin SO  
8-Pin SO  
8-Pin SO  
8-Pin Plastic DIP  
8-Pin SO  
8-Pin SO  
Q-8  
Q-8  
N-8  
N-8  
SO-8  
SO-8  
SO-8  
N-8  
SO-8  
SO-8  
SO-8  
OP297FS  
OP297FS-REEL  
OP297FS-REEL7  
OP297GP  
OP297GS  
OP297GS-REEL  
OP297GS-REEL72  
8-Pin SO  
NOTES  
1Burn-in is available on extended industrial temperature range parts in cerdip, and plastic DIP  
packages. For outline information see Package Information section.  
2For availability and burn-in information on SO packages, contact your local sales office.  
1/2  
OP-297  
V
20V @ 10Hz  
p-p  
1
+
2k  
50kΩ  
50Ω  
1/2  
V
2
OP-297  
+
V
1
CHANNEL SEPARATION = 20 log  
)
)
V /10000  
2
Figure 3. Channel Separation Test Circuit  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the OP297 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. D  
8/21/97 4:00 PM  
Typical Performance Characteristics–  
OP297  
400  
250  
200  
150  
100  
50  
400  
1200 UNITS  
T
V
V
= +25°C  
= ±15V  
= 0V  
1200  
UNITS  
T
V
V
= +25°C  
= ±15V  
= 0V  
A
1200 UNITS  
A
T
V
V
= +25°C  
= ±15V  
A
S
S
S
CM  
CM  
= 0V  
CM  
300  
200  
100  
300  
200  
100  
0
0
0
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET CURRENT (pA)  
INPUT BIAS CURRENT (pA)  
Figure 6. Typical Distribution of In-  
put Offset Current  
Figure 5. Typical Distribution of Input  
Bias Current  
Figure 4. Typical Distribution of Input  
Offset Voltage  
±3  
60  
60  
T
A
= +25°C  
= ±15V  
= 0V  
I –  
T
V
= +25°C  
= ±15V  
B
A
V
V
= ±15V  
S
V
V
S
S
= 0V  
CM  
40  
20  
40  
20  
I –  
B
CM  
I +  
B
I +  
B
±2  
±1  
0
0
0
I
OS  
I
OS  
–20  
–40  
–60  
20  
–40  
–60  
0
1
2
3
4
5
–15 –10  
–5  
0
5
10  
15  
–75 50 –25  
0
25 50 75 100 125  
TIME AFTER POWER APPLIED (MINUTES)  
COMMON-MODE VOLTAGE (VOLTS)  
TEMPERATURE (°C)  
Figure 9. Input Offset Voltage Warm-  
Up Drift  
Figure 8. Input Bias, Offset Current  
vs. Common-Mode Voltage  
Figure 7. Input Bias, Offset Current  
vs. Temperature  
100  
10000  
35  
BALANCED OR UNBALANCED  
BALANCED OR UNBALANCED  
30  
25  
T
= –55°C  
= +25°C  
A
V
V
= ±15V  
V
V
= ±15V  
S
S
= 0V  
= 0V  
CM  
CM  
T
A
20  
15  
10  
1
T
= +125°C  
1000  
100  
10  
A
10  
5
V
S
= ±15V  
OUTPUT SHORTED  
TO GROUND  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
T
= +125°C  
A
–55°C  
T 125°C  
A
T
= +25°C  
= –55°C  
A
A
T
A
= +25°C  
T
0.1  
10  
100  
1k  
10k  
100k 1M 10M  
100  
1k  
10k 100k  
1M  
10M 100M  
0
1
2
3
4
SOURCE RESISTANCE ()  
TIME FROM OUTPUT SHORT (MINUTES)  
SOURCE RESISTANCE ()  
Figure 10. Effective Offset Voltage  
vs. Source Resistance  
Figure 11. Effective TCVOS vs. Source  
Resistance  
Figure 12. Short Circuit Current vs.  
Time, Temperature  
REV. D  
–5–  
8/21/97 4:00 PM  
–Typical Performance Characteristics  
OP297  
1300  
1200  
1100  
1000  
900  
160  
140  
120  
100  
80  
140  
120  
100  
80  
NO LOAD  
T
V
= +25°C  
= ±15V  
T
V
= +25°C  
= ±15V  
A
A
S
S
T
= +125°C  
A
V = 10V  
S
p-p  
T
= +25°C  
A
60  
–PSR  
60  
+PSR  
100  
T
A
= –55°C  
±15  
40  
40  
20  
800  
0
20  
0.1  
1
10  
1k 10k 100k 1M  
1
10  
100  
1k  
10k  
100k 1M  
0
±5  
±10  
±20  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (VOLTS)  
Figure 13. Total Supply Current vs.  
Supply Voltage  
Figure 14. Noise Density vs.  
Frequency  
Figure 15. Open Loop Gain Linearity  
10000  
10  
100  
1000  
100  
10  
T
V
= +25°C  
= ±2V TO ±15V  
T
T
= –55°C  
A
T
V
= +25°C  
= ±2V TO ±20V  
A
A
S
T
= +25°C  
S
A
1
0.1  
0
= +125°C  
CURRENT  
NOISE  
A
10Hz  
1kHz  
1000  
VOLTAGE  
NOISE  
100  
10  
V
V
= ±15V  
= ±10V  
S
1kHz  
O
10Hz  
100  
0.01  
1
3
1
2
5
10  
20  
2
10  
3
10  
4
10  
5
10  
6
10  
7
10  
1
10  
100  
1000  
LOAD RESISTANCE (k)  
SOURCE RESISTANCE ()  
FREQUENCY (Hz)  
Figure 17. Total Noise Density vs.  
Source Resistance  
Figure 18. Maximum Output Swing  
vs. Load Resistance  
Figure 16. Common-Mode Rejection  
vs. Frequency  
35  
35  
R
V
= 10k  
= ±15V  
= 0V  
T
V
A
= +25°C  
= ±15V  
= +1  
VCL  
T
V
A
= +25°C  
= ±15V  
= +1  
L
A
A
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
S
S
S
V
CM  
VCL  
T
A
T
A
T
A
= +125°C  
= +25°C  
= –55°C  
1%THD  
= 10kΩ  
1%THD  
= 1kHz  
R
f
L
o
0
0
10  
1k  
100  
LOAD RESISTANCE ()  
10k  
100  
10k  
1k  
FREQUENCY (Hz)  
100k  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (VOLTS)  
Figure 21. Maximum Output Swing  
vs. Frequency  
Figure 20. Open Loop Gain vs. Load  
Resistance  
Figure 19. Power Supply Rejection  
vs. Frequency  
–6–  
REV. D  
8/21/97 4:00 PM  
OP297  
100  
1000  
100  
10  
70  
60  
50  
40  
30  
20  
10  
0
T
= +25°C  
V = ±15V  
S
V
C
R
= ±15V  
= 30pF  
= 1MΩ  
T
= +25°C  
= ±15V  
–EDGE  
A
S
A
80  
V
A
V
L
L
S
GAIN  
= +1  
= 100mV  
VCL  
OUT  
60  
p-p  
+EDGE  
PHASE  
40  
90  
T
= –55°C  
A
1
20  
0
135  
180  
225  
0.1  
0.01  
0.001  
–20  
–40  
T
= +125°C  
A
10  
100  
1k  
10k  
100k  
100  
1M  
1k  
10k  
100  
1M  
10M  
10  
1000  
100  
10000  
FREQUENCY (Hz)  
LOAD CAPACITANCE (pF)  
FREQUENCY (Hz)  
Figure 23. Small Signal Overshoot  
vs. Capacitance Load  
Figure 24. Open Loop Output  
Impedance vs Frequency  
Figure 22. Open Loop Gain,  
Phase vs. Frequency  
APPLICATIONS INFORMATION  
Extremely low bias current over the full military temperature  
range makes the OP297 attractive for use in sample-and-hold  
amplifiers, peak detectors, and log amplifiers that must operate  
over a wide temperature range. Balancing input resistances is  
not necessary with the OP297 Offset voltage and TCVOS are  
degraded only minimally by high source resistance, even when  
unbalanced.  
100  
90  
The input pins of the OP297 are protected against large differ-  
ential voltage by back-to-back diodes and current-limiting resis-  
tors. Common-mode voltages at the inputs are not restricted,  
and may vary over the full range of the supply voltages used.  
10  
0%  
20mV  
5µs  
The OP297 requires very little operating headroom about the  
supply rails, and is specified for operation with supplies as low  
as +2 V. Typically, the common-mode range extends to within  
one volt of either rail. The output typically swings to within one  
volt of the rails when using a 10 kload.  
Figure 26. Small-Signal Transient Response  
(CLOAD = 1000 pF, AVCL = +1)  
100  
90  
AC PERFORMANCE  
The OP297’S AC characteristics are highly stable over its full  
operating temperature range. Unity-gain small-signal response is  
shown in Figure 25. Extremely tolerant of capacitive loading on  
the output, the OP297 displays excellent response even with  
1000 pF loads (Figure 26).  
10  
0%  
20mV  
5µs  
100  
90  
Figure 27. Large-Signal Transient Response  
(AVCL = +1)  
GUARDING AND SHIELDING  
To maintain the extremely high input impedances of the  
OP297, care must be taken in circuit board layout and manu-  
10  
0%  
facturing. Board surfaces must be kept scrupulously clean and  
free of moisture. Conformal coating is recommended to provide  
20mV  
5µs  
Figure 25. Small-Signal Transient Response  
(CLOAD = 100 pF, AVCL = +1)  
REV. D  
–7–  
8/21/97 4:00 PM  
OP297  
UNITY-GAIN FOLLOWER  
NONINVERTING AMPLIFIER  
1/2  
1/2  
OP-297  
OP-297  
+
+
INVERTING AMPLIFIER  
MINI-DIP  
BOTTOM VIEW  
8
1
1/2  
OP-297  
A
+
B
Figure 28. Guard Ring Layout and Connections  
APPLICATIONS  
a humidity barrier. Even a clean PC board can have 100 pA of  
leakage currents between adjacent traces, so guard rings should  
be used around the inputs. Guard traces are operated at a volt-  
age close to that on the inputs, as shown in Figure 28, so that  
leakage currents become minimal. In noninverting applications,  
the guard ring should be connected to the common-mode volt-  
age at the inverting input. In inverting applications, both inputs  
remain at ground, so the guard trace should be grounded. Guard  
traces should be on both sides of the circuit board.  
PRECISION ABSOLUTE VALUE AMPLIFIER  
The circuit of Figure 30 is a precision absolute value amplifier  
with an input impedance of 30 M. The high gain and low  
TCVOS of the OP297 insure accurate operation with microvolt  
input signals. In this circuit, the input always appears as a  
common-mode signal to the op amps. The CMR of the OP297  
exceeds 120 dB, yielding an error of less than 2 ppm.  
+15V  
C
2
OPEN-LOOP GAIN LINEARITY  
0.1µF  
The OP297 has both an extremely high gain of 2000 V/mV  
minimum and constant gain linearity. This enhances the preci-  
sion of the OP297 and provides for very high accuracy in high  
closed loop gain applications. Figure 29 illustrates the typical  
open-loop gain linearity of the OP297 over the military tempera-  
ture range.  
R
R
3
1
1kΩ  
1kΩ  
D
C
30pF  
1
1
6
5
1N4148  
8
1/2  
OP-297  
2
3
7
D
2
1/2  
OP-297  
1
0V < V  
< 10V  
OUT  
+
V
+
IN  
1N4148  
C
3
4
R
2
R
= 10k  
= ±15V  
= 0V  
L
2kΩ  
V
V
S
0.1µF  
CM  
T
T
T
= +125°C  
= +25°C  
= –55°C  
A
A
A
–15V  
Figure 30. Precision Absolute Value Amplifier  
PRECISION CURRENT PUMP  
Maximum output current of the precision current pump shown  
in Figure 31 is ±10 mA. Voltage compliance is ± 10 V with  
±15 V supplies. Output impedance of the current transmitter  
exceeds 3 Mwith linearity better than 16 bits.  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (VOLTS)  
Figure 29. Open-Loop Linearity of the OP297  
–8–  
REV. D  
8/21/97 4:00 PM  
OP297  
PRECISION POSITIVE PEAK DETECTOR  
In Figure 32, the CH must be of polystyrene, Teflon®*, or poly-  
ethylene to minimize dielectric absorption and leakage. The  
droop rate is determined by the size of CH and the bias current  
of the OP297.  
SIMPLE BRIDGE CONDITIONING AMPLIFIER  
Figure 33 shows a simple bridge conditioning amplifier using  
the OP297. The transfer function is:  
R RF  
VOUT =VREF  
R + ∆R  
R
R
3
The REF43 provides an accurate and stable reference voltage  
for the bridge. To maintain the highest circuit accuracy, RF  
should be 0.1% or better with a low temperature coefficient.  
10kΩ  
R
1
2
3
+
R
5
10kΩ  
R
2
1/2  
1
I
OUT  
V
IN  
OP-297  
1k  
±10mA  
100Ω  
+
+15V  
8
10kΩ  
+15V  
1N4148  
0.1µF  
2
5
6
+
1/2  
6
5
1
8
2N930  
R
4
OP-297  
+
1k  
1/2  
OP-297  
7
3
1/2  
OP-297  
7
V
V
OUT  
IN  
1k  
+
4
10kΩ  
0.1µF  
C
H
4
–15V  
RESET  
1kΩ  
V
V
IN  
100Ω  
IN  
I
=
=
= 10mA/V  
OUT  
R
–15V  
5
Figure 32. Precision Positive Peak Detector  
Figure 31. Precision Current Pump  
+5V  
2
V
REF  
2.5V  
R
6
R
F
REF-43  
4
R
2
3
1
1/2  
OP-297  
V
OUT  
R
R + R  
+
+5V  
R  
R
F
V
V
REF  
=
OUT  
(
(
R + R  
R
6
5
8
1/2  
OP-297  
7
+
4
–5V  
Figure 33. A Simple Bridge Conditioning Amplifier Using the OP297  
*Teflon is a registered trademark of the Dupont Company  
REV. D  
–9–  
8/21/97 4:00 PM  
OP297  
Exponentiating both sides of the equation leads to:  
NONLINEAR CIRCUITS  
Due to its low input bias currents, the OP297 is an ideal log  
amplifier in nonlinear circuits such as the square and square-  
root circuits shown in Figures 34 and 35. Using the squaring  
circuit of Figure 34 as an example, the analysis begins by writing  
a voltage loop equation across transistors Q1, Q2, Q3 and Q4.  
2
(IIN  
)
IO  
=
IREF  
Op amp A2 forms a current-to-voltage converter which gives  
OUT = R2 × 10. Substituting (VIN/R1) for IIN and the above  
V
equation for IO yields:  
IIN  
IS1  
IIN  
IS2  
IO  
IS3  
IREF  
IS4  
VT1 ln  
+VT2 ln  
=VT3 ln  
+VT4 ln  
2
R2 VIN  
IREF R1  
VOUT  
=
All the transistors of the MAT04 are precisely matched and at  
the same temperature, so the IS and VT terms cancel, giving:  
A similar analysis made for the square-root circuit of Figure 35  
leads to its transfer function:  
2 ln IIN = ln IO + ln IREF = ln (IO × IREF  
)
(VIN )(IREF  
R1  
)
VOUT = R2  
C
2
100pF  
R
2
33k  
6
5
1/2  
OP-297  
2
7
V
OUT  
I
O
A
+
1
2
Q
1
7
3
6
Q
2
5
MAT-04E  
C
1
14  
Q
13  
8
Q
I
4
REF  
9
100pF  
3
V+  
8
12  
10  
R
1
I
IN  
2
3
V
IN  
R
3
1/2  
33kΩ  
1
OP-297  
A
+
50kΩ  
1
R
4
4
50kΩ  
–15V  
V–  
Figure 34. Squaring Amplifier  
–10–  
REV. D  
8/21/97 4:00 PM  
OP297  
R
2
33k  
C
2
100pF  
6
5
7
1/2  
OP-297  
V
OUT  
I
O
+
MAT-04E  
Q
1
3
1
I
I
IN  
REF  
2
6
C
1
14  
13  
9
Q
4
100pF  
V+  
12  
7
8
Q
Q
3
2
R
10  
5
1
2
8
V
IN  
R
R
3
5
33kΩ  
1
1/2  
OP-297  
3
50kΩ  
2kΩ  
R
4
+
4
50kΩ  
–15V  
V–  
Figure 35. Square-Root Amplifier  
In these circuits, IREF is a function of the negative power supply.  
To maintain accuracy, the negative supply should be well regu-  
lated. For applications where very high accuracy is required, a  
voltage reference may be used to set IREF. An important consid-  
eration for the squaring circuit is that a sufficiently large input  
voltage can force the output beyond the operating range of the  
output op amp. Resistor R4 can be changed to scale IREF, or R1,  
and R2 can be varied to keep the output voltage within the  
usable range.  
OP297 SPICE MACRO-MODEL  
Figures 36 and 37 show the node end net list for a SPICE  
macro model of the OP297. The model is a simplified version of  
the actual device and simulates important dc parameters such as  
VOS, IOS, IB, AVO, CMR, VO and ISY. AC parameters such as  
slew rate, gain and phase response and CMR change with fre-  
quency are also simulated by the model.  
The model uses typical parameters for the OP297. The poles  
and zeros in the model were determined from the actual open  
and closed-loop gain and phase response of the OP297. In this  
way, the model presents an accurate ac representation of the  
actual device. The model assumes an ambient temperature  
of 25°C.  
Unadjusted accuracy of the square-root circuit is better than  
0.1% over an input voltage range of 100 mV to 10 V. For a  
similar input voltage range, the accuracy of the squaring circuit  
is better than 0.5%.  
REV. D  
–11–  
8/21/97 4:00 PM  
OP297  
99  
R
R
6
V
3
4
2
13  
C
R
4
C
2
D
3
5
12  
8
15  
16  
R
R
2
1
IN2  
8
Q
Q
R
7
G
–IN  
1
C
3
2
E
1
9
1
R
3
1
11  
R
10  
R
I
D
2
D
1
C
IN  
OS  
98  
5
4
6
E
REF  
D
4
R
2
R
IN1  
+IN  
14  
+  
9
7
E
OS  
V
I
3
1
50  
C
6
C
7
R
11  
R
13  
22  
17  
R
15  
R
10  
G
3
R
12  
R
14  
G
C
8
C
5
E
2
E
3
2
98  
99  
D
7
D
8
G
R
18  
R
16  
6
I
SY  
D
5
V
4
26  
27  
+
22  
25  
L
1
23  
D
6
V
5
+
28  
29  
R
19  
R
17  
G
G
G
5
D
9
D
7
4
10  
50  
Figure 36. OP297 Macro-Model  
–12–  
REV. D  
8/21/97 4:00 PM  
OP297  
Table I. SPICE Net-List  
• POLE AT 1.8 MHz  
OP297 SPICE MACRO-MODEL  
• NODE ASSIGNMENTS  
R10  
C5  
G2  
17 98 1E6  
17 98 88 4E-15  
98 17 16 23 1 E-6  
•NONINVERTING INPUT  
INVERTING INPUT  
OUTPUT  
• COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ  
POSITIVE SUPPLY  
NEGATIVE SUPPLY  
R11  
C6  
R12  
E2  
18 19 1E6  
18 19 3.183E-9  
SUBCKT OP297 1 2 30 99 50  
19 98  
1
INPUT STAGE & POLE AT 6 MHz  
18 98 3 23 100E-3  
RIN1  
RIN2  
R1  
R2  
R3  
1
2
8
7
5
6
7
8
3
3
2500  
2500  
5E11  
5E11  
• POLE AT 6 MHz  
R15  
C8  
G3  
22 98 1E6  
22 98 26.53E-15  
98 22 17 23 1 E-6  
99 612  
99 612  
R4  
CIN  
C2  
7
5
8
6
3E-12  
21.67E-12  
• OUTPUT STAGE  
I1  
4
7
9
5
50 0.1E-3  
R16  
R17  
ISY  
R18  
R19  
L1  
G4  
G5  
G6  
G7  
V4  
23 99 160K  
23 50 160K  
99 50 331 E-6  
25 99 200  
IOS  
EOS  
Q1  
Q2  
R5  
8
7
8
9
4
4
9
8
20E-12  
POLY(1) 19 23 25E-6  
10 QX  
11 QX  
96  
1
6
25 50 200  
10  
11  
8
25 30 1 E-7  
28 50 22 25 5E-3  
29 50 25 22 5E-3  
25 99 99 22 5E-3  
50 25 22 50 5E-3  
26 25 1.8  
R6  
96  
DX  
DX  
D1  
D2  
EREF 98  
9
0
23  
0
1
V5  
25 27 1.3  
GAIN STAGE & DOMINANT POLE AT 0.13 HZ  
D5  
D6  
D7  
D8  
D9  
D10  
22 26 DX  
27 22 DX  
99 28 DX  
99 29 DX  
50 28 DY  
50 29 DY  
R7  
C3  
G1  
12 98 2.45E9  
12 98 500E-12  
98 12 5 6 1.634E-3  
V2  
V3  
D3  
D4  
99 13 1.5  
14 50 1.5  
12 13 DX  
14 12 DX  
• MODELS USED  
• MODEL QX NPN BF=2.5E6)  
• MODEL DX D IS = 1 E-15)  
• MODEL DY D IS = 1 E-15 BV = 50)  
• ENDS OP297  
• NEGATIVE ZERO AT -1 8 MHz  
R8  
C4  
R9  
E1  
15 16 1E6  
15 16 –88.4E-15  
16 98  
1
15 98 12 23 1E6  
REV. D  
–13–  
8/21/97 4:00 PM  
OP297  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.008 (0.204)  
8-Lead Cerdip  
(Q-8)  
0.055 (1.4)  
MAX  
0.005 (0.13)  
MIN  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
PIN 1  
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29)  
MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
0.070 (1.78)  
0.023 (0.58)  
0.100  
(2.54)  
BSC  
15°  
0°  
PLANE  
0.014 (0.36)  
0.030 (0.76)  
8-Lead Narrow Body (SOIC)  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
–14–  
REV. D  
–15–  
8/21/97 4:00 PM  
OP297  
–16–  
REV. D  

相关型号:

OP297FSZ

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297FSZ-REEL

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297FSZ-REEL7

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297FZ

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
ADI

OP297GBC

IC DUAL OP-AMP, 200 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, UUC8, 1.80 X 2.90 MM, DIE-8, Operational Amplifier
ADI

OP297GP

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GPZ

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GS

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GS-REEL

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GS-REEL7

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GSZ

Dual Low Bias Current Precision Operational Amplifier
ADI

OP297GSZ-REEL

Dual Low Bias Current Precision Operational Amplifier
ADI