OP77AZMDA [ADI]

Next Generation OP07 Ultralow Offset Voltage Operational Amplifier; 下一代OP07超低失调电压运算放大器
OP77AZMDA
型号: OP77AZMDA
厂家: ADI    ADI
描述:

Next Generation OP07 Ultralow Offset Voltage Operational Amplifier
下一代OP07超低失调电压运算放大器

运算放大器
文件: 总16页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Next Generation OP07  
aUltralow Offset Voltage Operational Amplifier  
OP77  
FEATURES  
P IN CO NNECTIO NS  
Outstanding Gain Linearity  
Ultrahigh Gain 5000 V/mV Min  
Low VOS Over Temperature 60 V Max  
Excellent TCVos 0.3 V/؇C Max  
High PSRR 3 V/V Max  
Low Power Consumption 60 mW Max  
Fits OP07, 725,108A/308A, 741 Sockets  
Available in Die Form  
Epoxy Mini-D ip (P -Suffix)  
8-P in H er m etic D IP  
1
2
3
4
8
7
6
5
V
TRIM  
V
TRIM  
–IN  
+IN  
V–  
OS  
OS  
OP07  
V+  
OUT  
NC  
NC = NO CONNECT  
TO -99  
(J-Suffix)  
GENERAL D ESCRIP TIO N  
The OP77 significantly advances the state-of-the-art in precision  
op amps. T he OP77s outstanding gain of 10,000,000 or more  
is maintained over the full 10 V output range. T his exceptional  
gain-linearity eliminates incorrectable system nonlinearities  
common in previous monolithic op amps, and provides superior  
performance in high closed-loop gain applications. Low initial  
VOS drift and rapid stabilization time, combined with only 50  
mW power consumption, are significant improvements over  
previous designs. T hese characteristics, plus the exceptional  
T CVOS of 0.3 mV/C maximum and the low VOS of 25 mV maxi-  
mum, eliminates the need for VOS adjustment and increases  
system accuracy over temperature.  
V
TRIM  
OS  
V+  
V
TRIM 1  
OS  
OP07  
OUT  
–IN 2  
NC  
+IN 3  
4V– (CASE)  
NC = NO CONNECT  
PSRR of 3 mV/V (110 dB) and CMRR of 1.0 mV/V maximum  
virtually eliminate errors caused by power supply drifts and  
common-mode signals. T his combination of outstanding char-  
acteristics makes the OP77 ideally suited for high-resolution  
instrumentation and other tight error budget systems.  
V+  
7
R2A  
R1A  
R2B  
R1B  
(OPTIONAL  
NULL)  
1
R7  
NOTE:  
C1  
R2A AND R2B ARE  
ELECTRONICALLY  
ADJUSTED ON CHIP  
AT FACTORY.  
8
Q19  
Q10  
Q9  
Q11  
R9  
R10  
Q20  
Q12  
C2  
OUTPUT  
6
Q7  
Q8  
Q6  
Q4  
Q5  
Q3  
Q17  
Q16  
C3  
R5  
Q27  
Q26  
Q25  
NON-  
INVERTING  
3
R3  
Q1  
INPUT  
Q21  
Q22  
Q23  
Q24  
Q15  
R6  
2
R4  
INVERTING  
INPUT  
Q2  
Q18  
R8  
Q14  
Q13  
4
V–  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP77–SPECIFICATIONS  
(@ V = ؎15 V, T = 25؇C, unless otherwise noted.)  
ELECTRICAL SPECIFICATIONS  
s
A
O P 77A  
Typ  
P ar am eter  
Sym bol  
Conditions  
Min  
Max  
Unit  
INPUT OFFSET VOLT AGE  
LONG-T ERM INPUT OFFSET  
VOLT AGE ST ABILIT Y1  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
INPUT NOISE VOLT AGE2  
VOS  
10  
25  
mV  
DVOS/T ime  
0.2  
mV/Mo  
nA  
IOS  
IB  
0.3  
–0.2  
1.2  
2.0  
0.6  
nA  
enp-p  
0.1 Hz to 10 Hz  
0.35  
mV p-p  
nV/÷Hz  
INPUT NOISE VOLT AGE DENSIT Y2 en  
fO = 10 Hz  
fO = 100 Hz  
fO = 1000 Hz  
10.3  
10.0  
9.6  
18.0  
13.0  
11.0  
INPUT NOISE CURRENT2  
inp-p  
0.1 Hz to10 Hz  
14  
30  
pA p-p  
INPUT NOISE CURRENT DENSIT Y2 in  
fO = 10 Hz  
fO = 100 Hz  
fO = 1000 Hz  
0.32  
0.14  
0.12  
0.80  
0.23  
0.17  
pA/÷Hz  
INPUT RESIST ANCE  
Differential Mode3  
Common Mode  
RIN  
RINCM  
26  
45  
200  
MV  
GV  
INPUT VOLT AGE RANGE  
IVR  
±13  
±14  
V
COMMON-MODE  
REJECT ION RAT IO  
CMRR  
PSRR  
VCM = ±13 V  
0.1  
1.0  
3
mV/V  
mV/V  
POWER SUPPLY  
REJECT ION RAT IO  
VS = ±3 V to ±18 V  
0.7  
LARGE-SIGNAL  
VOLT AGE GAIN  
AVO  
VO  
RL 2 kW VO = ±10V  
5000  
12000  
V/mV  
V
OUT PUT VOLT AGE SWING  
RL 10 kW  
RL 2 kW  
RL 1 kW  
±13.5  
±12.5  
±12.0  
±14.0  
±13.0  
±12.5  
SLEW RAT E2  
CLOSED-LOOP BANDWIDT H2  
SR  
RL 2 kW  
0.1  
0.4  
0.3  
0.6  
60  
V/ms  
MHz  
W
BW  
AVCL = +1  
OPEN-LOOP OUT PUT RESIST ANCE RO  
POWER CONSUMPT ION  
Pd  
VS = ±15 V, No Load  
VS = ±3 V, No Load  
50  
3.5  
60  
4.5  
mW  
OFFSET ADJUST MENT RANGE  
RP = 20 kW  
±3  
mV  
NOT ES  
1Long-T erm Input Offset Voltage Stability refers to the averaged trend line of VOS vs. T ime over extended periods after the first 30 days of operation. Excluding the  
initial hour of operation, changes in VOS during the first 30 operating days are typically 2.5 mV.  
2Sample tested.  
3Guaranteed by design.  
–2–  
REV. C  
OP77  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ V = ؎15 V, 55؇C £ T £ 125؇C, unless otherwise noted.)  
s
A
O P 77A  
Typ  
P ar am eter  
Sym bol  
Conditions  
Min  
Max  
Unit  
INPUT OFFSET VOLT AGE  
VOS  
25  
60  
mV  
AVERAGE INPUT OFFSET  
VOLT AGE DRIFT1  
T CVOS  
IOS  
0.1  
0.5  
0.3  
2.2  
mV/C  
INPUT OFFSET CURRENT  
nA  
AVERAGE INPUT OFFSET  
CURRENT DRIFT2  
T CIOS  
IB  
1.5  
2.4  
25  
4
pA/C  
INPUT BIAS CURRENT  
–0.2  
nA  
AVERAGE INPUT BIAS  
CURRENT DRIFT2  
T CIB  
IVR  
8
25  
pA/C  
INPUT VOLT AGE RANGE  
±13  
±13.5  
0.6  
V
COMMON-MODE  
REJECT ION RAT IO  
CMRR  
PSRR  
VCM = ±13 V  
0.1  
1
1.0  
3
mV/V  
mV/V  
POWER SUPPLY  
REJECT ION RAT IO  
VS = ±3 V to ±18 V  
LARGE-SIGNAL  
VOLT AGE GAIN  
AVO  
VO  
Pd  
RL 2 kW VO = ±10 V  
RL 10 kW  
2000  
6000  
±13.0  
60  
V/mV  
V
OUT PUT VOLT AGE SWING  
POWER CONSUMPT ION  
±12  
VS = ±15 V, No Load  
75  
mW  
NOT ES  
1OP77A: T CVCS is 100% tested.  
2Guaranteed by design.  
–3–  
REV. C  
OP77–SPECIFICATIONS  
(@ V = ؎15 V, T = 125؇C, unless otherwise noted.)  
s
A
ELECTRICAL CHARACTERISTICS  
O P 77E  
Typ  
O P 77F  
Typ  
P ar am eter  
Sym bol  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT OFFSET VOLT AGE  
VOS  
10  
25  
20  
60  
mV  
LONG-T ERM  
ST ABILIT Y1  
VOS/T ime  
IOS  
0.3  
0.3  
1.2  
0.35  
0.4  
0.3  
1.2  
mV/Mo  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
INPUT NOISE VOLT AGE2  
1.5  
2.0  
0.6  
2.8  
2.8  
IB  
–0.2  
–0.2  
nA  
enp-p  
0.1 Hz to 10 Hz  
0.38 0.65  
mVp-p  
INPUT NOISE  
VOLT AGE DENSIT Y  
en  
fO = 10 Hz  
10.3 18.0  
10.0 13.0  
10.5 20.0  
10.2 13.5  
nV/÷Hz  
fO = 100 Hz2  
fO = 1000 Hz  
9.6  
11.0  
9.8  
11.5  
INPUT NOISE CURRENT2  
inp-p  
in  
0.1 Hz to 10 Hz  
14  
30  
15  
35  
pAp-p  
INPUT NOISE  
CURRENT DENSIT Y  
fO = 10 Hz  
0.32 0.80  
0.14 0.23  
0.12 0.17  
0.35 0.90  
0.15 0.27  
0.13 0.18  
pA÷Hz  
fO = 100 Hz2  
fO = 1000 Hz  
INPUT RESIST ANCE  
Differential Mode3  
Common Mode  
RIN  
RINCM  
26  
45  
200  
18.5 45  
200  
MW  
GW  
INPUT RESIST ANCE  
Common Mode  
RINCM  
IVR  
200  
200  
GW  
INPUT VOLT AGE RANGE  
Ϯ13 Ϯ14  
Ϯ13 Ϯ14  
V
COMMON-MODE  
REJECT ION RAT IO  
CMRR  
PSRR  
AVO  
VCM = Ϯ13 V  
VS = 3 V to 18 V  
RL 2 k⍀  
0.1  
1.0  
3.0  
0.1  
0.7  
1.6  
3.0  
mV/V  
mV/V  
V/mV  
V
POWER SUPPLY  
REJECT ION RAT IO  
0.7  
LARGE-SIGNAL  
VOLT AGE GAIN  
5000 12000  
2000 6000  
OUT PUT VOLT AGE  
SWING  
VO  
RL 10 k⍀  
RL 2 k⍀  
RL 1 k⍀  
Ϯ13.5 Ϯ14.0  
Ϯ12.5 Ϯ13.0  
Ϯ12.0 Ϯ12.5  
Ϯ13.5 Ϯ14.0  
Ϯ12.5 Ϯ13.0  
Ϯ12.0 Ϯ12.5  
SLEW RAT E2  
SR  
RL 2 k⍀  
0.1  
0.3  
0.6  
60  
0.1  
0.3  
0.6  
60  
V/ms  
MHz  
W
CLOSED-LOOP  
BANDWIDT H2  
BW  
AVCL 1  
0.4  
0.4  
OPEN-LOOP OUT PUT  
RESIST ANCE  
RO  
Pd  
POWER CONSUMPT ION  
VS = Ϯ15 V, No Load  
VS = Ϯ3 V, No Load  
50  
3.5  
60  
4.5  
50  
3.5  
60  
4.5  
mW  
mV  
OFFSET ADJUST MENT  
RANGE  
Rp = 20 kn  
Ϯ3  
Ϯ3  
NOT ES  
1Long-T erm Input Offset Voltage Stability refers to the averaged trend line of VOS vs. T ime over extended periods after the first 30 days of operation. Excluding the  
initial hour of operation, changes in VOS during the first 30 operating days are typically 2.5 mV.  
2Sample tested.  
3Guaranteed by design.  
–4–  
REV. C  
OP77  
SPECIFICATIONS  
(@ V = ؎15 V, 25؇C £ T £ +85؇C for OP77E/FJ and OP77E/FZ, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
s
A
O P 77E  
Typ  
O P 77F  
Typ  
P ar am eter  
Sym bol  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT OFFSET VOLT AGE  
V
J. Z Packages  
10  
10  
45  
55  
20  
20  
100  
100  
mV  
AVERAGE INPUT OFFSET  
VOLT AGE DRIFT1  
T VCOS  
IOS  
J. Z Packages  
0.1  
0 3  
0.3  
0.6  
0.2  
0.4  
0.6  
1.0  
mV/C  
INPUT OFFSET CURRENT  
0.5  
2.2  
0.5  
4.5  
nA  
AVERAGE INPUT OFFSET  
CURRENT DRIFT2  
T CIOS  
IB  
1.5  
2.4  
4.0  
4.0  
1.5  
2.4  
85  
pA/ЊC  
INPUT BIAS CURRENT  
E, F  
-0.2  
-0.2  
6.0  
nA  
AVERAGE INPUT BIAS  
CURRENT DRIFT2  
T CIB  
IVR  
8
40  
15  
60  
pA/C  
INPUT VOLT AGE RANGE  
Ϯ13.0 Ϯ13.5  
Ϯ13.0 Ϯ13.5  
V
COMMON-MODE  
REJECT ION RAT IO  
CMRR  
PSRR  
AVO  
VCM = Ϯ13 V  
0.1  
1.0  
3.0  
0.1  
3.0  
5.0  
pVlV  
mV/V  
V/mV  
POWER SUPPLY  
REJECT ION RAT IO  
VS = Ϯ3 V to Ϯ18 V  
1.0  
1.0  
LARGE-SIGNAL  
VOLT AGE GAIN  
RL 2 kW  
VO = Ϯ10 V  
2000 6000  
1000 4000  
OUT PUT VOLT AGE SWING  
POWER CONSUMPT ION  
NOT ES  
VO  
Pd  
RL 2 kW  
Ϯ12 Ϯ13.0  
Ϯ12 Ϯ13.0  
V
VS = Ϯ15 V, No Load  
60  
75  
60  
75  
mW  
1OP77E: T CVOS is 100% tested on J and Z packages.  
2Guaranteed by end-point limits.  
–5–  
REV. C  
OP77–SPECIFICATIONS  
(@ V = ؎15 V, T = 25؇C, for OP77N devices, unless otherwise noted.)  
WAFER TEST LIMITS  
s
A
O P 77N  
Lim it  
P ar am eter  
Sym bol  
Conditions  
Unit  
INPUT OFFSET VOLT AGE  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VOS  
IOS  
IB  
40  
mV Max  
nA Max  
nA Max  
2.0  
±2  
INPUT RESIST ANCE  
Differential Mode  
RIN  
26  
±13  
1
MW Min  
V Min  
INPUT VOLT AGE RANGE  
IVR  
COMMON-MODE REJECT ION RAT IO  
POWER SUPPLY REJECT ION RAT IO  
OUT PUT VOLT AGE SWING  
CMRR  
PSRR  
VO  
VCM = ±13 V  
mV/V Max  
mV/VMax  
V Min  
VS = ±3 V to ±18 V  
3
RL = 10 kW  
RL = 2 kW  
RL = 1 kW  
±13.5  
±12.5  
±12.0  
LARGE-SIGNAL VOLT AGE GAIN  
AVO  
RL = 2 kW  
VO = ±10 V  
2000  
V/mV Min  
DIFFERENT IAL INPUT VOLT AGE  
POWER CONSUMPT ION  
±30  
V Max  
Pd  
VOUT = 0 V  
60  
mW Max  
NOT ES  
1Guaranteed by design.  
2Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
(@ V = ؎15 V, T = 25؇C, unless otherwise noted.)  
TYPICAL ELECTRICAL CHARACTERISTICS  
s
A
O P 77N  
Lim it  
P ar am eter  
Sym bol  
Conditions  
Unit  
AVERAGE INPUT OFFSET VOLT AGE DRIFT  
NULLED INPUT OFFSET VOLT AGE DRIFT  
AVERAGE INPUT OFFSET CURRENT DRIFT  
SLEW RAT E  
T CVOS  
T CVOSn  
T CIOS  
SR  
RS = 50 W  
0.1  
0.1  
0.5  
0.3  
0.6  
mV/OC  
mV/C  
pA/C  
V/ms  
RS = 50 W, RP = 20 kW  
RL 2 kW  
BANDWIDT H  
BW  
AVCL + 1  
MHz  
–6–  
REV. C  
OP77  
ABSO LUTE MAXIMUM RATINGS1  
BO ND ING D IAGRAM  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage T emperature Range  
1. BALANCE  
2. INVERTING INPUT  
3. NONINVERTING INPUT  
4. V-  
6. OUTPUT  
7. V+  
J and Z Packages . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Operating T emperature Range  
8. BALANCE  
OP77A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125C  
OP77E, OPP77F (J, Z) . . . . . . . . . . . . . . . . –25C to +85C  
Junction T emperature (Tj) . . . . . . . . . . . . . –65C to +150C  
Lead T emperature (Soldering, 60 sec.) . . . . . . . . . . . . . 300C  
NOT ES  
DIE SIZE 0.093 
؋
 0.057 inch, 5301 sq. mm  
(2.36 
؋
 1.45 mm, 3.42 sq. mm)  
1Absolute Maximum Ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than ±22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
O RD ERING GUID E  
P ackage O ptions  
CERD IP *  
O perating  
Tem perature  
ء
P ackage Type  
jA  
jC  
Unit  
T O-99 (J)  
8-Lead Hermetic DIP (Z)  
150  
148  
18  
16  
C/W  
C/W  
TO -99  
8-Lead  
Range  
OP77AZ  
OP77EZ  
OP77FZ  
MIL  
IND  
IND  
NOT E  
OP77EJ  
OP77FJ  
ء
jA is specified for worst-case mounting conditions, i.e., is specified for  
jA  
device in socket for T O, CERDIP, P-DIP, and PLCC packages; is specified  
for device soldered to printed circuit board for SO package.  
jA  
ء
Not for new designs; obsolete April 2002.  
For Military processed devices, please refer to the Standard  
Microcircuit Drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp  
SMD P art Num ber  
AD I Equivalent  
5962-87738012A  
5962-8773802GA  
5962-8773802PA  
OP77BRCMDA  
OP77AJMDA  
OP77AZMDA  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP77 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. T herefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–7–  
Typical Performance Characteristics  
OP77  
2
16  
12  
8
25  
V
= ؎15V  
= 25؇C  
= 10k⍀  
V
= ؎15V  
S
S
T
= 25؇C  
= 2k⍀  
A
T
A
R
20  
15  
L
1
0
R
L
10  
5
–1  
4
–2  
–10  
0
0
–5  
0
5
10  
0
؎5  
؎10  
؎15  
؎20  
–15  
–55 –35  
5
25 45 65 85 105 125  
OUTPUT VOLTAGE – V  
POWER SUPPLY VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 1. Gain Linearity (Input  
Voltage vs. Output Voltage)  
TPC 3. Open-Loop Gain vs.  
Power Supply Voltage  
TPC 2. Open-Loop Gain vs.  
Temperature  
30  
20  
4
3
2
1
30  
25  
20  
15  
10  
5
J, Z PACKAGES  
+0.3V/؇C  
V
= ؎15V  
V
= ؎15V  
= 25؇C  
S
S
T
A
DEVICE IMMERSED IN  
70؇C OIL BATH (20 UNITS)  
MEAN  
S.D.  
10  
0
0
–1  
–2  
–3  
–4  
–10  
MAX  
–20  
–30  
AVE  
MIN  
–0.3V/؇C  
0
0
10  
20  
30 40  
50 60 70  
–55 –35 –15  
5
25 45 65 85 105 125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
TIME – SEC  
TEMPERATURE – ؇C  
TIME AFTER POWER SUPPLY TURN-ON – MINUTES  
TPC 6. Offset Voltage Change  
Due to Thermal Shock  
TPC 4. Untrimmed Offset  
Voltage vs. Temperature  
TPC 5. Warm-Up Drift  
0
100  
80  
160  
140  
120  
100  
80  
150  
V
= ؎15V  
= 25؇C  
S
T
= 25؇C  
V
= ؎15V  
= 25؇C  
A
S
T
A
140  
130  
120  
110  
100  
90  
T
A
45  
60  
40  
20  
0
90  
60  
135  
40  
20  
180  
–20  
0
80  
10  
100  
1k  
10k  
10k  
1M  
10M  
0.01 0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY – Hz  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 7. Closed-Loop Response for  
Various Gain Configurations  
TPC 8. Open-Loop Gain/Phase  
Response  
TPC 9. CMRR vs. Frequency  
–8–  
REV. C  
OP77  
130  
120  
110  
100  
90  
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0
V
= ؎15V  
V = ؎15V  
S
S
T
= 25؇C  
A
80  
70  
60  
–50  
0
50  
100  
–50  
0
50  
100  
0.1  
1.0  
10  
100  
1k  
10k  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
TPC 10. PSRR vs. Frequency  
TPC 11. Input Bias Current  
vs. Temperature  
TPC 12. Input Offset Current  
vs. Temperature  
10  
1.0  
0.1  
1000  
100  
10  
32  
28  
24  
20  
16  
12  
8
RS1 = RS2 = 200kV  
THERMAL NOISE OF SOURCE  
RESISTORS INCLUDED  
V
= ؎15V  
= 25؇C  
S
V
= ؎15V  
= 25؇C  
S
T
A
T
A
EXCLUDED  
R
= 0  
S
V
= ؎15V  
= 25؇C  
4
S
T
A
1
0
1k  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 13. Input Wideband Noise vs.  
Bandwidth (0.1 Hz to Frequency  
Indicated)  
TPC 14. Total Input Noise  
Voltage vs. Frequency  
TPC 15. Maximum Output Swing  
vs. Frequency  
100  
20  
15  
10  
40  
V
= ؎15V  
= 25؇C  
T
= 25؇C  
S
A
V
= ؎15V  
= 25؇C  
S
T
A
T
A
35  
30  
25  
20  
V
= ؎10mV  
IN  
POSITIVE SWING  
NEGATIVE SWING  
10  
5
0
0
15  
0
10  
20  
30  
40  
0
1
2
3
4
100  
1k  
LOAD RESISTANCE TO GROUND – ⍀  
10k  
TOTAL SUPPLY VOLTAGE, V+ TO V – V  
TIME FROM OUTPUT BEING SHORTED –  
MINUTES  
TPC 16. Power Consumption vs.  
Power Supply  
TPC 17. Maximum Output Voltage  
vs. Load Resistance  
TPC 18. Output Short-Circuit  
Current vs. Time  
–9–  
REV. C  
OP77  
200k⍀  
TYPICAL  
PRECISION OP AMP  
50⍀  
10k⍀  
100k⍀  
V
OP77  
O
V
Y
1M⍀  
10⍀  
V
O
V
= 10V  
V
=
IN  
OS  
V
X
4000  
V
X
–10V  
0V  
+10V  
Figure 1. Typical Offset Voltage Test Circuit  
R
L
2.5M⍀  
~
A
R
650V/mV  
VO  
= 2k⍀  
V+  
L
NOTES  
1. GAIN NOT CONSTANT. CAUSES NONLINEAR ERRORS.  
2. A SPEC IS ONLY PART OF THE SOLUTION.  
100⍀  
100⍀  
2
3
7
3.3k⍀  
6
OUTPUT  
4.7F  
10Hz FILTER)  
OP77  
VO  
4
3. CHECK THE OP AMP PERFORMANCE, ESPECIALLY AT TEMPERATURES.  
(
V–  
Figure 5. Open-Loop Gain Linearity  
V
O
=
INPUT REFERRED NOISE  
25,000  
Actual open-loop voltage gain can vary greatly at various output  
voltages. All automated testers use endpoint testing and therefore  
only show the average gain. T his causes errors in high closed-  
loop gain circuits. Since this is so difficult for manufacturers to  
test, users should make their own evaluation. T his simple test  
circuit makes it easy. An ideal op amp would show a horizontal  
scope trace.  
Figure 2. Typical Low-Frequency Noise Test Circuit  
20k⍀  
V+  
1
8
OP77  
4
2
3
7
6
OUTPUT  
INPUT  
+
V–  
Figure 3. Optional Offset Nulling Circuit  
V
Y
100k  
+18V  
+
*
10F  
10⍀  
0V  
–10V  
+10V  
V
X
0.1F  
2
7
OP77  
3
6
4
10k10k⍀  
10⍀  
0.1F  
*
10F  
+
–18V  
*
1 PER BOARD  
Figure 4. Burn-In Circuit  
Figure 6. Output Gain Linearity Trace  
T his is the output gain linearity trace for the new OP77. T he  
output trace is virtually horizontal at all points, assuring extremely  
high gain accuracy. T he average open-loop gain is truly impres-  
sive—approximately 10,000,000.  
–10–  
REV. C  
OP77  
AP P LICATIO NS INFO RMATIO N  
Bilater al Cur r ent Sour ce  
R3  
R2  
1M  
1k  
+15V  
0.1F  
R1  
2
V
IN  
100k⍀  
6
I
< 15mA  
OP77  
OUT  
R2  
3
R1  
2
3
7
100k⍀  
R5  
10⍀  
1k⍀  
6
OP77E  
4
R3  
R4  
1k⍀  
0.1F  
990⍀  
R4  
1M⍀  
Figure 9. Basic Current Source  
–15V  
R3  
+15V  
Figure 7. Precision High-Gain Differential Amplifier  
R1  
2
3
2N2222  
2N2907  
V
IN  
6
OP77  
T he high gain, gain linearity, CMRR, and low T CVos of the  
OP77 make it possible to obtain performance not previously  
available in single-stage very high-gain amplifier applications.  
R2  
R5  
–15V  
R4  
I
< 100mA  
OUT  
R1  
R2  
R3  
R4  
For best CMR,  
must equal  
. In this example,  
R3  
R1 – R5  
I
= V  
IN  
(
)
OUT  
GIVEN R3 = R4 ؉ R5, R1 = R2  
with a 10 mV differential signal, the maximum errors are as listed  
in T able I.  
Figure 10. 100 mA Current Source  
T hese current sources will supply both positive and negative  
current into a grounded load.  
Table I. Maxim um Errors  
TYP E  
AMO UNT  
Ê R4  
ˆ
R5  
+ 1  
Á
˜
COMMON-MODE VOLT AGE  
GAIN LINEARIT Y, WORST CASE  
T CVOS  
0.01%/V  
0.02%  
0.003%/C  
0.008%/C  
Ë
¯
R2  
Note that ZO  
=
R5 + R4  
R3  
R1  
R2  
T CI OS  
and that for ZO to be infinite,  
R
F
10pF  
+15V  
0.1F  
R
S
2
7
4
INPUT  
100⍀  
6
OUTPUT  
OP77  
3
C
LOAD  
0.1F  
–15V  
Figure 8. Isolating Large Capacitive Loads  
T his circuit reduces maximum slew-rate but allows driving  
capacitive loads of any size without instability. Because the boon  
resistor is inside the feedback loop, its effect on output imped-  
ance is reduced to insignificance by the high open-loop gain  
of the OP77.  
REV. C  
–11–  
OP77  
In these circuits, OP77’s high gain, high CMRR, and low TCVOS  
ensure high accuracy.  
R5 + R4  
R2  
R3  
R1  
must =  
R1  
P r ecision Cur r ent Sinks  
1.8k⍀  
2mA  
V+  
15V  
R
L
3
2
7
I
V
IN  
O
=
I
6
O
R1  
E
= 10V  
1.6  
OP77  
O
V
IN  
V
> OV  
IN  
200  
4
R2  
3.6k⍀  
OP77  
IRF520  
D1  
1N4579A  
6.4V ؎5%  
؎5ppm/؇C  
FULL SCALE OF 1V,  
=
I
1A/V  
O
A
VCL  
R3  
6.4k⍀  
R1  
1⍀  
1W  
Figure 13. High Stability Voltage Reference  
Figure 11. Positive Current Sink  
This simple bootstrapped voltage reference provides a precise 10 V  
virtually independent of changes in power supply voltage, ambi-  
ent temperature and output loading. Correct Zener operating  
current of exactly 2 mA is maintained by R1, a selected 5 ppm/C  
resistor, connected to the regulated output. Accuracy is prima-  
rily determined by three factors: the 5 ppm/C temperature  
coefficient of D1, 1 ppm/C ratio tracking of R2 and R3, and  
operational amplifier VOS errors.  
R1  
200  
IRF520  
OP77  
V
IN  
V
I
IN  
O
=
I
O
R1  
> OV  
VOs errors, amplified by 1.6 (AVCL), appear at the output and  
can be significant with most monolithic amplifiers. For example,  
an ordinary amplifier with TCVOS of 5 mV/C contributes 0.8 ppm/  
C of output error while the OP77, with T CVOS of 0.3 mV/C,  
contributes but 0.05 ppm/C of output error, thus effectively  
eliminating T CVOS as an error consideration.  
R
L
V
IN  
V–  
Figure 12. Positive Current Source  
T he high gain and low T CVOS assure accurate operation with  
inputs from microvolts to volts. In this circuit, the signal always  
These simple high-current sinks require the load to float between  
the power supply and the sink.  
1k⍀  
1k⍀  
+15V  
+15V  
0.1F  
D1  
1N4148  
C1  
30pF  
0.1F  
2
3
7
2
3
6
7
V
D2  
OUT  
OP77E  
4
0 < V  
< 10V  
6
OUT  
OP77E  
4
2N4393  
0.1F  
V
IN  
R3  
2k⍀  
0.1F  
–15V  
–15V  
Figure 14. Precision Absolute Value Amplifier  
T he high gain and low T CVOS assure accurate operation with  
inputs from microvolts to volts. In this circuit, the signal always  
appears as a common-mode signal to the op amps. T he OP77E  
CMRR of 1 V/V assures errors of less than 2 ppm.  
–12–  
REV. C  
OP77  
15V  
+
10F  
2
2
2
REF-01  
REF-01  
REF-01  
6
6
6
O
V
V
V
O
O
V
OP77  
OUT  
100⍀  
4
4
4
100⍀  
100⍀  
0.1F  
Figure 15. Low Noise Precision Reference  
T his circuit relies upon OP77’s low T CVOS and noise combined  
with very high CMRR to provide precision buffering of the  
averaged REF01 voltage outputs.  
CH must be of polystyrene, Teflon*, or polyethylene to minimize  
dielectric absorption and leakage. T he droop rate is determined  
by the size of CH and the bias current of the AD820.  
*T eflon is a registered trademark of the Dupont Company  
1k  
15V  
0.1F  
1N4148  
15V  
0.1F  
2
3
7
6
2N930  
2
3
OP77  
4
7
AD820  
4
1k⍀  
V
IN  
6
V
OUT  
1k⍀  
0.1F  
0.1F  
C
H
–15V  
RESET  
–15V  
Figure 16. Precision Positive Peak Detector  
REV. C  
–13–  
OP77  
+15V  
C
C
0.1F  
R
F
100k  
2
+15V  
0.1F  
V
R
C
R
IN  
A
6
5
V
O
TRIM  
50k⍀  
R
S
2
3
7
D1  
1N4148  
V
TH  
REF-02  
1k⍀  
6
V
R
V
OUT  
OP77  
–15V  
OP77  
4
OUT  
b1  
1.5k⍀  
3
R1  
TEMP  
GND  
4
V
IN  
0.1F  
2k⍀  
0.1F  
R
bp  
–15V  
Figure 17. Precision Threshold Detector/Amplifier  
Figure 18. Precision Temperature Sensor  
Table II. Resistor Values  
When VIN < VT H, amplifier output swings negative, reverse  
biasing diode D1. VOUT = VT H if RL= when VIN > VT H, the  
loop closes,  
T CVOUT SLOPE (S)  
10 mV/C 100 mV/C 10 mV/F  
T EMPERAT URE  
RANGE  
–55C to  
+125C  
–55C to  
+125C  
–67F to  
+257C  
Ê
Ë
RF ˆ  
˜
VOUT =VTH + V VTH 1 +  
(
)
Á
IN  
RS ¯  
OUT PUT VOLT AGE –0.55 V to –5.5 V to  
–0.67 V to  
+2.57V  
RANGE  
+1.25 V  
+12.5V  
CC is selected to smooth the response of the loop.  
ZERO-SCALE  
Ra (±1% Resistor)  
Rb1 (±1% Resistor)  
Rbp (Potentiometer)  
Rc (±1% Resistor)  
0 V @ 0C 0 V @ 0C 0 V @ 0ЊF  
9.09 kW  
1.5 kW  
200 W  
15 kW  
7.5 kW  
1.21 kW  
200 W  
1.82 kW  
500 W  
5.11 kW  
84.5 kW  
8.25 kW  
–14–  
REV. C  
OP77  
OUTLINE DIMENSIONS  
8-Lead Ceramic Dip – Glass Hermetic Seal [CERDIP]  
8-Lead Metal Can [TO-99]  
(Q-8)  
(H-08)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) 0.055 (1.40)  
REFERENCE PLANE  
MIN  
MAX  
0.5000 (12.70)  
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
8
5
0.2500 (6.35) MIN  
0.1000 (2.54) BSC  
5
0.310 (7.87)  
0.220 (5.59)  
0.1600 (4.06)  
0.1400 (3.56)  
0.0500 (1.27) MAX  
PIN 1  
1
4
6
4
0.0450 (1.14)  
0.0270 (0.69)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.2000  
(5.08)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
3
7
0.060 (1.52)  
0.015 (0.38)  
2
8
0.200 (5.08)  
MAX  
1
0.1000  
0.0190 (0.48)  
0.0160 (0.41)  
(2.54)  
BSC  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
0.0340 (0.86)  
0.0280 (0.71)  
MIN  
0.0400 (1.02) MAX  
0.0210 (0.53)  
0.0160 (0.41)  
0.0400 (1.02)  
0.0100 (0.25)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
45 BSC  
BASE & SEATING PLANE  
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-002AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. C  
–15–  
Revision History  
Location  
P age  
10/02—D ata Sheet changed fr om REV. B to REV. C.  
Edits to SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 2 Caption Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 3 Caption Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Edits to Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Updated OUT LINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/02—D ata Sheet changed fr om REV. A to REV. B.  
Remove 8-Lead SO PIN CONNECT ION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to ABSOLUT E MAXIMUM RAT INGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Remove OP77B column from SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Remove OP77B column from ELECT RICAL CHARACT ERIST ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Remove OP77G column from WAFER T EST LIMIT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Remove OP77G column from T YPICAL ELECT RICAL CHARACT ERIST ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY