OP90AZ/883 [ADI]

Precision Low-Voltage Micropower Operational Amplifier; 精密低电压,微功耗运算放大器
OP90AZ/883
型号: OP90AZ/883
厂家: ADI    ADI
描述:

Precision Low-Voltage Micropower Operational Amplifier
精密低电压,微功耗运算放大器

运算放大器
文件: 总12页 (文件大小:641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low-Voltage Micropower  
Operational Amplifier  
a
OP90  
FEATURES  
PIN CONNECTIONS  
Single/Dual Supply Operation: 1.6 V to 36 V,  
؎0.8 V to ؎18 V  
True Single-Supply Operation; Input and Output  
Voltage Ranges Include Ground  
Low Supply Current: 20 A Max  
High Output Drive: 5 mA Min  
Low Input Offset Voltage: 150 V Max  
High Open-Loop Gain: 700 V/mV Min  
Outstanding PSRR: 5.6 V/V Max  
Standard 741 Pinout with Nulling to V–  
8-Lead Hermetic DIP  
(Z-Suffix)  
8-Lead Epoxy Mini-DIP  
(P-Suffix)  
8-Lead SO  
(S-Suffix)  
1
2
3
4
8
7
6
5
NC  
V
NULL  
–IN  
OS  
V+  
+IN  
OUT  
V–  
V
NULL  
OS  
GENERAL DESCRIPTION  
NC = NO CONNECT  
The OP90 is a high performance, micropower op amp that  
operates from a single supply of 1.6 V to 36 V or from dual  
supplies of 0.8 V to 18 V. The input voltage range includes  
the negative rail allowing the OP90 to accommodate input  
signals down to ground in a single-supply operation. The OP90’s  
output swing also includes a ground when operating from a  
single-supply, enabling “zero-in, zero-out” operation.  
external nulling. Gain exceeds 700,000 and common-mode  
rejection is better than 100 dB. The power supply rejection  
ratio of under 5.6 µV/V minimizes offset voltage changes experi-  
enced in battery-powered systems.  
The low offset voltage and high gain offered by the OP90 bring  
precision performance to micropower applications. The minimal  
voltage and current requirements of the OP90 suit it for battery  
and solar powered applications, such as portable instruments,  
remote sensors, and satellites.  
The OP90 draws less than 20 µA of quiescent supply current,  
while able to deliver over 5 mA of output current to a load. The  
input offset voltage is below 150 µV eliminating the need for  
V+  
+IN  
OUTPUT  
IN  
*
*
NULL  
NULL  
V–  
*ELECTRONICALLY ADJUSTED ON CHIP  
FOR MINIMUM OFFSETVOLTAGE  
Figure 1. Simplied Schematic  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
–SPECIFICATIONS  
OP90  
(VS = ؎1.5 V to ؎15 V, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP90A/E  
OP90G  
Typ Max Unit  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
150  
3
Min  
INPUT OFFSET VOLTAGE  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VOS  
IOS  
IB  
50  
125  
0.4  
4.0  
450 µV  
VCM = 0 V  
VCM = 0 V  
0.4  
4.0  
5
nA  
nA  
15  
25  
LARGE-SIGNAL  
VOLTAGE GAIN  
VS = 15 V, VO = 10 V  
RL = 100 kΩ  
AVO  
AVO  
AVO  
700  
350  
125  
1200  
600  
250  
400  
200  
100  
800  
400  
200  
V/mV  
V/mV  
V/mV  
RL= 10 kΩ  
RL = 2 kΩ  
V+ = 5 V, V– = 0 V,  
1 V < VO < 4 V  
RL = 100 kΩ  
AVO  
AVO  
200  
100  
400  
180  
100  
70  
250  
140  
V/mV  
V/mV  
RL = 10 kΩ  
INPUT VOLTAGE RANGE1  
IVR  
V+ = 5 V, V– = 0 V  
VS = 15 V  
0/4  
–15/13.5  
0/4  
–15/13.5  
V
V
OUTPUT VOLTAGE SWING VO  
VS = 15 V  
RL = 10 kΩ  
14  
11  
14.2  
12  
14  
11  
14.2  
12  
V
V
RL = 2 kΩ  
VOH  
V+ = 5 V, V– = 0 V  
RL = 2 kΩ  
V+ = 5 V, V– = 0 V  
RL = 10 kΩ  
4.0  
4.2  
4.0  
4.2  
V
VOL  
100  
500  
5.6  
100  
500 µV  
COMMON-MODE  
REJECTION  
CMR  
CMR  
V+ = 5 V, V– = 0 V,  
0 V < VCM < 4 V  
VS = 15 V,  
90  
110  
130  
80  
90  
100  
120  
dB  
dB  
–15 V < VCM < 13.5 V  
100  
POWER SUPPLY  
REJECTION RATIO  
PSRR  
SR  
1.0  
12  
3.2  
12  
10  
µV/V  
SLEW RATE  
VS = 15 V  
5
5
V/ms  
SUPPLY CURRENT  
ISY  
ISY  
VS = 1.5 V  
VS = 15 V  
9
14  
15  
20  
9
14  
15  
20  
µA  
µA  
CAPACITIVE LOAD  
STABILITY2  
AV = 1  
No Oscillations  
250  
650  
3
250  
650  
3
pF  
INPUT NOISE VOLTAGE  
en p-p  
fO = 0.1 Hz to 10 Hz  
VS = 15 V  
µV p-p  
MΩ  
GΩ  
INPUT RESISTANCE  
DIFFERENTIAL MODE  
RIN  
VS = 15 V  
VS = 15 V  
30  
20  
30  
20  
INPUT RESISTANCE  
COMMON-MODE  
RINCM  
NOTES  
1Guaranteed by CMR test.  
2Guaranteed but not 100% tested.  
Specifications subject to change without notice.  
–2–  
REV. A  
OP90  
(VS = ؎1.5 V to ؎15 V, –55؇C TA +125؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
VOS  
80  
400  
µV  
AVERAGE INPUT OFFSET  
VOLTAGE DRIFT  
TCVOS  
IOS  
0.3  
1.5  
4.0  
2.5  
5
µV/°C  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VCM = 0 V  
VCM = 0 V  
IB  
20  
nA  
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
VS = 15 V, VO = 10 V  
RL = 100 kΩ  
225  
125  
50  
400  
240  
110  
V/mV  
V/mV  
V/mV  
RL = 10 kΩ  
RL = 2 kΩ  
AVO  
V+ = 5 V, V– = 0 V,  
1 V < VO < 4 V  
RL = 100 kΩ  
100  
50  
200  
110  
V/mV  
V/mV  
RL = 10 kΩ  
*
INPUT VOLTAGE RANGE  
IVR  
V+ = 5 V, V– = 0 V  
VS = 15 V  
0/3.5  
–15/13 5  
V
V
OUTPUT VOLTAGE SWING VO  
VS = 15 V  
RL = 10 kΩ  
13.5  
10.5  
13.7  
11.5  
V
V
RL = 2 kΩ  
VOH  
V+ = 5 V, V– = 0 V  
RL = 2 kΩ  
V+ = 5 V, V– = 0 V  
RL = 10 kΩ  
3.9  
4.1  
V
VOL  
100  
500  
µV  
COMMON-MODE  
REJECTION  
CMR  
V+ = 5 V, V– = 0 V,  
0 V < VCM < 3.5 V  
VS = 15 V,  
85  
95  
105  
115  
dB  
dB  
15 V < VCM < 13.5 V  
POWER SUPPLY  
REJECTION RATIO  
PSRR  
ISY  
3.2  
10  
µV/V  
SUPPLY CURRENT  
VS = 1.5 V  
VS = 15 V  
15  
19  
25  
30  
µA  
µA  
NOTE  
*Guaranteed by CMR test.  
–3–  
REV. A  
OP90  
(VS = ؎1.5 V to ؎15 V, –25؇C TA +85؇C for OP90E/F, –40؇C TA +85؇C for  
ELECTRICAL CHARACTERISTICS OP90G, unless otherwise noted.)  
OP9OE  
Typ Max  
OP9OG  
Typ Max  
Parameter  
Symbol Conditions  
Min  
Min  
Unit  
INPUT OFFSET VOLTAGE  
VOS  
70  
270  
180 675  
µV  
AVERAGE INPUT OFFSET  
VOLTAGE DRIFT  
TCVOS  
0.3  
0.8  
4.0  
2
1.2  
1.3  
4.0  
5
µV/°C  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
3
7
15  
25  
nA  
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
VS = 15 V, VO = 10 V  
RL = 100 kΩ  
500  
250  
100  
800  
400  
200  
300  
150  
75  
600  
250  
125  
V/mV  
V/mV  
V/mV  
RL = 10 kΩ  
RL = 2 kΩ  
AVO  
V+ = 5 V, V– = 0 V,  
1 V < VO < 4 V  
RL = 100 kΩ  
150  
75  
280  
140  
80  
40  
160  
90  
V/mV  
V/mV  
RL = 10 kΩ  
INPUT VOLTAGE RANGE*  
IVR  
V+ = 5 V, V– = 0 V  
VS = 15 V  
0/3.5  
–15/13.5  
0/3.5  
–15/13.5  
V
V
OUTPUT VOLTAGE SWING VO  
VS = 15 V  
RL = 10 kΩ  
RL = 2 kΩ  
V+ = 5 V, V– = 0 V  
RL = 2 kΩ  
V+ = 5 V, V– = 0 V  
RL = 10 kΩ  
13.5  
10.5  
14  
11.8  
13.5  
10.5  
14  
11.8  
V
V
VOH  
3.9  
4.1  
3.9  
4.1  
V
VOL  
100  
500  
5.6  
100 500  
µV  
COMMON-MODE  
REJECTION  
CMR  
V+ = 5 V, V– = 0 V,  
0 V < VCM < 3.5 V  
VS = 15 V,  
80  
100  
120  
80  
90  
100  
110  
dB  
dB  
–15 V < VCM < 13.5 V  
100  
POWER SUPPLY  
REJECTION RATIO  
PSRR  
ISY  
10  
5.6  
17.8  
µV/V  
SUPPLY CURRENT  
VS = 1.5 V  
VS = 15 V  
13  
17  
25  
30  
12  
16  
25  
30  
µA  
µA  
NOTE  
*Guaranteed by CMR test.  
–4–  
REV. A  
OP90  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Package Options  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Differential Input Voltage . . . . [(V–) – 20 V] to [(V+) + 20 V]  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . [(V–) – 20 V] to [(V+) + 20 V]  
TA = 25؇C  
VOS Max  
(mV)  
Operating  
Temperature  
Range  
CERDIP  
Plastic  
8-Lead  
8-Lead  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
P Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP90A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
OP90E . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
OP90G . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering 60 sec) . . . . . . . . . . . . . . 300°C  
150  
150  
450  
450  
OP90AZ/883*  
OP90EZ*  
MIL  
IND  
XIND  
XIND  
OP90GP  
OP90GS  
*Not for new design, obsolete April 2002.  
2
Package Type  
JA  
JC  
Unit  
8-Lead Hermetic DIP (Z)  
8-Lead Plastic DIP (P)  
8-Lead SO (S)  
148  
103  
158  
16  
43  
43  
°C/W  
°C/W  
°C/W  
NOTES  
1Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.  
2JA is specified for worst-case mounting conditions; i.e., JA is specified for  
device in socket for CerDIP, and P-DIP; JA is specified for devices soldered to  
printed circuit board for SO package.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP90 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–5–  
OP90Typical Performance Characteristics  
100  
80  
60  
40  
20  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
V
= ؎15V  
V
= ؎15V  
S
S
V
= ؎15V  
S
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
TEMPERATURE –  
C
TEMPERATURE –  
C
TEMPERATURE –  
C
TPC 1. Input Offset Voltage  
vs. Temperature  
TPC 2. Input Offset Current  
vs. Temperature  
TPC 3. Input Bias Current  
vs. Temperature  
22  
140  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
NO LOAD  
V
T
= ؎15V  
= 25؇C  
R
= 10k  
S
L
20  
18  
16  
14  
12  
10  
8
T
T
= 25 C  
= 85 C  
A
A
R
= 100k⍀  
L
0
A
GAIN  
45  
V
= ؎15V  
= ؎1.5V  
S
T
= 125 C  
A
60  
90  
V
40  
135  
180  
S
6
20  
4
2
0
0.1  
75 50 25  
0
25  
50  
75 100 125  
1
10  
100  
1k  
10k  
100k  
0
5
10  
15  
20  
25  
30  
TEMPERATURE –  
C
FREQUENCY Hz  
SINGLE-SUPPLYVOLTAGE V  
TPC 4. Supply Current vs.  
Temperature  
TPC 5. Open-Loop Gain vs.  
Single-Supply Voltage  
TPC 6. Open-Loop Gain and  
Phase Shift vs. Frequency  
60  
40  
20  
0
16  
6
V+ = 5V, V= 0V  
= 25؇C  
POSITIVE  
V
T
= ؎15V  
= 25؇C  
S
T
A
14  
12  
10  
8
A
5
4
3
2
1
0
NEGATIVE  
6
4
T
A
= 25؇C  
= ؎15V  
2
V
S
20  
0
100  
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY Hz  
LOAD RESISTANCE ⍀  
LOAD RESISTANCE ⍀  
TPC 7. Closed-Loop Gain  
vs. Frequency  
TPC 8. Output Voltage Swing  
vs. Load Resistance  
TPC 9. Output Voltage Swing  
vs. Load Resistance  
–6–  
REV. A  
OP90  
120  
100  
80  
140  
120  
100  
80  
1000  
100  
10  
T
= 25؇C  
V
T
= ؎15V  
= 25؇C  
V
T
= ؎15V  
= 25؇C  
A
S
S
A
A
NEGATIVE SUPPLY  
POSITIVE SUPPLY  
60  
40  
60  
1
0.1  
20  
40  
1
10  
100  
1k  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 10. Power Supply Rejection  
vs. Frequency  
TPC 11. Common-Mode Rejection  
vs. Frequency  
TPC 12. Noise Voltage Density  
vs. Frequency  
100  
V
T
= ؎15V  
= 25؇C  
S
A
10  
1
T
V
A
R
C
= 25؇C  
= ؎15V  
= +1  
= 10k⍀  
= 500pF  
T
V
A
R
C
= 25؇C  
= ؎15V  
= +1  
= 10k⍀  
= 500pF  
A
A
S
S
V
L
L
V
L
L
0.1  
0.1  
1
10  
100  
1k  
FREQUENCY Hz  
TPC 13. Current Noise Density  
vs. Frequency  
TPC 14. Small-Signal Transient  
Response  
TPC 15. Large-Signal Transient  
Response  
+18V  
APPLICATION INFORMATION  
Battery-Powered Applications  
The OP90 can be operated on a minimum supply voltage of 1.6 V,  
or with dual supplies 0.8 V, and draws only 14 pA of supply  
current. In many battery-powered circuits, the OP90 can be  
continuously operated for thousands of hours before requiring  
battery replacement, reducing equipment down time and  
operating cost.  
2
3
7
OP90  
4
6
18V  
High-performance portable equipment and instruments frequently  
use lithium cells because of their long shelf-life, light weight, and  
high-energy density relative to older primary cells. Most lithium  
cells have a nominal output voltage of 3 V and are noted for a  
flat discharge characteristic. The low-supply voltage requirement  
of the OP90, combined with the flat discharge characteristic of  
the lithium cell, indicates that the OP90 can be operated over  
the entire useful life of the cell. Figure 1 shows the typical dis-  
charge characteristic of a 1Ah lithium cell powering an OP90  
which, in turn, is driving full output swing into a 100 kload.  
Figure 2. Burn-In Circuit  
–7–  
REV. A  
OP90  
4
3
Single-Supply Output Voltage Range  
In single-supply operation, the OP90’s input and output ranges  
include ground. This allows true “zero-in, zero-out” operation.  
The output stage provides an active pull-down to around 0.8 V  
above ground. Below this level, a load resistance of up to 1 MΩ  
to ground is required to pull the output down to zero.  
2
1
In the region from ground to 0.8 V, the OP90 has voltage gain  
equal to the data sheet specification. Output current source  
capatibility is maintained over the entire voltage range includ-  
ing ground.  
0
APPLICATIONS  
Battery-Powered Voltage Reference  
0
1000 2000 3000 4000 5000 6000 7000  
HOURS  
The circuit of Figure 6 is a battery-powered voltage reference  
that draws only 17 µA of supply current. At this level, two AA  
cells can power this reference over 18 months. At an output voltage  
of 1.23 V @ 25°C, drift of the reference is only at 5.5 µV/°C over  
the industrial temperature range. Load regulation is 85 µV/mA  
with line regulation at 120 µV/V.  
Figure 3. Lithium Sulphur Dioxide Cell Discharge  
Characteristic with OP90 and 100 kLoad  
Input Voltage Protection  
The OP90 uses a PNP input stage with protection resistors in  
series with the inverting and noninverting inputs. The high  
breakdown of the PNP transistors coupled with the protection  
resistors provides a large amount of input protection, allowing  
the inputs to be taken 20 V beyond either supply without dam-  
aging the amplifier.  
Design of the reference is based on the bandgap technique.  
Scaling of resistors R1 and R2 produces unequal currents in Q1  
and Q2. The resulting VBE mismatch creates a temperature  
proportional voltage across R3 which, in turn, produces a larger  
temperature-proportional voltage across R4 and R5. This volt-  
age appears at the output added to the VBE of Q1, which has an  
opposite temperature coefficient. Adjusting the output to l.23 V  
at 25°C produces minimum drift over temperature. Bandgap  
references can have start-up problems. With no current in R1  
and R2, the OP90 is beyond its positive input range limit and  
has an undefined output state. Shorting Pin 5 (an offset adjust  
pin) to ground, forces the output high under these conditions  
and ensures reliable start-up without significantly degrading the  
OP90’s offset drift.  
Offset Nulling  
The offset null circuit of Figure 4 provides 6 mV of offset adjust-  
ment range. A 100 kresistor placed in a series with the wiper  
of the offset null potentiometer, as shown in Figure 5, reduces  
the offset adjustment range to 400 µV and is recommended for  
applications requiring high null resolution. Offset nulling does not  
affect TCVOS performance.  
TEST CIRCUITS  
V+  
V+  
(2.5VTO 36V)  
2
3
7
OP90  
5
R2  
6
4
C1  
1000pF  
R1  
240k⍀  
1.5M⍀  
2
3
7
1
V
6
OUT  
OP90  
(1.23V @ 25؇C)  
100k⍀  
5
4
V–  
Figure 4. Offset Nulling Circuit  
MAT-01AH  
2
1
7
V+  
6
3
5
2
3
7
OP90  
5
R3  
6
4
68k⍀  
R4  
130k⍀  
1
100k⍀  
100k⍀  
R5  
20k⍀  
OUTPUT  
ADJUST  
V–  
Figure 5. High Resolution Offset Nulling Circuit  
Figure 6. Battery-Powered Voltage Reference  
–8–  
REV. A  
OP90  
Single Op Amp Full-Wave Rectifier  
2-WIRE 4 mA TO 20 mA CURRENT TRANSMITTER  
Figure 7 shows a full-wave rectifier circuit that provides the  
absolute value of input signals up to 2.5 V even though operated  
from a single 5 V supply. For negative inputs, the amplifier acts  
as a unity-gain inverter. Positive signals force the op amp output  
to ground. The 1N914 diode becomes reversed-biased and the  
signal passes through R1 and R2 to the output. Since output  
impedance is dependent on input polarity, load impedances  
cause an asymmetric output. For constant load impedances, this  
can be corrected by reducing R2. Varying or heavy loads can be  
buffered by a second OP90. Figure 8 shows the output of the  
full-wave rectifier with a 4 Vp-p, 10 Hz input signal.  
The current transmitter of Figure 9 provides an output of 4 mA  
to 20 mA that is linearly proportional to the input voltage.  
Linearity of the transmitter exceeds 0.004% and line rejection is  
0.0005%/volt.  
Biasing for the current transmitter is provided by the REF-02EZ.  
The OP90EZ regulates the output current to satisfy the current  
summation at the noninverting node:  
VIN R5  
5V R5  
R1  
1
R6  
IOUT  
=
+
R2  
For the values shown in Figure 9,  
R2  
10k  
IN  
16  
100 Ω  
IOUT  
=
V
+ 4 mA  
+5V  
giving a full-scale output of 20 mA with a 100 mV input.  
Adjustment of R2 will provide an offset trim and adjustment of  
R1 will provide a gain trim. These trims do not interact since  
the noninverting input of the OP90 is at virtual ground. The  
Schottky diode, D1, prevents input voltage spikes from pulling  
the noninverting input more than 300 mV below the inverting  
input. Without the diode, such spikes could cause phase reversal of  
the OP90 and possible latch-up of the transmitter. Compliance of  
this circuit is from 10 V to 40 V. The voltage reference output  
can provide up to 2 mA for transducer excitation.  
R1  
2
7
OP90FZ  
4
V
IN  
1N914  
10k⍀  
6
V
OUT  
3
HP5082-2800  
R3  
100k⍀  
Figure 7. Single Op Amp Full-Wave Rectifier  
Figure 8. Output of Full-Wave Rectifier with 4 Vp-p  
10 Hz Input  
,
+5V  
REFERENCE  
2mA MAX  
6
2
V+  
REF-02EZ  
4
(10VTO 40V)  
R1  
1M  
2
3
7
OP90EZ  
4
6
2N1711  
R2  
+
5k⍀  
D1  
R3  
4.7k⍀  
HP  
R4  
V
IN  
5082-  
2800  
100k⍀  
R6  
100⍀  
R5  
I
80k⍀  
OUT  
R
L
16V  
IN  
+ 4mA  
100⍀  
I
=
OUT  
Figure 9. 2-Wire 4 mA to 20mA Transmitter  
REV. A  
–9–  
OP90  
Micropower Voltage-Controlled Oscillator  
tions. Nonlinearity is less than 0.1% for gains of 500 to 1000  
over a 2.5 V output range. Resistors R3 and R4 set the voltage  
gain and, with the values shown, yield a gain of 1000. Gain  
tempco of the instrumentation amplifier is only 50 ppm/°C.  
Offset voltage is under 150 µV with drift below 2 µV/°C. The  
OP90s input and output voltage ranges include the negative  
rail which allows the instrumentation amplifier to provide true  
zero-in, zero-outoperation.  
Two OP90s in combination with an inexpensive quad CMOS  
switch comprise the precision VCO of Figure 10. This circuit  
provides triangle and square wave outputs and draws only 50 µA  
from a single 5 V supply. A1 acts as an integrator; S1 switches  
the charging current symmetrically to yield positive and negative  
ramps. The integrator is bounded by A2 which acts as a Schmitt  
trigger with a precise hysteresis of 1.67 V, set by resistors R5,  
R6, and R7, and associated CMOS switches. The resulting output  
of A1 is a triangular wave with upper and lower levels of 3.33 V  
and 1.67 V. The output of A2 is a square wave with almost  
rail-to-rail swing. With the components shown, frequency of  
operation is given by the equation:  
+5V  
0.1F  
7
2
3
IN  
6
5
V
OP90EZ  
OUT  
fOUT =VCONTROL V × 10 Hz /V  
( )  
R2  
500k⍀  
GAIN  
+IN  
1
4
but this is easily changed by varying C1. The circuit operates  
well up to a few hundred hertz.  
R4  
3.9M⍀  
ADJUST  
R1  
4.3M⍀  
Micropower Single-Supply Instrumentation Amplifier  
R3  
1M⍀  
The simple instrumentation amplifier of Figure 11 provides over  
110 dB of common-mode rejection and draws only 15 µA of  
supply current. Feedback is to the trim pins rather than to the  
inverting input. This enables a single amplifier to provide differ-  
ential to single-ended conversion with excellent common-mode  
rejection. Distortion of the instrumentation amplifier is that of a  
differential pair, so the circuit is restricted to high gain applica-  
Figure 11. Micropower Single-Supply Instrumentation  
Amplifier  
+5V  
C1  
+5V  
75nF  
R5  
200k⍀  
+5V  
R1  
2
3
7
200k⍀  
6
2
OP90EZ  
A1  
7
V
CONTROL  
R2  
6
SQUARE  
OUT  
OP90EZ  
A2  
4
3
200k⍀  
4
R3  
100k⍀  
R4  
200k⍀  
TRIANGLE  
OUT  
R8  
+5V  
200k⍀  
CD4066  
S1  
14  
1
2
3
IN/OUT  
V
+5V  
R6  
200k⍀  
R7  
200k⍀  
DD  
CONT 13  
CONT 12  
OUT/IN  
OUT/IN  
S2  
4
5
IN/OUT  
CONT  
IN/OUT 11  
OUT/IN 10  
S3  
S4  
OUT/IN  
IN/OUT  
9
8
6
7
CONT  
+5V  
V
SS  
Figure 10. Micropower Voltage Controlled Oscillator  
–10–  
REV. A  
OP90  
Single-Supply Current Monitor  
V+  
Current monitoring essentially consists of amplifying the voltage  
drop across a resistor placed in a series with the current to be  
measured. The difficulty is that only small voltage drops can be  
tolerated and with low precision op amps this greatly limits the  
overall resolution. The single supply current monitor of Figure 12  
has a resolution of 10 µA and is capable of monitoring 30 mA of  
current. This range can be adjusted by changing the current  
sense resistor R1. When measuring total system current, it may  
be necessary to include the supply current of the current moni-  
tor, which bypasses the current sense resistor, in the final result.  
This current can be measured and calibrated (together with the  
residual offset) by adjustment of the offset trim potentiometer,  
R2. This produces a deliberate offset that is temperature  
dependent. However, the supply current of the OP90 is also  
proportional to temperature and the two effects tend to track.  
Current in R4 and R5, which also bypasses R1, can be accounted  
for by a gain trim.  
+
TO CIRCUIT  
UNDERTEST  
3
2
7
6
4
V
= 100mV/mA (I  
)
OP90EZ  
OUT  
TEST  
I
5
TEST  
1
R4  
9.9k⍀  
R2  
100k⍀  
R1  
1⍀  
R5  
100⍀  
R3  
100k⍀  
Figure 12. Single-Supply Current Monitor  
REV. A  
–11–  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Hermetic Package  
8-Lead PDIP Package  
(Q-8)  
(N-8)  
0.055 (1.4)  
MAX  
0.005 (0.13)  
0.430 (10.92)  
0.348 (8.84)  
MIN  
8
5
8
5
0.310 (7.87)  
0.220 (5.59)  
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.022 (0.558) 0.070 (1.77)  
0.014 (0.356) 0.045 (1.15)  
SEATING  
PLANE  
15°  
0°  
0.023 (0.58) 0.070 (1.78)  
0.014 (0.36) 0.030 (0.76)  
8-Lead Soic Package  
(R-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
؋
 45؇  
0.0500 (1.27)  
BSC  
0.0099 (0.25)  
0.102 (2.59)  
0.094 (2.39)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8؇  
0؇ 0.0500 (1.27)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
0.0160 (0.41)  
Revision History  
Location  
Page  
9/01—Data Sheet changed from REV. 0 to REV. A.  
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3, 4  
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DELETED OP90 DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DELETED WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
–12–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY