OP470GS-REEL [ADI]

QUAD OP-AMP, 1500uV OFFSET-MAX, 6MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16;
OP470GS-REEL
型号: OP470GS-REEL
厂家: ADI    ADI
描述:

QUAD OP-AMP, 1500uV OFFSET-MAX, 6MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16

运算放大器
文件: 总16页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Very Low Noise Quad  
Operational Amplifier  
a
OP470  
FEATURES  
PIN CONNECTIONS  
Very Low-Noise, 5 nV/÷Hz @ 1 kHz Max  
Excellent Input Offset Voltage, 0.4 mV Max  
Low Offset Voltage Drift, 2 V/C Max  
Very High Gain, 1000 V/mV Min  
Outstanding CMR, 110 dB Min  
Slew Rate, 2 V/s Typ  
Gain-Bandwidth Product, 6 MHz Typ  
Industry Standard Quad Pinouts  
Available in Die Form  
14-Lead Hermetic DIP  
16-Lead SOIC Package  
(S-Suffix)  
(Y-Suffix)  
14-Lead Plastic DIP  
(P-Suffix)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V+  
OP470  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
GENERAL DESCRIPTION  
OP470  
10 OUT C  
NC  
The OP470 is a high-performance monolithic quad operational  
amplifier with exceptionally low voltage noise, 5 nV/÷Hz at  
1 kHz max, offering comparable performance to ADI’s industry  
standard OP27.  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
9
8
–IN C  
OUT C  
NC = NO CONNECT  
The OP470 features an input offset voltage below 0.4 mV,  
excellent for a quad op amp, and an offset drift under 2 mV/C,  
guaranteed over the full military temperature range. Open loop  
gain of the OP470 is over 1,000,000 into a 10 kW load ensuring  
excellent gain accuracy and linearity, even in high gain applica-  
tions. Input bias current is under 25 nA, which reduces errors  
due to signal source resistance. The OP470’s CMR of over 110  
dB and PSRR of less than 1.8 mV/V significantly reduce errors  
due to ground noise and power supply fluctuations. Power  
consumption of the quad OP470 is half that of four OP27s, a  
significant advantage for power conscious applications. The  
OP470 is unity-gain stable with a gain bandwidth product of  
6 MHz and a slew rate of 2 V/ms.  
The OP470 offers excellent amplifier matching which is impor-  
tant for applications such as multiple gain blocks, low noise  
instrumentation amplifiers, quad buffers, and low noise active  
filters.  
The OP470 conforms to the industry standard 14-lead DIP  
pinout. It is pin compatible with the LM148/149, HA4741,  
HA5104, and RM4156 quad op amps and can be used to up-  
grade systems using these devices.  
For higher speed applications, the OP471, with a slew rate of 8  
V/ms, is recommended.  
SIMPLIFIED SCHEMATIC  
V+  
BIAS  
+IN  
–IN  
V–  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP470–SPECIFICATIONS  
(at V = 15 V, T = 25C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP470A/E  
OP470F  
OP470G  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Min Typ Max  
Unit  
INPUT OFFSET  
VOLTAGE  
VOS  
0.1 0.4  
0.2 0.8  
0.4 1.0  
mV  
INPUT OFFSET  
CURRENT  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
3
10  
6
20  
12  
25  
80  
30  
nA  
INPUT BIAS  
CURRENT  
6
25  
15  
80  
50  
60  
nA  
INPUT NOISE  
VOLTAGE  
enp-p  
0.1 Hz to 10 Hz  
(Note 1)  
80  
200  
200  
200  
nV p-p  
INPUT NOISE  
Voltage Density  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
(Note 2)  
3.8 6.5  
3.3 5.5  
3.2 5.0  
3.8 6.5  
3.3 5.5  
3.2 5.0  
3.8 6.5  
3.3 5.5  
3.2 5.0  
en  
nV÷Hz  
INPUT NOISE  
Current Density  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
1.7  
0.7  
0.4  
1.7  
0.7  
0.4  
1.7  
0 7  
0.4  
in  
pA÷Hz  
LARGE-SIGNAL  
Voltage Gain  
V = ±10 V  
RL = 10 kW  
RL = 2 kW  
AVO  
1000 2300  
800 1700  
800 1700  
V/mV  
500 1200  
±11 ±12  
±12 ±13  
110 125  
400 900  
±11 ±12  
±12 ±13  
100 120  
400 900  
±11 ±12  
±12 ±13  
100 120  
INPUT VOLTAGE  
RANGE  
IVR  
VO  
(Note 3)  
V
OUTPUT VOLTAGE  
SWING  
RL 2 kW  
V
COMMON-MODE  
REJECTION  
CMR  
VCM = ±11 V  
VS = ±4.5 V to ±18 V  
dB  
POWER SUPPLY  
REJECTION RATIO  
PSRR  
SR  
0.56 1.8  
1.0 5.6  
1.0 5.6  
mV/V  
V/ms  
SLEW RATE  
1.4  
2
1.4  
2
1.4  
2
SUPPLY CURRENT  
(All Amplifiers)  
ISY  
No Load  
AV = 10  
9
11  
9
11  
9
11  
mA  
MHz  
dB  
GAIN BANDWIDTH  
PRODUCT  
GBW  
CS  
6
6
6
CHANNEL  
SEPARATION  
VO = 20 V p-p  
125 155  
125 155  
125 155  
fO = 10 Hz (Note 1)  
INPUT  
CAPACITANCE  
CIN  
2
2
2
pF  
INPUT RESISTANCE RIN  
Differential-Mode  
0.4  
0.4  
0.4  
MW  
INPUT RESISTANCE  
Common-Mode  
RINCM  
tS  
11  
11  
11  
GW  
ms  
AV = 1  
to 0.1%  
to 0.01 %  
SETTLING TIME  
5.5  
6.0  
5.5  
6.0  
5.5  
6.0  
NOTES  
1Guaranteed but not 100% tested  
2Sample tested  
3Guaranteed by CMR test  
–2–  
REV. B  
OP470  
(at VS = 15 V, –55C £ TA £ 125C for OP470A, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP470A  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
VOS  
0.14  
0.6  
mV  
AVERAGE INPUT  
Offset Voltage Drift  
TCVOS  
IOS  
0.4  
5
2
mV/C  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VCM = 0 V  
VCM = 0 V  
20  
20  
IB  
15  
nA  
LARGE-SIGNAL  
Voltage Gain  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
AVO  
750  
400  
1600  
800  
V/mV  
*
INPUT VOLTAGE RANGE  
IVR  
VO  
±11  
±12  
±12  
±13  
V
V
OUTPUT VOLTAGE SWING  
RL 2 kW  
COMMON-MODE  
REJECTION  
CMR  
PSRR  
ISY  
VCM = ±11 V  
VS = ±4.5 V to ±18 V  
No Load  
100  
120  
1.0  
9.2  
dB  
POWER SUPPLY  
REJECTION RATIO  
5.6  
11  
mV/V  
mA  
SUPPLY CURRENT  
(All Amplifiers)  
*
Guaranteed by CMR test  
(at VS = 15 V, –25C £ TA £ 85C for OP470E/OP470EF, –40C £ TA £ 85C for OP470G,  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.)  
OP470E  
OP470F  
OP470G  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Min Typ Max  
Unit  
INPUT OFFSET  
VOLTAGE  
VOS  
0.12 0.5  
0.24 1.0  
0.5 1.5  
2
mV  
AVERAGE INPUT  
Offset Voltage Drift  
TCVOS  
0.4  
4
2
0.6  
7
4
mV/C  
nA  
INPUT OFFSET  
CURRENT  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
20  
50  
40  
70  
20  
40  
50  
75  
INPUT BIAS  
CURRENT  
11  
20  
nA  
LARGE-SIGNAL  
Voltage Gain  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
AVO  
800 1800  
400 900  
600 1400  
300 700  
600 1500  
300 800  
V/mV  
INPUT VOLTAGE  
*
RANGE  
IVR  
VO  
±11 ±12  
±12 ±13  
100 120  
±11 ±12  
±12 ±13  
±11 ±12  
±12 ±13  
V
OUTPUT VOLTAGE  
SWING  
RL 2 kW  
V
COMMON-MODE  
REJECTION  
CMR  
PSRR  
ISY  
VCM = ±11 V  
VS = ±4.5 V to ±18 V  
No Load  
90  
115  
90  
110  
dB  
mV/V  
mA  
POWER SUPPLY  
REJECTION RATIO  
0.7 5.6  
9.2 11  
1.8 10  
9.2 11  
1.8 10  
9.3 11  
SUPPLY CURRENT  
(All Amplifiers)  
*
Guaranteed by CMR test  
–3–  
REV. B  
OP470–SPECIFICATIONS  
WAFER TEST LIMITS (at VS = 15 V, 25C, unless otherwise noted.)  
OP470GBC  
Limit  
Parameter  
Symbol  
Conditions  
Unit  
INPUT OFFSET VOLTAGE  
VOS  
0.8  
20  
50  
mV Max  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
nA Max  
nA Min  
LARGE-SIGNAL  
Voltage Gain  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
AVO  
800  
400  
V/mV Min  
INPUT VOLTAGE RANGE  
*
IVR  
VO  
±11  
±12  
V Min  
V Min  
OUTPUT VOLTAGE SWING  
RL 2 kW  
COMMON-MODE  
REJECTION  
CMR  
PSRR  
ISY  
VCM = ±11 V  
VS = ±4.5 V to ±18 V  
No Load  
100  
5.6  
11  
dB  
POWER SUPPLY  
REJECTION RATIO  
mV/V Max  
mA Max  
SUPPLY CURRENT  
(All Amplifiers)  
NOTE  
*
Guaranteed by CMR test  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaran-  
teed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
–4–  
REV. B  
OP470  
ABSOLUTE MAXIMUM RATINGS1  
3
Package Type  
JA  
JC  
10  
33  
23  
Unit  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . ±1.0 V  
Differential Input Current2 . . . . . . . . . . . . . . . . . . . . ±25 mA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration . . . . . . . . . . . . . . .Continuous  
Storage Temperature Range  
P, Y Package . . . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300C  
Junction Temperature (Tj) . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
14-Lead Hermetic DIP(Y) 94  
C/W  
C/W  
C/W  
14-Lead Plastic DIP(P)  
76  
88  
16-Lead SOIC (S)  
NOTES  
1Absolute Maximum Ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2The OP470’s inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise performance. If differential  
voltage exceeds ±1.0 V, the input current should be limited to ±25 mA.  
3JA is specified for worst case mounting conditions, i.e., JA is specified for device  
in socket for TO, CerDIP, PDIP, packages; JA is specified for device soldered to  
printed circuit board for SOIC packages.  
OP470A . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125C  
OP470E, OP470F . . . . . . . . . . . . . . . . . . . –25C to +85C  
OP470G . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
+IN B  
V+  
+IN A  
ORDERING GUIDE  
Package Options  
–IN A  
–IN B  
T
A = 25C  
Operating  
Temperature  
Range  
VOS max  
(V)  
Cerdip  
14-Pin  
OUT A  
Plastic  
OUT B  
400  
MIL  
400  
400  
800  
OP470AY*  
OP470EY  
OP470FY*  
MIL  
IND  
IND  
OUT D  
–IN D  
OUT C  
1000  
1000  
OP470GP  
OP470GS  
XIND  
XIND  
*Not for new design; obsolete April 2002.  
For military processed devices, please refer to the standard  
Microcircuit Drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp  
–IN C  
+IN C  
V–  
+IN D  
DIE SIZE 0.163 0.106 INCH, 17,278 SQ. mm  
(4.14 2.69 mm, 11.14 SQ. mm)  
Figure 1. Dice Characteristics  
SMD Part Number  
ADI Equivalent  
59628856501CA  
596288565012A  
OP470AYMDA  
OP470ARCMDA  
OP470ATCMDA  
596288565013A  
*
*
Not for new designs; obsolete April 2002.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP470 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
OP470Typical Performance Characteristics  
10  
9
5
4
3
2
1
T
= 25C  
T
= 25C  
= 15V  
A
A
S
8
1s  
5mV  
V
7
6
5
AT 10Hz  
AT 1kHz  
100  
90  
4
3
2
10  
0%  
I/F CORNER = 5Hz  
T
= 25C  
= 15V  
A
S
V
0
2
4
6
8
10  
1
TIME – Secs  
0
5  
10  
15  
20  
1
10  
100  
1k  
SUPPLYVOLTAGE V  
FREQUENCY – Hz  
TPC 1. Voltage Noise Density vs.  
Frequency  
TPC 2. Voltage Noise Density vs.  
Supply Voltage  
TPC 3. 0.1 Hz to 10 Hz Noise  
10.0  
140  
10  
9
8
7
6
5
4
3
2
1
0
T
= 25C  
A
S
V
= 15V  
T
= 25C  
S
A
S
V
= 15V  
V
= 15V  
120  
100  
80  
60  
40  
20  
0
1.0  
I/F CORNER = 200Hz  
100  
0.1  
–75 –50 –25  
0
25  
50 75 100 125  
10  
1k  
10k  
0
1
2
3
4
5
TEMPERATURE – C  
TIME – Mins  
FREQUENCY – Hz  
TPC 4. Current Noise Density vs.  
Frequency  
TPC 5. Input Offset Voltage vs.  
Temperature  
TPC 6. Warm-Up Offset Voltage Drift  
20  
10  
9
V
V
= 15V  
CM  
T
= 25C  
V
V
= 15V  
CM  
S
A
S
S
9
8
= 0V  
V
= 15V  
= 0V  
8
7
6
5
15  
10  
7
6
5
4
3
2
1
0
5
0
4
–75 –50 –25  
0
25 50  
75 100 125  
–75 –50 –25  
0
25  
50 75 100 125  
TEMPERATURE – C  
–12.5  
–7.5  
–2.5  
2.5  
7.5  
12.5  
TEMPERSTURE – C  
COMMON-MODEVOLTAGE V  
TPC 8. Input Offset Current vs.  
Temperature  
TPC 7. Input Bias Current vs.  
Temperature  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
–6–  
REV. B  
OP470  
130  
120  
110  
100  
90  
10  
8
10  
9
T
= 25C  
= 15V  
A
S
V = 15V  
S
T
= +25C  
V
A
8
T
= +125C  
A
7
80  
70  
60  
50  
40  
30  
20  
10  
T
= –55C  
A
6
6
5
4
4
3
2
2
0
5  
10  
15  
20  
–75 –50 –25  
0
25 50  
75 100 125  
1
10  
100  
1k  
10k 100k  
1M  
SUPPLYVOLTAGE V  
FREQUENCY – Hz  
TEMPERSTURE – C  
TPC 12. Total Supply Current vs.  
Supply Voltage  
TPC 10. CMR vs. Frequency  
TPC 11. Total Supply Current vs.  
Supply Voltage  
80  
60  
40  
20  
0
140  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
T
= 25C  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
T
= 25C  
A
S
A
V
= 15V  
–PSR  
+PSR  
20  
10  
0
20  
10  
0
–20  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY – Hz  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY – Hz  
TPC 14. Open-Loop Gain vs. Frequency  
TPC 13. PSR vs. Frequency  
TPC 15. Closed-Loop Gain vs.  
Frequency  
25  
20  
15  
80  
80  
70  
60  
50  
40  
8
6
4
2
0
5000  
T
= 25C  
V = 15V  
S
T
= 25C  
A
PHASE  
GAIN  
A
S
R = 10kꢅ  
L
V
= 15V 100  
GBW  
4000  
3000  
2000  
1000  
0
120  
140  
10  
5
PHASE MARGIN  
= 58ꢁ  
160  
180  
200  
220  
0
–5  
–10  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – C  
0
5  
10  
15  
20  
25  
10  
6 7 8 9  
1
2
3
4
5
SUPPLYVOLTAGE V  
FREQUENCY – MHz  
TPC 18. Gain-Bandwidth Product,  
Phase Margin vs. Temperature  
TPC 16. Open-Loop Gain, Phase  
Shift vs. Frequency  
TPC 17. Open-Loop Gain vs. Supply  
Voltage  
–7–  
REV. B  
OP470  
28  
24  
20  
16  
12  
8
20  
18  
100  
80  
T
= 25C  
T
= 25C  
A
S
A
S
T
= 25C  
= 15V  
= 100mV  
= 1  
A
S
IN  
V
V
= 15V  
V
= 15V  
V
V
THD = 1%  
16  
14  
12  
10  
8
A
POSITIVE  
SWING  
60  
40  
20  
0
NEGATIVE  
SWING  
6
4
4
2
0
0
0
200  
400  
600  
800  
1000  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
LOAD RESISTANCE – ꢅ  
10k  
CAPACITIVE LOAD – pF  
TPC 19. Maximum Output Swing vs.  
Frequency  
TPC 20. Maximum Output Voltage  
vs. Load Resistance  
TPC 21. Small-Signal Overshoot vs.  
Capacitive Load  
360  
4.0  
170  
T
= 25C  
T
= 25C  
A
S
O
A
S
V
= 15V  
160  
150  
140  
130  
120  
110  
S
V
V
= 15V  
V
= 15V  
300  
240  
180  
120  
3.5  
3.0  
2.5  
2.0  
= 20V p-pTO 10kHz  
–SR  
+SR  
100  
90  
A
V
= 100  
80  
70  
60  
0
1.5  
1.0  
A
= 1  
V
60  
50  
100  
1k  
10k 100k  
FREQUENCY – Hz  
1M  
10M 100M  
–75 –50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE – C  
FREQUENCY – Hz  
TPC 23. Slew Rate vs. Temperature  
TPC 22. Output Impedance vs.  
Frequency  
TPC 24. Channel Separation vs.  
Frequency  
1
T
= 25C  
A
S
O
L
T
= 25C  
= 15V  
= 1  
T
= 25C  
= 15V  
= 1  
A
S
V
A
S
V
V
V
= 15V  
= 10V p-p  
= 2kꢅ  
V
V
100  
90  
100  
90  
A
A
R
0.1  
0.01  
10  
0%  
10  
0%  
A
= –10  
V
20µs  
0.2µs  
50mV  
5V  
A
= 1  
V
0.001  
10  
100  
1k  
10k  
FREQUENCY – Hz  
TPC 27. Small-Signal Transient  
Response  
TPC 26. Large-Signal Transient  
Response  
TPC 25. Total Harmonic Distortion  
vs. Frequency  
–8–  
REV. B  
OP470  
5kꢅ  
The total noise is referred to the input and at the output would  
be amplified by the circuit gain. Figure 4 shows the relationship  
between total noise at 1 kHz and source resistance. For RS < 1 kW  
the total noise is dominated by the voltage noise of the OP470.  
As RS rises above 1 kW, total noise increases and is dominated  
by resistor noise rather than by voltage or current noise of the  
OP470. When RS exceeds 20 kW, current noise of the OP470  
becomes the major contributor to total noise.  
500ꢅ  
1/4  
V
V
20V p-p  
1
OP470  
50kꢅ  
50ꢅ  
Figure 5 also shows the relationship between total noise and  
source resistance, but at 10 Hz. Total noise increases more  
quickly than shown in Figure 4 because current noise is inversely  
proportional to the square root of frequency. In Figure 5, current  
noise of the OP470 dominates the total noise when RS > 5 kW.  
1/4  
2
OP470  
V
1
CHANNEL SEPARATION = 20 LOG  
V /1000  
2
From Figures 4 and 5 it can be seen that to reduce total noise,  
source resistance must be kept to a minimum. In applications  
with a high source resistance, the OP400, with lower current  
noise than the OP470, will provide lower total noise.  
Figure 2. Channel Separation Test Circuit  
+18V  
2
3
6
5
100  
4
1
7
A
B
D
+1V  
–1V  
+1V  
–1V  
11  
–18V  
OP11  
OP400  
OP471  
10  
9
13  
12  
8
14  
C
10  
OP470  
RESISTOR  
NOISE ONLY  
Figure 3. Burn-In Circuit  
1
100  
1k  
10k  
100k  
APPLICATIONS INFORMATION  
Voltage and Current Noise  
R
– SOURCE RESISTANCE ꢅ  
S
Figure 4. Total Noise vs. Source Resistance (Including  
Resistor Noise) at 1 kHz  
The OP470 is a very low-noise quad op amp, exhibiting a typi-  
cal voltage noise of only 3.2 nV÷Hz @ 1 kHz. The exceptionally  
low-noise characteristics of the OP470 are in part achieved by  
operating the input transistors at high collector currents since  
the voltage noise is inversely proportional to the square root of  
the collector current. Current noise, however, is directly propor-  
tional to the square root of the collector current. As a result, the  
outstanding voltage noise performance of the OP470 is gained  
at the expense of current noise performance, which is typical for  
low noise amplifiers.  
100  
OP11  
OP400  
10  
OP471  
To obtain the best noise performance in a circuit, it is vital to  
understand the relationship between voltage noise (en), current  
noise (in), and resistor noise (et).  
OP470  
RESISTOR  
NOISE ONLY  
TOTAL NOISE AND SOURCE RESISTANCE  
The total noise of an op amp can be calculated by:  
1
100  
1k  
10k  
100k  
R
– SOURCE RESISTANCE ꢅ  
S
2
2
2
En =  
e
+ i R  
+ e  
) ( )  
( )  
(
n
n
S
t
Figure 5. Total Noise vs. Source Resistance (Including  
Resistor Noise) at 10 Hz  
where:  
En = total input referred noise  
en = up amp voltage noise  
in = op amp current noise  
et = source resistance thermal noise  
RS = source resistance  
REV. B  
–9–  
OP470  
Figure 6 shows peak-to-peak noise versus source resistance over  
the 0.1 Hz to 10 Hz range. Once again, at low values of RS, the  
voltage noise of the OP470 is the major contributor to peak-to-peak  
noise with current noise the major contributor as RS increases.  
The crossover point between the OP470 and the OP400 for  
peak-to-peak noise is at RS = 17 kW.  
Table I.  
Device  
Impedance  
Source  
Comments  
Strain gage  
<500 W  
Typically used in  
low frequency applications.  
The OP471 is a higher speed version of the OP470, with a slew  
rate of 8 V/ms. Noise of the OP471 is only slightly higher than  
the OP470. Like the OP470, the OP471 is unity-gain stable.  
Magnetic  
tapehead  
<1500 W  
Low IB very important to reduce  
self-magnetization problems  
when direct coupling is used.  
OP470 IB can be neglected.  
1000  
OP11  
Magnetic  
phonograph  
cartridges  
<1500 W  
Similar need for low IB in direct  
coupled applications. OP470  
will not introduce any self-  
magnetization problem.  
OP400  
OP471  
Linear variable <1500 W  
differential  
transformer  
Used in rugged servo-feedback  
applications. Bandwidth of  
interest is 400 Hz to 5 kHz.  
100  
OP470  
For further information regarding noise calculations, see “Minimization of Noise  
in Op Amp Applications,” Application Note AN-15.  
RESISTOR  
NOISE ONLY  
NOISE MEASUREMENTS—  
PEAK-TO-PEAK VOLTAGE NOISE  
10  
100  
1k  
10k  
100k  
The circuit of Figure 7 is a test setup for measuring peak-to-peak  
voltage noise. To measure the 200 nV peak-to-peak noise speci-  
fication of the OP470 in the 0.1 Hz to 10 Hz range, the following  
precautions must be observed:  
R
– SOURCE RESISTANCE ꢅ  
S
Figure 6. Peak-To-Peak Noise (0.1 Hz to 10 Hz) vs. Source  
Resistance (Includes Resistor Noise)  
1. The device must be warmed up for at least five minutes. As  
shown in the warm-up drift curve, the offset voltage typi-  
cally changes 5 mV due to increasing chip temperature after  
power-up. In the 10-second measurement interval, these  
temperature-induced effects can exceed tens of nanovolts.  
For reference, typical source resistances of some signal sources  
are listed in Table I.  
2. For similar reasons, the device must be well-shielded from  
air currents. Shielding also minimizes thermocouple effects.  
3. Sudden motion in the vicinity of the device can also “feedthrough”  
to increase the observed noise.  
R3  
1.24kꢅ  
R1  
5ꢅ  
C1  
OP470  
DUT  
R2  
2F  
5ꢅ  
OP27E  
C4  
R6  
0.22F  
R5  
909ꢅ  
600kꢅ  
R10  
R11  
65.4kꢅ  
65.4kꢅ  
R4  
D1  
D2  
R14  
OP15E  
R9  
200ꢅ  
1N4148  
1N4148  
4.99kꢅ  
C3  
e
OUT  
OP15E  
0.22F  
C5  
306kꢅ  
1F  
R13  
5.9kꢅ  
R8  
10kꢅ  
C2  
R12  
0.032F  
10kꢅ  
GAIN = 50,000  
= 5V  
V
S
Figure 7. Peak-To-Peak Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
–10–  
REV. B  
OP470  
4. The test time to measure 0.1 Hz to 10 Hz noise should not ex-  
ceed 10 seconds. As shown in the noise-tester frequency-response  
curve of Figure 8, the 0.1 Hz corner is defined by only one pole.  
The test time of 10 seconds acts as an additional pole to elimi-  
nate noise contribution from the frequency band below 0.1 Hz.  
The OP470 is a monolithic device with four identical amplifiers.  
The noise voltage density of each individual amplifier will match,  
giving:  
Ê
2 ˆ  
¯
eOUT = 101 4en  
= 101 2e  
n
(
)
Ë
5. A noise-voltage-density test is recommended when measuring  
noise on a large number of units. A 10 Hz noise voltage-density  
measurement will correlate well with a 0.1 Hz to 10 Hz  
peak-to-peak noise reading, since both results are determined  
by the white noise and the location of the 1/f corner frequency.  
NOISE MEASUREMENT—CURRENT NOISE DENSITY  
The test circuit shown in Figure 10 can be used to measure  
current noise density. The formula relating the voltage output to  
current noise density is:  
6. Power should be supplied to the test circuit by well bypassed  
low noise supplies, e.g. batteries. These will minimize output  
noise introduced via the amplifier supply pins.  
Ê nOUT ˆ2  
2
- 40nV / Hz  
Á
˜
(
)
G
Ë
¯
in =  
100  
80  
60  
40  
20  
0
RS  
where:  
G = gain of 10000  
RS = 100 kW source resistance  
R3  
1.24kꢅ  
R2  
R1  
100kꢅ  
5ꢅ  
OP470  
DUT  
e
OUT TO  
OP27E  
n
SPECTRUM ANALYZER  
R5  
8.06kꢅ  
0.01  
0.1  
1
10  
100  
FREQUENCY – Hz  
R4  
200ꢅ  
GAIN = 50,000  
= 5V  
Figure 8. 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise Test  
Circuit Frequency Response  
V
S
Figure 10. Current Noise Density Test Circuit  
NOISE MEASUREMENT—NOISE VOLTAGE DENSITY  
The circuit of Figure 9 shows a quick and reliable method of  
measuring the noise voltage density of quad op amps. Each  
individual amplifier is series-connected and is in unity-gain, save  
the final amplifier which is in a noninverting gain of 101. Since  
the ac noise voltages of each amplifier are uncorrelated, they  
add in rms fashion to yield:  
Ê
2 ˆ  
¯
2
2
2
eOUT = 101 enA + enB + enC + enD  
Ë
R1  
R2  
100ꢅ  
10kꢅ  
1/4  
e
OUT  
OP470  
1/4  
OP470  
TO SPECTRUM ANALYZER  
1/4  
OP470  
1/4  
OP470  
e
V
(nV Hz) = 101(2e )  
n
OUT  
= 15V  
S
Figure 9. Noise Voltage Density Test Circuit  
REV. B  
–11–  
OP470  
R1  
CAPACITIVE LOAD DRIVING AND POWER  
SUPPLY CONSIDERATIONS  
The OP470 is unity-gain stable and is capable of driving large  
capacitive loads without oscillating. Nonetheless, good supply  
bypassing is highly recommended. Proper supply bypassing  
reduces problems caused by supply line noise and improves the  
capacitive load driving capability of the OP470.  
OP470  
2V/s  
In the standard feedback amplifier, the op amp’s output resistance  
combines with the load capacitance to form a low pass filter that  
adds phase shift in the feedback network and reduces stability.  
A simple circuit to eliminate this effect is shown in Figure 11.  
The added components, C1 and R3, decouple the amplifier  
from the load capacitance and provide additional stability. The  
values of C1 and R3 shown in Figure 11 are for a load capaci-  
tance of up to 1000 pF when used with the OP470.  
Figure 12. Pulsed Operation  
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input, and a  
current, limited only by the output short-circuit protection, will  
be drawn by the signal generator. With Rf £ 500 W, the output  
is capable of handling the current requirements (IL < 20 mA at  
10 V); the amplifier will stay in its active mode and a smooth  
transition will occur.  
V+  
C2  
10F  
+
When Rf > 3 kW, a pole created by Rf and the amplifier’s input  
capacitance (2 pF) creates additional phase shift and reduces  
phase margin. A small capacitor (20 pF to 50 pF) in parallel  
with Rf helps eliminate this problem.  
C3  
0.1F  
R2  
APPLICATIONS  
Low Noise Amplifier  
C1  
R1  
1000pF  
V
R3  
IN  
A simple method of reducing amplifier noise by paralleling  
amplifiers is shown in Figure 13. Amplifier noise, depicted in  
Figure 14, is around 2 nV/÷Hz @ 1 kHz (R.T.I.). Gain for each  
paralleled amplifier and the entire circuit is 1000. The 200 W  
resistors limit circulating currents and provide an effective out-  
put resistance of 50 W. The amplifier is stable with a 10 nF  
capacitive load and can supply up to 30 mA of output drive.  
50ꢅ  
V
OP470  
OUT  
100*  
C4  
C
L
10F  
1000pF  
+
C5  
0.1F  
*
*SEETEXT  
V–  
PLACE SUPPLY DECOUPLING  
CAPACITORS AT OP470  
+15V  
V
R3  
IN  
Figure 11. Driving Large Capacitive Loads  
200ꢅ  
1/4  
R1  
OP470E  
In applications where the OP470’s inverting or noninverting  
inputs are driven by a low source impedance (under 100 W) or  
connected to ground, if V+ is applied before V–, or when V is  
disconnected, excessive parasitic currents will flow. Most applica-  
tions use dual tracking supplies and with the device supply pins  
properly bypassed, power-up will not present a problem. A source  
resistance of at least 100 W in series with all inputs (Figure 11)  
will limit the parasitic currents to a safe level if V– is discon-  
nected. It should be noted that any source resistance, even 100 W,  
adds noise to the circuit. Where noise is required to be kept at a  
minimum, a germanium or Schottky diode can be used to clamp  
the V- pin and eliminate the parasitic current flow instead of  
using series limiting resistors. For most applications, only one  
diode clamp is required per board or system.  
50ꢅ  
R2  
50kꢅ  
–15V  
R6  
200ꢅ  
1/4  
R4  
OP470E  
50ꢅ  
R5  
50kꢅ  
V
= 1000V  
IN  
OUT  
R9  
200ꢅ  
1/4  
R7  
OP470E  
50ꢅ  
R8  
50kꢅ  
UNITY-GAIN BUFFER APPLICATIONS  
When Rf £ 100 W and the input is driven with a fast, large  
signal pulse(> 1 V), the output waveform will look as shown  
in Figure 12.  
R12  
200ꢅ  
1/4  
R10  
OP470E  
50ꢅ  
R11  
50kꢅ  
Figure 13. Low Noise Amplifier  
–12–  
REV. B  
OP470  
100  
100  
90  
A OUT 90  
10  
10  
A OUT  
0%  
0%  
5V  
5V  
1ms  
Figure 16. Digital Panning Control Output  
Figure 14. Noise Density of Low Noise Amplifier, G = 1000  
Gain error due to the mismatching between the internal DAC  
ladder resistors and the current-to-voltage feedback resistors is  
eliminated by using feedback resistors internal to the DAC. Of  
the four DACs available in the DAC-8408, only two DACs, A  
and C, actually pass a signal. DACs B and D are used to pro-  
vide the additional feedback resistors needed in the circuit. If  
the VREFB and VREFD inputs remain unconnected, the  
current-to-voltage converters using RFBB and RFBD are unaf-  
fected by digital data reaching DACs B and D.  
DIGITAL PANNING CONTROL  
Figure 15 uses a DAC-8408, quad 8-bit DAC to pan a signal  
between two channels. The complementary DAC current out-  
puts two of the DAC-8408’s four DACs drive current-to-voltage  
converters built from a single quad OP470. The amplifiers have  
complementary outputs with the amplitudes dependent upon  
the digital code applied to the DAC. Figure 16 shows the comple-  
mentary outputs for a 1 kHz input signal and digital ramp applied  
to the DAC data inputs. Distortion of the digital panning con-  
trol is less than 0.01%.  
5V  
DAC-8408GP  
V
R A  
FB  
DD  
+15V  
20pF  
V
A
I
OUT1A  
REF  
SIDE A IN  
DAC A  
DAC B  
1/4  
A OUT  
OP470E  
I
OUT2A/2B  
–15V  
I
OUT1B  
1/4  
A OUT  
OP470E  
20pF  
20pF  
R
B
FB  
R
C
FB  
V
C
REF  
I
DAC C  
DAC D  
OUT1C  
SIDE B IN  
1/4  
B OUT  
OP470E  
DAC DATA BUS  
PINS 9 (LSB) – 16 (MSB)  
I
OUT2C/2D  
1kꢅ  
5V  
A/B  
R/W  
DS1  
DS2  
I
OUT1D  
1/4  
1kꢅ  
B OUT  
OP470E  
20pF  
R
D
DAC SELECT  
FB  
DGND  
Figure 15. Digital Panning Control Circuit  
REV. B  
–13–  
OP470  
SQUELCH AMPLIFIER  
FIVE-BAND LOW-NOISE STEREO GRAPHIC EQUALIZER  
The graphic equalizer circuit shown in Figure 18 provides 15 dB  
of boost or cut over a 5-band range. Signal-to-noise ratio over a  
20 kHz bandwidth is better than 100 dB referred to a 3 V rms  
input. Larger inductors can be replaced by active inductors but  
this reduces the signal-to-noise ratio.  
The circuit of Figure 17 is a simple squelch amplifier that uses a  
FET switch to cut off the output when the input signal falls  
below a preset limit.  
The input signal is sampled by a peak detector with a time  
constant set by C1 and R6. When the output of the peak detector  
(Vp), falls below the threshold voltage, (VTH), set by R8, the  
comparator formed by op amp C switches from V– to V+. This  
drives the gate of the N-channel FET high, turning it ON, re-  
ducing the gain of the inverting amplifier formed by op amp A  
to zero.  
C1  
0.47F  
V
IN  
R2  
1/4  
3.3kꢅ  
R1  
R14  
OP470E  
47kꢅ  
1/4  
100ꢅ  
V
OUT  
OP470E  
R4  
R13  
1kꢅ  
C2  
3.3kꢅ  
L1  
1H  
R3  
6.8F  
D2  
680ꢅ  
+
R5  
60Hz  
1N4148  
100kꢅ  
TANTALUM  
C3  
R4  
2N5434  
1kꢅ  
L2  
1H  
R5  
1F  
680ꢅ  
+
R2  
200Hz  
10kꢅ  
TANTALUM  
C4  
R1  
R4  
2kꢅ  
1kꢅ  
L3  
1H  
V
R7  
IN  
0.22F  
1/4  
680ꢅ  
+
800Hz  
V
– –5V  
OP470E  
A
OUT  
IN  
TANTALUM  
C5  
R4  
1kꢅ  
L4  
1H  
R4  
R9  
0.047F  
10kꢅ  
680ꢅ  
+
3kHz  
R3  
2kꢅ  
TANTALUM  
C6  
D1  
1N4148  
R4  
1/4  
1kꢅ  
L5  
1H  
R11  
OP470E  
B
0.022F  
680ꢅ  
1/4  
+
C1  
R6  
10kHz  
1F  
1Mꢅ  
OP470E  
C
TANTALUM  
R4  
10Mꢅ  
Figure 18. Five-Band Low Noise Graphic Equalizer  
= 1 SECOND  
R7  
10kꢅ  
C2  
10F  
+
V+  
R6  
10kꢅ  
Figure 17. Squelch Amplifier  
–14–  
REV. B  
OP470  
OUTLINE DIMENSIONS  
14-Lead Ceramic Dip-Glass Hermetic Seal [CERDIP]  
14-Lead Plastic Dual-in-Line Package [PDIP]  
(Q-14)  
(N-14)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.685 (17.40)  
0.665 (16.89)  
0.645 (16.38)  
0.098 (2.49) MAX  
0.005 (0.13) MIN  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
14  
8
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
14  
1
8
7
1
7
0.320 (8.13)  
0.290 (7.37)  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.200 (5.08)  
MAX  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.150  
(3.81)  
MIN  
0.180 (4.57)  
MAX  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
15  
0
PLANE  
SEATING  
PLANE  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.022 (0.56) 0.060 (1.52)  
0.018 (0.46) 0.050 (1.27)  
0.014 (0.36) 0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095-AB  
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
16-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45ꢁ  
0.30 (0.0118)  
0.10 (0.0039)  
8ꢁ  
0ꢁ  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. B  
–15–  
ADV611/ADV612  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. A to REV. B.  
Edits to 16-Lead SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4/02—Data Sheet changed from REV. 0 to REV. A.  
28-Lead LCC (RC-Suffix) deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
28-Lead LCC (TC-Suffix) deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
–16–  
REV. B  

相关型号:

OP470GSZ

Low Noise Quad Op Amp
ADI

OP470GSZ-REEL

Low Noise Quad Op Amp
ADI

OP470R000C

Aerospace Very Low-Noise Quad Op Amp
ADI

OP470S

航空航天用极低噪声四通道运算放大器
ADI

OP471

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471ARCMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471ATC/883

IC QUAD OP-AMP, 1200 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CQCC28, LCC-28, Operational Amplifier
ADI

OP471ATCMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471AY

Operational Amplifier
ETC

OP471AY/883C

IC QUAD OP-AMP, 1200 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP471AYMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471BIEY

IC QUAD OP-AMP, 1100 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI