OP297GSZ-REEL [ADI]

Dual Low Bias Current Precision Operational Amplifier; 双通道,低偏置电流精密运算放大器
OP297GSZ-REEL
型号: OP297GSZ-REEL
厂家: ADI    ADI
描述:

Dual Low Bias Current Precision Operational Amplifier
双通道,低偏置电流精密运算放大器

运算放大器
文件: 总16页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Low Bias Current  
Precision Operational Amplifier  
OP297  
FEATURES  
PIN CONFIGURATION  
Low offset voltage: 50 μV maximum  
1
2
3
4
8
7
6
5
V+  
OUTA  
–INA  
+INA  
V–  
Low offset voltage drift: 0.6 μV/°C maximum  
Very low bias current: 100 pA maximum  
Very high open-loop gain: 2000 V/mV minimum  
Low supply current (per amplifier): 625 μA maximum  
Operates from 2 V to 20 V supplies  
OUTB  
–INB  
+INB  
A
B
Figure 1.  
High common-mode rejection: 120 dB minimum  
60  
40  
V
V
= ±15V  
S
APPLICATIONS  
= 0V  
CM  
Strain gage and bridge amplifiers  
High stability thermocouple amplifiers  
Instrumentation amplifiers  
Photocurrent monitors  
High gain linearity amplifiers  
Long-term integrators/filters  
Sample-and-hold amplifiers  
Peak detectors  
20  
I
B
0
I
+
B
–20  
–40  
–60  
I
OS  
Logarithmic amplifiers  
Battery-powered systems  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
GENERAL DESCRIPTION  
Figure 2. Low Bias Current over Temperature  
The OP297 is the first dual op amp to pack precision perform-  
ance into the space saving, industry-standard 8-lead SOIC  
package. The combination of precision with low power and  
extremely low input bias current makes the dual OP297 useful  
in a wide variety of applications.  
400  
300  
200  
100  
0
1200 UNITS  
T
V
V
= 25°C  
= ±15V  
A
S
= 0V  
CM  
Precision performance of the OP297 includes very low offset,  
under 50 μV, and low drift, below 0.6 μV/°C. Open-loop gain  
exceeds 2000 V/mV, ensuring high linearity in every application.  
Errors due to common-mode signals are eliminated by the  
common-mode rejection of over 120 dB, which minimizes  
offset voltage changes experienced in battery-powered systems.  
The supply current of the OP297 is under 625 μA.  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
INPUT OFFSET VOLTAGE (µV)  
The OP297 uses a super-beta input stage with bias current  
cancellation to maintain picoamp bias currents at all tempera-  
tures. This is in contrast to FET input op amps whose bias  
currents start in the picoamp range at 25°C, but double for  
every 10°C rise in temperature, to reach the nanoamp range  
above 85°C. Input bias current of the OP297 is under 100 pA at  
25°C and is under 450 pA over the military temperature range  
per amplifier. This part can operate with supply voltages as low  
as 2 V.  
Figure 3. Very Low Offset  
Combining precision, low power, and low bias current, the  
OP297 is ideal for a number of applications, including instru-  
mentation amplifiers, log amplifiers, photodiode preamplifiers,  
and long term integrators. For a single device, see the OP97; for  
a quad device, see the OP497.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
OP297  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AC Performance ............................................................................9  
Guarding and Shielding................................................................9  
Open-Loop Gain Linearity ....................................................... 10  
Applications..................................................................................... 11  
Precision Absolute Value Amplifier......................................... 11  
Precision Current Pump............................................................ 11  
Precision Positive Peak Detector.............................................. 11  
Simple Bridge Conditioning Amplifier................................... 11  
Nonlinear Circuits...................................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configuration............................................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. 5  
Applications Information ................................................................ 9  
REVISION HISTORY  
2/06—Rev. E to Rev. F  
10/02—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Features.......................................................................... 1  
Deleted OP297 Spice Macro Model Section ................................. 9  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 14  
Edits to Figure 16...............................................................................6  
10/02—Rev. B to Rev. C  
Edits to Specifications.......................................................................2  
Deleted Wafer Test Limits ................................................................3  
Deleted Dice Characteristics............................................................3  
Deleted Absolute Maximum Ratings..............................................4  
Edits to Ordering Guide ...................................................................4  
Updated Outline Dimensions....................................................... 12  
7/03—Rev. D to Rev. E  
Changes to TPCs 13 and 16 ............................................................ 4  
Edits to Figures 12 and 14 ............................................................... 8  
Changes to Nonlinear Circuits Section ......................................... 8  
Rev. F | Page 2 of 16  
 
OP297  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP297E  
OP297F  
OP297G  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
VOS  
25  
50  
50  
100  
80  
200  
μV  
Long-Term Input  
Voltage Stability  
0.1  
20  
20  
0.5  
20  
17  
20  
0.1  
35  
35  
0.5  
20  
17  
20  
0.1  
50  
50  
0.5  
20  
17  
20  
μV/mo  
pA  
Input Offset Current  
Input Bias Current  
IOS  
VCM = 0 V  
100  
100  
150  
150  
200  
IB  
VCM = 0 V  
200  
pA  
Input Noise Voltage  
Input Noise Voltage Density  
en p-p  
en  
0.1 Hz to 10 Hz  
fO = 10 Hz  
ꢀV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
fO = 1000 Hz  
fO = 10 Hz  
Input Noise Current Density  
Input Resistance  
in  
Differential Mode  
RIN  
30  
30  
30  
MΩ  
GΩ  
Input Resistance  
Common-Mode  
RINCM  
500  
500  
500  
Large Signal  
VO = 10 V  
RL = 2 kΩ  
Voltage Gain  
AVO  
2000  
13  
4000  
14  
1500  
13  
3200  
14  
1200  
13  
3200  
14  
V/mV  
V
Input Voltage Range1  
Common-Mode Rejection  
Power Supply Rejection  
Output Voltage Swing  
VCM  
CMRR  
PSRR  
VO  
VCM  
=
13 V  
120  
120  
13  
140  
130  
14  
114  
114  
13  
135  
125  
14  
114  
114  
13  
135  
125  
14  
dB  
dB  
V
VS = 2 V to 20 V  
RL = 10 kΩ  
RL = 2 kΩ  
13  
13.7  
525  
13  
13.7  
525  
13  
13.7  
525  
V
Supply Current per Amplifier  
Supply Voltage  
ISY  
No Load  
625  
20  
625  
20  
625  
μA  
V
VS  
Operating Range  
2
2
2
20  
Slew Rate  
SR  
0.05  
0.15  
500  
150  
0.05  
0.15  
500  
150  
0.05  
0.15  
500  
150  
V/μs  
kHz  
dB  
Gain Bandwidth Product  
Channel Separation  
GBWP  
CS  
AV = +1  
VO = 20 V p-p  
fO = 10 Hz  
Input Capacitance  
CIN  
3
3
3
pF  
1 Guaranteed by CMR test.  
@ VS = 5 V, 40°C ≤ TA ≤ +85°C for OP297E/OP297F/OP297G, unless otherwise noted.  
Table 2.  
OP297E  
OP297F  
OP297G  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
VOS  
35  
100  
80  
300  
110  
400  
ꢀV  
Average Input Offset  
Voltage Drift  
TCVOS  
IOS  
0.2  
50  
50  
0.6  
0.5  
80  
80  
2.0  
0.6  
80  
80  
2.0  
ꢀV/°C  
pA  
Input Offset Current  
Input Bias Current  
Large Signal Voltage Gain  
VCM = 0 V  
VCM = 0 V  
VO = 10 V  
RL = 2 kΩ  
450  
450  
750  
750  
750  
750  
IB  
pA  
AVO  
1200  
13  
3200  
13.5  
130  
1000  
13  
2500  
13.5  
130  
800  
13  
2500  
13.5  
130  
V/mV  
V
Input Voltage Range1  
VCM  
Common-Mode Rejection  
Power Supply Rejection  
CMRR  
PSRR  
VCM  
=
13  
114  
108  
108  
dB  
VS = 2.5 V  
to 20 V  
114  
13  
0.15  
13.4  
550  
108  
13  
0.15  
13.4  
550  
108  
13  
0.3  
dB  
V
Output Voltage Swing  
Supply Current per Amplifier  
Supply Voltage  
VO  
ISY  
VS  
RL = 10 kΩ  
No Load  
13.4  
550  
750  
20  
750  
20  
750  
20  
ꢀA  
V
Operating Range  
2.5  
2.5  
2.5  
1 Guaranteed by CMR test.  
Rev. F | Page 3 of 16  
 
 
 
OP297  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Rating  
20 V  
20 V  
40 V  
Indefinite  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Input Voltage1  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
Z Package  
−65°C to +175°C  
−65°C to +150°C  
P, S Packages  
THERMAL RESISTANCE  
Operating Temperature Range  
OP297E (Z)  
OP297F, OP297G (P, S)  
Junction Temperature  
Z Package  
P, S Packages  
Lead Temperature  
(Soldering, 60 sec)  
−40°C to +85°C  
−40°C to +85°C  
θJA is specified for worst-case mounting conditions, that is, θJA  
is specified for device in socket for CERDIP and PDIP pack-  
ages; θJA is specified for device soldered to printed circuit board  
for the SOIC package.  
−65°C to +175°C  
−65°C to +150°C  
300°C  
Table 4. Thermal Resistance  
Package Type  
θJA  
134  
96  
θJC  
12  
37  
41  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead CERDIP (Z-Suffix)  
8-Lead PDIP (P-Suffix)  
8-Lead SOIC (S-Suffix)  
1 For supply voltages less than 20 V, the absolute maximum input voltage is  
equal to the supply voltage.  
150  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
1/2  
V
20V p-p @ 10Hz  
1
OP297  
+
2k  
50kΩ  
50Ω  
1/2  
OP297  
+
V
2
V
1
CHANNEL SEPARATION = 20 log  
V /10000  
2
Figure 4. Channel Separation Test Circuit  
Rev. F | Page 4 of 16  
 
 
OP297  
TYPICAL PERFORMANCE CHARACTERISTICS  
400  
60  
40  
V
V
= ±15V  
1200 UNITS  
T
V
V
= 25°C  
= ±15V  
S
A
= 0V  
CM  
S
= 0V  
CM  
300  
200  
20  
I
B
0
I
+
B
–20  
–40  
–60  
I
100  
0
OS  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
INPUT OFFSET VOLTAGE (pA)  
TEMPERATURE (°C)  
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Input Bias, Offset Current vs. Temperature  
250  
200  
60  
40  
20  
0
1200 UNITS  
T
V
V
= 25°C  
= ±15V  
V
= ±15V  
= 0V  
A
S
V
S
CM  
= 0V  
CM  
I
I
+
B
150  
100  
50  
B
I
OS  
–20  
–40  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
–15  
–10  
–5  
0
5
10  
15  
INPUT OFFSET VOLTAGE (pA)  
COMMON-MODE VOLTAGE (V)  
Figure 6. Typical Distribution of Input Bias Current  
Figure 9. Input Bias, Offset Current vs. Common-Mode Voltage  
400  
±3  
T
V
V
= 25°C  
= ±15V  
A
T
V
V
= 25°C  
= ±15V  
1200 UNITS  
A
S
S
= 0V  
CM  
= 0V  
CM  
300  
200  
100  
0
±2  
±1  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
INPUT OFFSET VOLTAGE (pA)  
TIME AFTER POWER APPLIED (Minutes)  
Figure 7. Typical Distribution of Input Offset Current  
Figure 10. Input Offset Voltage Warm-Up Drift  
Rev. F | Page 5 of 16  
 
OP297  
10000  
1300  
1200  
1100  
1000  
900  
BALANCED OR UNBALANCED  
NO LOAD  
V
= ±15V  
S
V
= 0V  
CM  
T
= +125°C  
A
1000  
100  
T
= +25°C  
= –55°C  
A
T
A
–55°C T +125°C  
A
T
= +25°C  
100  
A
800  
10  
10  
0
±5  
±10  
SUPPLY VOLTAGE (V)  
±15  
±20  
1k  
10k  
100k  
1M  
10M  
100M  
4
SOURCE RESISTANCE ()  
Figure 14. Total Supply Current vs. Supply Voltage  
Figure 11. Effective Offset Voltage vs. Source Resistance  
100  
160  
140  
120  
100  
BALANCED OR UNBALANCED  
V
V
T
V
= 25°C  
= ±15V  
A
= ±15V  
S
S
= 0V  
CM  
10  
1
80  
60  
40  
0.1  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
SOURCE RESISTANCE ()  
Figure 15. Common-Mode Rejection Frequency  
Figure 12. Effective TCVOS vs. Source Resistance  
160  
140  
120  
100  
35  
30  
25  
20  
15  
10  
T
= 25°C  
= ±15V  
A
T
= –55°C  
A
V
S
ΔV = 10V p-p  
S
T
= +25°C  
A
T
= +125°C  
A
V
= ±15V  
S
5
0
OUTPUT SHORTED  
TO GROUND  
–5  
–10  
–15  
80  
60  
40  
T
= +125°C  
= +25°C  
A
–20  
–25  
T
A
T
= –55°C  
A
–30  
–35  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
1
2
3
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT (Minutes)  
Figure 16. Power Supply Rejection vs. Frequency  
Figure 13. Short-Circuit Current vs. Time, Temperature  
Rev. F | Page 6 of 16  
OP297  
1000  
100  
1000  
100  
R
V
= 10k  
= ±15V  
= 0V  
T
V
= 25°C  
= ±2V TO ±15V  
L
A
S
S
V
CM  
T
= +125°C  
A
CURRENT  
NOISE  
T
= +25°C  
= –55°C  
A
0
T
A
VOLTAGE  
NOISE  
10  
10  
1
1000  
1
–15  
–10  
–5  
0
5
10  
15  
1
10  
100  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 17. Voltage Noise Density and Current Noise Density vs. Frequency  
Figure 20. Differential Input Voltage vs. Output Voltage  
10  
35  
30  
25  
T
V
= 25°C  
= ±2V TO ±20V  
T
= 25°C  
V = ±15V  
S
A
A
S
A
= +1  
VCL  
1% THD  
fO = 1kHz  
1
10Hz  
1kHz  
20  
15  
10  
5
0.1  
1kHz  
10Hz  
0.01  
10  
0
10  
2
3
4
5
6
7
10  
100  
1k  
10k  
10  
10  
10  
10  
LOAD RESISTANCE ()  
SOURCE RESISTANCE ()  
Figure 21. Output Swing vs. Load Resistance  
Figure 18. Total Noise Density vs. Source Resistance  
10000  
35  
30  
25  
20  
15  
10  
5
V
V
= ±15V  
= ±10V  
S
T
V
A
= 25°C  
= ±15V  
T
= –55°C  
A
A
O
S
T
= +25°C  
A
= +1  
VCL  
1% THD  
fO = 1kHz  
R
= 10kΩ  
L
T
= +125°C  
A
1000  
0
100  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1
2
3
4
5
6
7
8
9 10  
20  
LOAD RESISTANCE (k)  
Figure 22. Maximum Output Swing vs. Frequency  
Figure 19. Open-Loop Gain vs. Load Resistance  
Rev. F | Page 7 of 16  
OP297  
1000  
100  
100  
T
A
= 25°C  
= ±15V  
V
C
R
= ±15V  
= 30pF  
= 1MΩ  
S
V
S
L
L
80  
GAIN  
60  
10  
1
PHASE  
40  
20  
0
T
= –55°C  
A
0.1  
0.01  
0.001  
–20  
–40  
T
= +125°C  
1M  
A
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Open-Loop Gain, Phase vs. Frequency  
Figure 25. Open-Loop Output Impedance vs. Frequency  
70  
60  
T
V
A
V
= 25°C  
= ±15V  
A
S
= +1  
VCL  
OUT  
= 100mV p-p  
–EDGE  
50  
40  
+EDGE  
30  
20  
10  
0
0
100  
1000  
10000  
LOAD CAPACITANCE (pF)  
Figure 24. Small Signal Overshoot vs. Load Capacitance  
Rev. F | Page 8 of 16  
OP297  
APPLICATIONS INFORMATION  
Extremely low bias current over a wide temperature range  
makes the OP297 attractive for use in sample-and-hold  
amplifiers, peak detectors, and log amplifiers that must operate  
over a wide temperature range. Balancing input resistances is  
unnecessary with the OP297. Offset voltage and TCVOS are  
degraded only minimally by high source resistance, even  
when unbalanced.  
100  
90  
The input pins of the OP297 are protected against large differen-  
tial voltage by back-to-back diodes and current-limiting resistors.  
Common-mode voltages at the inputs are not restricted and can  
vary over the full range of the supply voltages used.  
10  
0%  
20mV  
5µs  
Figure 28. Large Signal Transient Response (AVCL = 1)  
The OP297 requires very little operating headroom about the  
supply rails and is specified for operation with supplies as low as  
2 V. Typically, the common-mode range extends to within 1 V  
of either rail. The output typically swings to within 1 V of the  
rails when using a 10 kΩ load.  
UNITY-GAIN FOLLOWER  
NONINVERTING AMPLIFIER  
AC PERFORMANCE  
1/2  
1/2  
OP297  
+
OP297  
+
The ac characteristics of the OP297 are highly stable over its full  
operating temperature range. Unity gain small signal response is  
shown in Figure 26. Extremely tolerant of capacitive loading on  
the output, the OP297 displays excellent response with 1000 pF  
loads (see Figure 27).  
MINI-DIP  
BOTTOM VIEW  
INVERTING AMPLIFIER  
8
1
100  
90  
A
1/2  
B
OP297  
+
Figure 29. Guard Ring Layout and Considerations  
10  
0%  
GUARDING AND SHIELDING  
20mV  
5µs  
To maintain the extremely high input impedances of the  
OP297, care is taken in circuit board layout and manufacturing.  
Board surfaces must be kept scrupulously clean and free of  
moisture. Conformal coating is recommended to provide a  
humidity barrier. Even a clean PC board can have 100 pA of  
leakage currents between adjacent traces, so guard rings should  
be used around the inputs. Guard traces operate at a voltage  
close to that on the inputs, as shown in Figure 29, to minimize  
leakage currents. In noninverting applications, the guard ring  
should be connected to the common-mode voltage at the  
inverting input. In inverting applications, both inputs remain at  
ground, so the guard trace should be grounded. Guard traces  
should be placed on both sides of the circuit board.  
Figure 26. Small Signal Transient Response (CLOAD = 100 pF, AVCL = 1)  
100  
90  
10  
0%  
20mV  
5µs  
Figure 27. Small Signal Transient Response (CLOAD = 1000 pF, AVCL = 1)  
Rev. F | Page 9 of 16  
 
 
 
 
OP297  
R
= 10k  
= ±15V  
= 0V  
L
S
OPEN-LOOP GAIN LINEARITY  
V
V
The OP297 has both an extremely high gain of 2000 V/mV  
minimum and constant gain linearity. This enhances the  
precision of the OP297 and provides for very high accuracy in  
high closed-loop gain applications. Figure 30 illustrates the  
typical open-loop gain linearity of the OP297 over the military  
temperature range.  
CM  
T
= +125°C  
A
T
= +25°C  
= –55°C  
A
0
T
A
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
Figure 30. Open-Loop Linearity of the OP297  
Rev. F | Page 10 of 16  
 
 
OP297  
APPLICATIONS  
PRECISION ABSOLUTE VALUE AMPLIFIER  
PRECISION POSITIVE PEAK DETECTOR  
The circuit in Figure 31 is a precision absolute value amplifier  
with an input impedance of 30 Mꢀ. The high gain and low  
TCVOS of the OP297 ensure accurate operation with microvolt  
input signals. In this circuit, the input always appears as a  
common-mode signal to the op amps. The CMR of the OP297  
exceeds 120 dB, yielding an error of less than 2 ppm.  
In Figure 33, the CH must be of polystyrene, Teflon®, or  
polyethylene to minimize dielectric absorption and leakage.  
The droop rate is determined by the size of CH and the bias  
current of the OP297.  
1k  
+15V  
+15V  
C2  
1N4148  
0.1µF  
2
3
0.1µF  
1/2  
1
6
5
R1  
1k  
R3  
1kΩ  
OP297  
+
1/2  
7
1kΩ  
V
V
OUT  
IN  
OP297  
+
1kΩ  
0.1µF  
C
H
C1  
5
D1  
RESET  
30pF  
1kΩ  
1N4148  
7
1/2  
OP297  
+
8
2N930  
2
3
–15V  
1/2  
OP297  
+
0V < V  
< 10V  
1
6
OUT  
D2  
1N4148  
Figure 33. Precision Positive Peak Detector  
V
IN  
R2  
2kΩ  
C3  
0.1µF  
4
SIMPLE BRIDGE CONDITIONING AMPLIFIER  
Figure 34 shows a simple bridge conditioning amplifier using  
the OP297. The transfer function is  
–15V  
Figure 31. Precision Absolute Value Amplifier  
R
R
ΔR  
R + ΔR  
F
VOUT =VREF  
PRECISION CURRENT PUMP  
Maximum output current of the precision current pump shown  
in Figure 32 is 10 mA. Voltage compliance is 10 V with  
15 V supplies. Output impedance of the current transmitter  
exceeds 3 MΩ with linearity better than 16 bits.  
The REF43 provides an accurate and stable reference voltage for  
the bridge. To maintain the highest circuit accuracy, RF should  
be 0.1% or better with a low temperature coefficient.  
15V  
R3  
10k  
R
F
V
REF  
R1  
10kΩ  
REF43  
4
2
3
R6  
10kΩ  
2
3
1/2  
I
OUT  
10mA  
1
R2  
10kΩ  
V
IN  
OP297  
+
1/2  
1
V
OUT  
R + ΔR  
OP297  
+
+15V  
8
5
6
+
R4  
10kΩ  
7
1/2  
OP297  
8
6
R
ΔR  
R + ΔR  
F
1/2  
OP297  
7
V
= V  
REF  
OUT  
R
5
+
4
V
V
IN  
IN  
I
=
=
= 10mA/V  
OUT  
R5  
100Ω  
–15V  
Figure 34. A Simple Bridge Condition Amplifier Using the OP297  
Figure 32. Precision Current Pump  
Rev. F | Page 11 of 16  
 
 
 
 
OP297  
R2  
33k  
NONLINEAR CIRCUITS  
C2  
100pF  
Due to its low input bias currents, the OP297 is an ideal log  
amplifier in nonlinear circuits such as the square and square  
root circuits shown in Figure 35 and Figure 36. Using the  
squaring circuit of Figure 35 as an example, the analysis begins  
by writing a voltage loop equation across Transistor Q1,  
Transistor Q2, Transistor Q3, and Transistor Q4.  
6
1/2  
OP297  
+
7
V
OUT  
I
O
5
I
REF  
MAT04E  
1
3
Q1  
6
IIN  
IS1  
IIN  
IS2  
IO  
IS3  
IREF  
IS4  
14  
Q4  
12  
13  
C1  
100pF  
VT1ln  
+VT2ln  
=VT3ln  
+VT 4ln  
7
8
Q3  
10  
9
Q2  
V+  
All the transistors of the MAT04 are precisely matched and at  
the same temperature, so the IS and VT terms cancel, where  
5
R1  
33kΩ  
8
2
R3  
50kΩ  
V
IN  
1/2  
1
2 ln IIN = ln IO + ln IREF = ln (IO × IREF  
)
OP297  
+
R4  
50kΩ  
3
4
Exponentiating both sides of the equation leads to  
–15V  
V–  
2
(
IIN  
IREF  
)
Figure 36. Square Root Amplifier  
IO  
=
In these circuits, IREF is a function of the negative power supply.  
To maintain accuracy, the negative supply should be well regu-  
lated. For applications where very high accuracy is required, a  
Op Amp A2 forms a current-to-voltage converter, which gives  
VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above  
equation for IO yields  
voltage reference can be used to set IREF  
.
2
V
R1  
An important consideration for the squaring circuit is that a  
sufficiently large input voltage can force the output beyond the  
operating range of the output op amp. Resistor R4 can be  
changed to scale IREF or R1; R2 can be varied to keep the output  
voltage within the usable range.  
R2  
IREF  
IN  
VOUT  
=
A similar analysis made for the square root circuit of Figure 36  
leads to its transfer function  
(
VIN )(IREF  
)
Unadjusted accuracy of the square root circuit is better than  
0.1% over an input voltage range of 100 mV to 10 V. For a  
similar input voltage range, the accuracy of the squaring circuit  
is better than 0.5%.  
VOUT = R2  
R1  
C2  
100pF  
R2  
33k  
6
1/2  
OP297  
+
7
V
OUT  
I
O
5
1
Q1  
2
7
Q2  
3
6
5
MAT04E  
14  
13  
8
I
Q4  
12  
REF  
9
C1  
100pF  
Q3  
10  
V+  
R1  
33kΩ  
8
2
R3  
50kΩ  
V
IN  
1/2  
OP297  
1
R4  
50kΩ  
3
+
4
–15V  
V–  
Figure 35. Squaring Amplifier  
Rev. F | Page 12 of 16  
 
 
 
 
 
OP297  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
8
5
PIN 1  
0.100 (2.54)  
0.310 (7.87)  
0.220 (5.59)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
1
4
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.015 (0.38)  
GAUGE  
0.130 (3.30)  
0.115 (2.92)  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
0.320 (8.13)  
0.290 (7.37)  
SEATING  
PLANE  
0.022 (0.56)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.018 (0.46)  
0.014 (0.36)  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 8-Lead Plastic Dual In-Line Package [PDIP]  
P-Suffix (N-8)  
Figure 38. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
Z-Suffix (Q-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 8-Lead Standard Small Outline Package (SOIC)  
Narrow Body  
S-Suffix (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 13 of 16  
 
OP297  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Options  
OP297EZ  
−40°C to +85°C  
8-Lead CERDIP  
Q-8  
OP297FP  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
OP297FPZ1  
OP297FS  
OP297FS-REEL  
OP297FS-REEL7  
OP297FSZ1  
OP297FSZ-REEL1  
OP297FSZ-REEL71  
OP297GP  
OP297GPZ1  
OP297GS  
OP297GS-REEL  
OP297GS-REEL7  
OP297GSZ1  
OP297GSZ-REEL1  
OP297GSZ-REEL71  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
R-8  
R-8  
R-8  
1 Z = PB-free part.  
Rev. F | Page 14 of 16  
 
 
 
OP297  
NOTES  
Rev. F | Page 15 of 16  
OP297  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00300-0-2/06(F)  
Rev. F | Page 16 of 16  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY