OP747ARU-REEL [ADI]

Precision Micropower Single-Supply Operational Amplifiers; 精密微功耗,单电源运算放大器
OP747ARU-REEL
型号: OP747ARU-REEL
厂家: ADI    ADI
描述:

Precision Micropower Single-Supply Operational Amplifiers
精密微功耗,单电源运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower  
Single-Supply Operational Amplifiers  
a
OP777/OP727/OP747  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low Offset Voltage: 100 V Max  
Low Input Bias Current: 10 nA Max  
8-Lead MSOP  
(RM-8)  
14-Lead SOIC  
(R-14)  
3.0  
1.5  
Single-Supply Operation:  
Dual-Supply Operation: ꢁ  
V to 30 V  
V to 15 V  
1
8
NC  
IN  
IN  
Vꢂ  
NC  
V+  
OUT  
NC  
Low Supply Current: 300 A/Amp Max  
Unity Gain Stable  
No Phase Reversal  
OUT A  
–IN A  
IN A  
Vꢃ  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
IN D  
V–  
OP777  
4
5
NC = NO CONNECT  
OP747  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
Current Sensing (Shunt)  
Line or Battery-Powered Instrumentation  
Remote Sensors  
IN B  
–IN B  
OUT B  
IN C  
–IN C  
OUT C  
8-Lead SOIC  
(R-8)  
8
Precision Filters  
OP727 SOIC Pin-Compatible with LT1013  
NC  
NC  
1
2
3
4
8
7
6
5
OP777  
14-Lead TSSOP  
(RU-14)  
IN  
V+  
GENERAL DESCRIPTION  
+IN  
OUT  
NC  
The OP777 , OP727 , and OP747 are precision single , dual,  
and quad rail-to-rail output single- supply amplifiers featuring  
micropoweroperationandrail-to-railoutputranges. These  
amplifier sprovideimprovedperformanceovertheindustry -standard  
OP07with 15 V supplies , andofferthefurtheradvantageoftrue  
Vꢂ  
OUT A  
–IN A  
IN A  
Vꢃ  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
IN D  
V–  
NC = NO CONNECT  
8-Lead TSSOP  
(RU-8)  
OP747  
TOP VIEW  
(Not to Scale)  
single-supplyoperationdownto  
V , andsmallerpackage  
3.0  
options than any other high-voltage precision bipolar amplifier.  
Outputs are stable with capacitiveloadsofover 500pF. Supply  
currentis lessthan300 μAperamplifierat5V. 500 Ω seriesresis-  
tors protect the inputs, allowing input signal levels several volts above  
the positive supply without phase reversal.  
IN B  
–IN B  
OUT B  
IN C  
–IN C  
OUT C  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
Vꢃ  
8
OP727  
TOP VIEW  
OUT B  
–IN B  
IN B  
IN A  
(Not to Scale)  
V–  
Applicationsfortheseamplifiersincludebothline-poweredand  
portable instrumentation, remote sensor signal conditioning, and  
precision filters.  
8-Lead SOIC  
(R-8)  
TheOP777,OP727,andOP747arespecifiedovertheextended  
industrial (–40°C to +85°C) temperature range. The OP777,  
single, isavailablein8-leadMSOPand8-leadSOICpackages.  
The OP747, quad, is available in 14-lead TSSOP and narrow  
14-leadSO packages.Surface-mountdevicesinTSSOPand MSOP  
packagesareavailableintapeandreelonly.  
IN A  
V–  
1
8
7
6
5
–IN A  
2
3
4
OUT A  
OP727  
TOP VIEW  
(Not to Scale)  
IN B  
–IN B  
Vꢃ  
OUT B  
TheOP727,dual,isavailablein8-leadTSSOPand8-lead  
SOICpackages.TheOP7278-leadSOICpinconfiguration  
differsfromthestandard8-leadoperationalamplifierpinout.  
NOTE: THIS PIN CONFIGURATION DIFFERS  
FROM THE STANDARD 8-LEAD  
OPERATIONAL AMPLIFIER PINOUT.  
SIMILAR LOW POWER PRODUCTS  
Supply Voltage/  
Supply Current  
1.8 V/1 μA  
AD8500  
AD8502  
AD8504  
1.8 V/20 μA  
ADA4051-1  
ADA4051-2  
1.8 V/25 μA  
AD8505  
AD8506  
1.8 V/50 μA  
2.5 V/1 mA  
3.0 V/200 μA  
4 V/215 μA  
Single  
Dual  
Quad  
AD8603/AD8613  
AD8607/AD8617  
AD8609/AD8619  
ADA4528-1  
ADA4091-2  
ADA4091-4  
AD8622  
AD8624  
AD8508  
D
REV.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
www.analog.com  
Fax:781/461-3113  
© Analog Devices, Inc., 2011  
OP777/OP727/OP747–SPECIFICATIONS  
(@ V = 5.0 V, VCM = 2.5 V, TA = 25C unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUTCHARACTERISTICS  
OffsetVoltageOP777  
VOS  
+25C < TA < +85 C  
–40°C < TA < +85 °C  
+25C < TA < +85 C  
–40°C < TA < +85 °C  
–40°C < TA < +85 °C  
–40°C < TA < +85 °C  
20  
50  
30  
60  
5.5  
0.1  
100  
200  
160  
300  
11  
2
4
μV  
μV  
OffsetVoltageOP727/OP747  
μV  
μV  
InputBiasCurrent  
Input Offset Current  
InputVoltageRange  
IB  
IOS  
nA  
nA  
V
0
Common-ModeRejectionRatio  
LargeSignalVoltageGain  
Offset Voltage Drift OP777  
OffsetVoltageDriftOP727/OP747  
CMRR  
AVO  
ΔVOS/ΔT  
ΔVOS/ΔT  
V
CM = 0 V to 4 V  
104  
300  
110  
500  
0.3  
0.4  
dB  
RL = 10 k Ω, VO = 0.5 V to 4.5 V  
V/mV  
μV/°C  
μV/°C  
–40°C < TA < +85 °C  
1.3  
1.5  
–40°C < TA < +85 °C  
OUTPUTCHARACTERISTICS  
Output Voltage High  
OutputVoltageLow  
VOH  
VOL  
IOUT  
IL = 1 mA, –40 °C to +85 °C  
IL = 1 mA, –40 °C to +85 °C  
VDROPOUT < 1 V  
4.88  
120  
4.91  
126  
10  
V
mV  
mA  
140  
OutputCircuit  
POWERSUPPLY  
PowerSupplyRejectionRatio  
SupplyCurrent/AmplifierOP777  
PSRR  
ISY  
VS = 3 V to 30 V  
VO = 0 V  
–40°C < TA < +85 °C  
VO = 0 V  
130  
220  
270  
235  
290  
dB  
μA  
μA  
μA  
μA  
270  
320  
290  
350  
SupplyCurrent/AmplifierOP727/OP747  
–40°C < TA < +85 °C  
DYNAMICPERFORMANCE  
SlewRate  
GainBandwidthProduct  
SR  
GBP  
RL = 2 kΩ  
0.2  
0.7  
V/μs  
MHz  
NOISEPERFORMANCE  
VoltageNoise  
VoltageNoiseDensity  
enp-p  
en  
in  
0.1Hzto10Hz  
f = 1 kHz  
f = 1 kHz  
0.4  
15  
0.13  
μV p-p  
nV/Hz  
pA/Hz  
CurrentNoiseDensity  
NOTES  
Typical specifications: >50% of units perform equal to or better than the “typical” value.  
Specifications subject to change without notice.  
D
–2–  
REV.  
OP777/OP727/OP747  
(@ 15 V, VCM = 0 V, TA = 25C unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUTCHARACTERISTICS  
OffsetVoltageOP777  
VOS  
VOS  
+25°C < TA < +85 °C  
–40°C < TA < +85 °C  
+25°C < TA < +85 °C  
–40°C < TA < +85 °C  
–40°C < TA < +85 °C  
–40°C < TA < +85 °C  
30  
50  
30  
50  
5
100  
200  
160  
300  
10  
μV  
μV  
OffsetVoltageOP727/OP747  
μV  
μV  
InputBiasCurrent  
Input Offset Current  
InputVoltageRange  
IB  
IOS  
nA  
0.1  
2
+14  
nA  
V
–15  
Common-ModeRejectionRatio  
LargeSignalVoltageGain  
Offset Voltage Drift OP777  
OffsetVoltageDriftOP727/OP747  
CMRR  
AVO  
V
CM = –15 V to +14 V  
110  
1,000  
120  
2,500  
0.3  
dB  
RL = 10 k Ω, VO = –14.5 V to +14.5 V  
V/mV  
μV/°C  
μV/°C  
ΔVOS/ΔT –40°C < TA < +85 °C  
ΔVOS/ΔT –40°C < TA < +85 °C  
1.3  
1.5  
0.4  
OUTPUTCHARACTERISTICS  
Output Voltage High  
OutputVoltageLow  
VOH  
VOL  
IOUT  
IL = 1 mA, –40 °C to +85 °C  
IL = 1 mA, –40 °C to +85 °C  
+14.9  
120  
+14.94  
–14.94 –14.9  
30  
V
V
mA  
OutputCircuit  
POWERSUPPLY  
PowerSupplyRejectionRatio  
SupplyCurrent/AmplifierOP777  
PSRR  
ISY  
VS = 1.5 V to 15 V  
VO = 0 V  
–40°C < TA < +85 °C  
VO = 0 V  
130  
dB  
μA  
μA  
μA  
μA  
300  
350  
320  
375  
350  
400  
375  
450  
SupplyCurrent/AmplifierOP727/747  
–40°C < TA < +85 °C  
DYNAMICPERFORMANCE  
SlewRate  
GainBandwidthProduct  
SR  
GBP  
RL = 2 kΩ  
0.2  
0.7  
V/μs  
MHz  
NOISEPERFORMANCE  
VoltageNoise  
VoltageNoiseDensity  
CurrentNoiseDensity  
enp-p  
en  
in  
0.1Hzto10Hz  
f = 1 kHz  
f = 1 kHz  
0.4  
15  
0.13  
μV p-p  
nV/Hz  
pA/Hz  
Specifications subject to change without notice.  
D
–3–  
REV.  
OP777/OP727/OP747  
ABSOLUTE MAXIMUM RATINGS1, 2  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –VS – 5 V to +VS + 5 V  
Differential Input Voltage . . . . . . . . . . . . . .  
Output Short-Circuit Duration to GND . . . . . . . . . Indefinite  
Storage Temperature Range  
RM, R, RU Packages . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP777/OP727/OP747 . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
RM, R, RU Packages . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C  
Electrostatic Discharge (Human Body Model) . . . . 2000 V max  
3
Package Type  
JA  
JC  
Unit  
8-LeadMSOP(RM)  
8-LeadSOIC(R)  
8-LeadTSSOP(RU)  
14-LeadSOIC(R)  
14-LeadTSSOP(RU)  
190  
158  
240  
120  
180  
44  
43  
43  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Supply Voltage  
NOTES  
1Absolute maximum ratings apply at 25°C, unless otherwise noted.  
2Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
3θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered in  
circuit board for surface-mount packages.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP777/OP727/OP747 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
D
–4–  
REV.  
Typical Performance Characteristics  
OP777/OP727/OP747  
30  
220  
220  
V
V
T
= 5V  
= 2.5V  
= 25C  
V
V
T
= 15V  
= 0V  
= 25C  
SY  
V
V
T
= 15V  
= 0V  
= 40C TO +85C  
SY  
SY  
200  
180  
160  
200  
180  
160  
CM  
CM  
CM  
25  
20  
15  
10  
5
A
A
A
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
0
20  
0
0
100  
0
20 40 60 80 100  
100  
0
20 40 60 80 100  
8060 4020  
8060 4020  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
OFFSET VOLTAGE – V  
OFFSET VOLTAGE – V  
INPUT OFFSET DRIFT – V/C  
TPC 1. OP777 Input Offset Voltage  
Distribution  
TPC 2. OP777 Input Offset Voltage  
Distribution  
TPC 3. OP777 Input Offset Voltage  
Drift Distribution  
200  
600  
600  
V
V
T
= 15V  
= 0V  
= 25C  
V
V
T
= 15V  
= 0V  
= –40C TO +85C  
SY  
V
V
T
= 5V  
= 2.5V  
= 25C  
SY  
SY  
180  
160  
140  
120  
100  
80  
CM  
CM  
CM  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
A
A
A
60  
40  
20  
0
–120 –80  
–40  
0
40  
80  
120  
–120 –80  
–40  
0
40  
80  
120  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
TCV – V/C  
V  
OFFSET VOLTAGE – V  
OS  
TPC 4. OP727/OP747 Input Offset  
Voltage Drift (TCVOS Distribution)  
TPC 5. OP747 Input Offset Voltage  
Distribution  
TPC 6. OP747 Input Offset Voltage  
Distribution  
30  
600  
600  
V
V
T
= 15V  
= 0V  
= 25C  
V
V
T
= 5V  
= 2.5V  
= 25C  
SY  
V
V
T
= 15V  
= 0V  
= 25C  
SY  
SY  
CM  
CM  
CM  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
25  
20  
15  
10  
5
A
A
A
0
0
0
0
40  
140  
80  
120  
120  
80 40  
140120  
0
40  
80 40  
3
5
7
80  
120  
4
6
8
INPUT BIAS CURRENT – nA  
OFFSET VOLTAGE – V  
OFFSET VOLTAGE – V  
TPC 7. OP727 Input Offset Voltage  
Distribution  
TPC 9. Input Bias Current  
Distribution  
TPC 8. OP727 Input Offset Voltage  
Distribution  
D
–5–  
REV.  
OP777/OP727/OP747  
10k  
6
5
4
3
2
10k  
1k  
V
T
= 15V  
= 25C  
V
T
= 5V  
= 25C  
S
S
V
= 15V  
SY  
A
A
1k  
SINK  
100  
10  
100  
10  
SOURCE  
SINK  
1.0  
1.0  
SOURCE  
1
0.1  
0
0.1  
0
0
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
60 4020  
0
20 40 60 80 100 120 140  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
TEMPERATURE – C  
TPC 10. Output Voltage to Supply  
Rail vs. Load Current  
TPC 11. Output Voltage to Supply  
Rail vs. Load Current  
TPC 12. Input Bias Current vs.  
Temperature  
500  
400  
350  
140  
120  
100  
80  
V
C
R
= 15V  
T
= 25C  
SY  
A
= 0  
=
LOAD  
LOAD  
300  
250  
200  
150  
100  
50  
I
(V = 15V)  
300  
SY+ SY  
200  
100  
0
I
(V = 5V)  
SY+ SY  
60  
45  
0
40  
90  
100  
200  
300  
400  
500  
20  
135  
180  
225  
270  
I
(V = 5V)  
SYSY  
0
–20  
–40  
–60  
I
(V = 15V)  
SYSY  
0
0
5
10  
15  
20  
25  
30  
35  
60 40 20  
0
20 40 60 80 100 120 140  
TEMPERATURE – C  
10  
100 1k  
10k 100k 1M 10M 100M  
SUPPLY VOLTAGE – V  
FREQUENCY – Hz  
TPC 13. Supply Current vs.  
Temperature  
TPC 14. Supply Current vs. Supply  
Voltage  
TPC 15. Open Loop Gain and  
Phase Shift vs. Frequency  
140  
120  
100  
60  
60  
V
C
R
= 15V  
V
C
R
= 5V  
SY  
V
C
R
= 5V  
SY  
SY  
50  
40  
= 0  
= 0  
50  
40  
LOAD  
= 0  
= 2kꢇ  
LOAD  
LOAD  
LOAD  
= 2kꢇ  
=
LOAD  
LOAD  
A
= 100  
V
A
= 100  
V
80  
60  
40  
20  
0
30  
0
30  
20  
45  
20  
A
= 10  
V
A
= 10  
V
10  
90  
10  
0
135  
180  
225  
270  
0
A
= +1  
V
A
= +1  
V
10  
20  
30  
40  
10  
20  
30  
40  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k 100k  
1M  
10M 100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 16. Open Loop Gain and  
Phase Shift vs. Frequency  
TPC 17. Closed Loop Gain vs.  
Frequency  
TPC 18. Closed Loop Gain vs.  
Frequency  
D
–6–  
REV.  
OP777/OP727/OP747  
300  
270  
240  
210  
180  
150  
120  
90  
300  
270  
240  
210  
180  
150  
120  
90  
V
R
C
= 2.5V  
= 2kꢇ  
= 300pF  
V
= 5V  
V
= 15V  
SY  
SY  
SY  
A
= 1  
L
L
V
A = 1  
V
A
= 1  
V
0V  
A
= 100  
100k  
V
60  
A
= 10  
60  
A
= 10  
V
A
= 100  
1k  
V
V
30  
30  
0
0
100  
1k  
10k  
1M  
10M 100M  
100  
10k  
100k  
FREQUENCY – Hz  
1M  
10M 100M  
TIME – 100s/DIV  
FREQUENCY – Hz  
TPC 19. Output Impedance vs.  
Frequency  
TPC 20. Output Impedance vs.  
Frequency  
TPC 21. Large Signal Transient  
Response  
V
R
C
= 15V  
= 2kꢇ  
= 300pF  
V
C
R
= 2.5V  
= 300pF  
= 2kꢇ  
V
C
R
= 15V  
= 300pF  
= 2kꢇ  
SY  
SY  
SY  
L
L
L
L
L
L
V
= 100mV  
V
= 100mV  
IN  
IN  
A
= 1  
V
A
= 1  
A
= 1  
V
V
0V  
TIME – 100s/DIV  
TIME – 10s/DIV  
TIME – 10s/DIV  
TPC 22. Large Signal Transient  
Response  
TPC 23. Small Signal Transient  
Response  
TPC 24. Small Signal Transient  
Response  
40  
35  
V
R
= 2.5V  
= 2kꢇ  
= 100mV  
V
R
= 15V  
= 2kꢇ  
= 100mV  
SY  
SY  
INPUT  
35  
30  
25  
20  
15  
10  
5
+200mV  
L
L
30  
25  
20  
15  
10  
V
V
IN  
IN  
0V  
OS  
V
R
A
= 15V  
= 10kꢇ  
= 100  
SY  
+OS  
L
V
OS  
V
= 200mV  
IN  
OS  
0V  
10V  
5
0
OUTPUT  
0
1
10  
100  
1k  
1
10  
100  
1k  
10k  
TIME – 40s/DIV  
CAPACITANCE – pF  
CAPACITANCE – pF  
TPC 25. Small Signal Overshoot  
vs. Load Capacitance  
TPC 26. Small Signal Overshoot  
vs. Load Capacitance  
TPC 27. Negative Overvoltage  
Recovery  
D
–7–  
REV.  
OP777/OP727/OP747  
200mV  
0V  
INPUT  
0V  
INPUT  
INPUT  
0V  
V
R
A
= 15V  
= 10kꢇ  
= 100  
SY  
V
R
A
= 2.5V  
= 10kꢇ  
= 100  
V
R
A
= 2.5V  
= 10kꢇ  
= 100  
SY  
SY  
200mV  
200mV  
L
L
L
V
V
V
V
= 200mV  
IN  
V
= 200mV  
V
= 200mV  
IN  
IN  
10V  
0V  
0V  
2V  
0V  
OUTPUT  
2V  
OUTPUT  
OUTPUT  
TIME – 40s/DIV  
TIME – 40s/DIV  
TIME – 40s/DIV  
TPC 28. Positive Overvoltage  
Recovery  
TPC 29. Negative Overvoltage  
Recovery  
TPC 30. Positive Overvoltage  
Recovery  
140  
140  
V
A
= 15V  
= 1  
S
V
= 2.5V  
V
= 15V  
INPUT  
SY  
SY  
V
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
OUTPUT  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
TIME – 400s/DIV  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 31. No Phase Reversal  
TPC 32. CMRR vs. Frequency  
TPC 33. CMRR vs. Frequency  
140  
140  
V = 5V  
SY  
GAIN = 10M  
V
= 2.5V  
V
= 15V  
SY  
SY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
+PSRR  
PSRR  
+PSRR  
PSRR  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
TIME – 1s/DIV  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 34. PSRR vs. Frequency  
TPC 35. PSRR vs. Frequency  
TPC 36. 0.1 Hz to 10 Hz Input  
Voltage Noise  
D
–8–  
REV.  
OP777/OP727/OP747  
90  
80  
70  
90  
V
= 15V  
V
= 15V  
V
= 2.5V  
SY  
SY  
GAIN = 10M  
SY  
80  
70  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
TIME – 1s/DIV  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 37. 0.1 Hz to 10 Hz Input  
Voltage Noise  
TPC 38. Voltage Noise Density  
TPC 39. Voltage Noise Density  
50  
40  
40  
V = 5V  
SY  
V
= 2.5V  
V
= 15V  
SY  
SY  
40  
35  
30  
35  
30  
30  
20  
I
SCꢂ  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
10  
0
10  
20  
30  
I
SC+  
40  
50  
0
0
0
6040 20  
0
500  
1k  
1.5k  
2.0k  
2.5k  
20 40 60 80 100 120 140  
0
500  
1k  
1.5k  
2.0k  
2.5k  
FREQUENCY – Hz  
TEMPERATURE – C  
FREQUENCY – Hz  
TPC 40. Voltage Noise Density  
TPC 41. Voltage Noise Density  
TPC 42. Short Circuit Current vs.  
Temperature  
160  
50  
4.95  
V
I
= 5V  
V
= 15V  
V
I
= 5V  
= 1mA  
SY  
= 1mA  
SY  
SY  
40  
150  
140  
130  
120  
110  
100  
L
L
4.94  
4.93  
4.92  
4.91  
4.90  
4.89  
30  
20  
I
SCꢂ  
10  
0
10  
20  
30  
90  
80  
70  
I
SC+  
40  
50  
40 20  
60  
0
20 40 60 80 100 120 140  
40 20  
0
6040 20  
0
20 40 60 80 100 120 140  
TEMPERATURE – C  
60  
20 40 60 80 100 120 140  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 43. Short Circuit Current vs.  
Temperature  
TPC 44. Output Voltage High vs.  
Temperature  
TPC 45. Output Voltage Low vs.  
Temperature  
D
–9–  
REV.  
OP777/OP727/OP747  
1.5  
1.0  
14.964  
14.930  
14.935  
14.940  
14.945  
V
I
= 15V  
= 1mA  
V
= 15V  
= 1mA  
SY  
SY  
V
V
= 15V  
= 0V  
= 25C  
SY  
14.962  
I
L
L
CM  
14.960  
T
A
14.958  
14.956  
14.954  
0.5  
0
14.952  
14.950  
14.948  
0.5  
1.0  
1.5  
14.950  
14.955  
14.960  
14.946  
14.944  
40 20  
40 20  
0
0
0
60  
20 40 60 80 100 120 140  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME – Minutes  
60  
20 40 60 80 100 120 140  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 46. Output Voltage High vs.  
Temperature  
TPC 48. Warm-Up Drift  
TPC 47. Output Voltage Low vs.  
Temperature  
BASIC OPERATION  
The OP777/OP727/OP747 amplifier uses a precision Bipolar  
PNP input stage coupled with a high-voltage CMOS output  
stage. This enables this amplifier to feature an input voltage  
range which includes the negative supply voltage (often ground-  
in single-supply applications) and also swing to within 1 mV of the  
output rails. Additionally, the input voltage range extends to within  
1 V of the positive supply rail. The epitaxial PNP input structure  
provides high breakdown voltage, high gain, and an input bias cur-  
rent figure comparable to that obtained with a “Darlington” input  
stage amplifier but without the drawbacks (i.e., severe penalties for  
input voltage range, offset, drift and noise). The PNP input structure  
also greatly lowers the noise and reduces the dc input error terms.  
V
OUT  
0V  
V
IN  
TIME – 0.2ms/DIV  
Supply Voltage  
Figure 1. Input and Output Signals with VCM < 0 V  
The amplifiers are fully specified with a single 5 V supply and, due  
to design and process innovations, can also operate with a supply  
voltage from3.0 V up to 30 V. This allows operation from most  
split supplies used in current industry practice, with the advantage  
of substantially increased input and output voltage ranges over  
conventional split-supply amplifiers. The OP777/OP727/OP747  
series is specified with (VSY = 5 V, V– = 0 V and VCM = 2.5 V  
which is most suitable for single-supply application. With PSRR of  
130 dB (0.3 μV/V) and CMRR of 110 dB (3 μV/V) offset is mini-  
mally affected by power supply or common-mode voltages. Dual  
supply, 15 V operation is also fully specified.  
100kꢇ  
100kꢇ  
+3V  
0.27V  
100kꢇ  
OP777/  
OP727/  
OP747  
100kꢇ  
0.1V  
V
= 1kHz at 400mV p-p  
IN  
Input Common-Mode Voltage Range  
Figure 2. OP777/OP727/OP747 Configured as a Differ-  
ence Amplifier Operating at VCM < 0 V  
The OP777/OP727/OP747 is rated with an input common-mode  
voltage which extends from the minus supply to within 1 V of the  
positive supply. However, the amplifier can still operate with input  
voltages slightly below VEE. In Figure 2, OP777/OP727/OP747 is  
configured as a difference amplifier with a single supply of3.0  
V
and negative dc common-mode voltages applied at the inputs  
terminals. A 400 mV p-p input is then applied to the noninverting  
input. It can be seen from the graph below that the output does not  
show any distortion. Micropower operation is maintained by using  
large input and feedback resistors.  
D
–10–  
REV.  
OP777/OP727/OP747  
Input Over Voltage Protection  
Whentheinputofanamplifierismorethanadiodedropbelow  
V
= 15V  
SY  
V
IN  
V
EE, or above V CC, large currents will flow from the substrate  
(V–) or the positive supply (V+), respectively, to the input pins  
whichcandestroythedevice.InthecaseofOP777/OP727/  
OP747,differentialvoltagesequaltothesupplyvoltagewillnot  
causeanyproblem(seeFigure3).OP777/OP727/OP747has  
built-in 500 Ω internal current limiting resistors, in series with the  
inputs, to minimize the chances of damage. It is a good practice to  
keep the current flowing into the inputs below 5 mA. In this con-  
text it should also be noted that the high breakdown of the input  
transistors removes the necessity for clamp diodes between the  
inputs of the amplifier, a feature that is mandatory on many preci-  
sion op amps. Unfortunately, such clamp diodes greatly interfere  
with many application circuits such as precision rectifiers and  
comparators. The OP777/OP727/OP747 series is free from such  
limitations.  
V
OUT  
TIME – 400s/DIV  
Figure 4. No Phase Reversal  
Output Stage  
The CMOS output stage has excellent (and fairly symmetric) output  
drive and with light loads can actually swing to within 1 mV of both  
supplyrails.Thisisconsiderablybetterthansimilaramplifiers  
featuring(so-called)rail-to-railbipolaroutputstages.OP777/  
OP727/OP747 is stable in the voltage follower configuration and  
responds to signals as low as 1 mV above ground in single supply  
operation.  
30V  
OP777/  
V p-p = 32V  
OP727/  
OP747  
3.0V TO 30V  
Figure 3a. Unity Gain Follower  
V
= 1mV  
OUT  
V
= 15V  
V
= 1mV  
SY  
IN  
OP777/  
OP727/  
OP747  
V
IN  
V
OUT  
Figure 5. Follower Circuit  
TIME – 400s/DIV  
1.0mV  
Figure 3b. Input Voltage Can Exceed the Supply Voltage  
Without Damage  
Phase Reversal  
Manyamplifiersmisbehavewhenoneorbothoftheinputsare  
forced beyond the input common-mode voltage range. Phase  
reversal is typified by the transfer function of the amplifier effectively  
reversing its transfer polarity. In some cases this can cause lockup in  
servo systems and may cause permanent damage or nonrecoverable  
parameter shifts to the amplifier. Many amplifiers feature compensa-  
tion circuitry to combat these effects, but some are only effective for  
the inverting input. Additionally, many of these schemes only work  
for a few hundred millivolts or so beyond the supply rails. OP777/  
OP727/OP747hasaprotectioncircuitagainstphasereversal  
when one or both inputs are forced beyond their input common-  
mode voltage range. It is not recommended that the parts be  
continuouslydrivenmorethan3Vbeyondtherails.  
TIME – 10s/DIV  
Figure 6. Rail-to-Rail Operation  
Output Short Circuit  
The output of the OP777/OP727/OP747 series amplifier is protected  
from damage against accidental shorts to either supply voltage,  
provided that the maximum die temperature is not exceeded on a  
long-term basis (see Absolute Maximum Rating section). Current of  
up to 30 mA does not cause any damage.  
A Low-Side Current Monitor  
In the design of power supply control circuits, a great deal of design  
effort is focused on ensuring a pass transistor’s long-term reliability  
over a wide range of load current conditions. As a result, monitoring  
D
REV.  
–11–  
OP777/OP727/OP747  
15V  
andlimitingdevicepowerdissipationisofprimeimportancein  
thesedesigns. Figure7showsanexampleof5V, single-supply  
current monitor that can be incorporated into the design of a voltage  
regulatorwithfoldbackcurrentlimitingorahighcurrentpower  
supplywithcrowbarprotection.Thedesigncapitalizesonthe  
OP777’scommon-moderangethatextendstoground.Current  
1kꢇ  
REF  
192  
2N2222  
1/4 OP747  
R2  
12kꢇ  
3
4
ismonitoredinthepowersupplyreturnwherea0.1  
Ω shunt  
20kꢇ  
+15V  
R1  
R1  
R
resistor, RSENSE, creates a very small voltage drop. The voltage at the  
inverting terminal becomes equal to the voltage at the noninverting  
terminal through the feedback of Q1, which is a 2N2222 or equiva-  
lent NPN transistor. This makes the voltage drop across R1 equal to  
the voltage drop across RSENSE. Therefore, the current through Q1  
becomes directly proportional to the current through RSENSE, and  
the output voltage is given by:  
V
O
R(1+)  
+15V  
1/4 OP747  
15V  
R2  
R1  
R  
R
V
=
V
O
REF  
1/4 OP747  
=  
15V  
Figure 9. Linear Response Bridge  
R2  
R1  
A single-supply current source is shown in Figure 10. Large resistors  
are used to maintain micropower operation. Output current can be  
adjustedbychangingtheR2Bresistor.Compliancevoltageis:  
VOUT = 5V −  
× RSENSE × IL  
The voltage drop across R2 increases with IL increasing, so VOUT  
decreases with higher supply current being sensed. For the element  
values shown, the VOUT is 2.5 V for return current of 1 A.  
VL VSAT VS  
10pF  
3.0V TO 30V  
5V  
100kꢇ  
R2 = 2.49kꢇ  
100kꢇ  
V
OP777  
OUT  
R1 = 100kꢇ  
Q1  
R2B  
5V  
2.7kꢇ  
10pF  
I
O
R2 = R2A + R2B  
R2  
R1 R2B  
= 1mA 11mA  
+
R2A  
97.3kꢇ  
OP777  
R1 = 100ꢇ  
V
R
LOAD  
L
I
=
V
S
O
0.1ꢇ  
RETURN TO  
GROUND  
R
SENSE  
Figure 10. Single-Supply Current Source  
Figure 7. A Low-Side Load Current Monitor  
A single-supply instrumentation amplifier using one OP727  
amplifierisshowninFigure11.FortruedifferenceR3/R4=  
R1/R2. The formula for the CMRR of the circuit at dc is CMRR =  
20 × log (100/(1–(R2 × R3)/(R1× R4)). It is common to specify the  
accuracy of the resistor network in terms of resistor-to-resistor  
percentage mismatch. We can rewrite the CMRR equation to  
reflect this CMRR = 20 × log (10000/% Mismatch). The key to  
high CMRR is a network of resistors that are well matched from  
the perspective of both resistive ratio and relative drift. It should  
be noted that the absolute value of the resistors and their absolute  
drift are of no consequence. Matching is the key. CMRR is 100 dB  
with0.1%mismatchedresistornetwork.TomaximizeCMRR,  
one of the resistors such as R4 should be trimmed. Tighter match-  
ingof two op amps in one package (OP727) offers a significant  
boostinperformanceoverthetripleopampconfiguration.  
The OP777/OP727/OP747 is very useful in many bridge applica-  
tions. Figure 8 shows a single-supply bridge circuit in which its  
output is linearly proportional to the fractional deviation () of  
the bridge. Note that = ΔR/R.  
= 300  
15V  
AR1V  
REF  
V
=
+ 2.5V  
O
2R2  
R1  
2
=  
1/4 OP747  
R1  
6
RG = 10kꢇ  
REF  
192  
2
10.1kꢇ  
1Mꢇ  
2.5V  
4
3
1Mꢇ  
REF  
192  
0.1F  
15V  
15V  
4
3
R1(1+)  
V1  
10.1kꢇ  
R1  
V
O
1/4 OP747  
R1(1+)  
R1  
1/4 OP747  
R3 = 10.1kꢇ  
R2 = 1Mꢇ  
R2  
3.0 V TO 30V  
3.0 V TO 30V  
V2  
R4 = 1Mꢇ  
R1 = 10.1kꢇ  
Figure 8. Linear Response Bridge, Single Supply  
V
O
1/2 OP727  
In systems where dual supplies are available, the circuit of Figure  
9 could be used to detect bridge outputs that are linearly related  
to the fractional deviation of the bridge.  
V1  
V2  
1/2 OP727  
V
= 100 (V2 V1)  
O
0.02mV V1 V2 290mV  
2mV 29V  
USE MATCHED RESISTORS  
V
OUT  
Figure 11. Single-Supply Micropower Instrumentation  
Amplifier  
D
–12–  
REV.  
OP777/OP727/OP747  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 12. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 13. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
REV. D  
–13–  
OP777/OP727/OP747  
3.10  
3.00  
2.90  
8
5
4
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
0.15  
0.05  
1.20  
MAX  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
Figure 14. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 15. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
–14–  
REV. D  
OP777/OP727/OP747  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 16. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
OP727AR  
OP727AR-REEL  
OP727AR-REEL7  
OP727ARUZ  
OP727ARUZ-REEL  
OP727ARZ  
OP727ARZ-REEL  
OP727ARZ-REEL7  
OP747ARU  
OP747ARU-REEL  
OP747ARUZ  
OP747ARUZ-REEL  
OP747ARZ  
OP747ARZ-REEL  
OP747ARZ-REEL7  
OP777ARMZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead SOIC  
Package Option  
Branding  
R-8  
R-8  
R-8  
RU-8  
RU-8  
R-8  
R-8  
R-8  
RU-14  
RU-14  
RU-14  
RU-14  
R-14  
R-14  
R-14  
RM-8  
RM-8  
R-8  
14-Lead SOIC  
14-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
A1A  
A1A  
OP777ARMZ-REEL  
OP777ARZ  
OP777ARZ-REEL  
OP777ARZ-REEL7  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
REV. D  
–15–  
OP777/OP727/OP747  
REVISION HISTORY  
10/11—Rev. C to Rev. D  
Changed Single Supply Operation from 2.7 V to 30 V to  
3.0 V to 30 V...................................................................................... 1  
Changed Dual Supply Operation from 1.3ꢀ V to 1ꢀ V to  
1.ꢀ V to 1ꢀ V................................................................................. 1  
Changes to General Description Section ...................................... 1  
Added Similar Low Power Products Table.................................... 1  
Changes to Supply Voltage Section, Input Common-Mode  
Voltage Range Section, and Figure 1............................................ 10  
Changes to Figure ꢀ........................................................................ 11  
Changes to Figure 10 and Figure 11............................................. 12  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 1ꢀ  
9/01—Rev. B to Rev. C  
Addition of text to Applications Section ....................................... 1  
Addition of 8-Lead SOIC (R-8) Package ....................................... 1  
Addition of text to General Description........................................ 1  
Addition of package to Ordering Guide........................................ 2  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02051-0-10/11(D)  
–16–  
REV. D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY