OPZ213FPZ [ADI]

IC DUAL OP-AMP, 325 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001 DIP-8, Operational Amplifier;
OPZ213FPZ
型号: OPZ213FPZ
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 325 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001 DIP-8, Operational Amplifier

放大器 光电二极管
文件: 总24页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Low Drift  
Single-Supply Operational Amplifiers  
OP113/OP213/OP413  
PIN CONFIGURATIONS  
FEATURES  
Single- or dual-supply operation  
Low noise: 4.7 nV/√Hz @ 1 kHz  
Wide bandwidth: 3.4 MHz  
Low offset voltage: 100 μV  
Very low drift: 0.2 μV/°C  
Unity gain stable  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP113  
OP213  
V+  
OUT B  
–IN B  
+IN B  
TOP VIEW  
TOP VIEW  
OUT A  
NULL  
(Not to Scale)  
(Not to Scale)  
NC = NO CONNECT  
Figure 1. 8-Lead Narrow-Body  
SOIC_N  
Figure 2. 8-Lead Narrow-Body  
SOIC_N  
No phase reversal  
APPLICATIONS  
Digital scales  
Multimedia  
Strain gages  
Battery-powered instrumentation  
Temperature transducer amplifier  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
14 +IN D  
13 V–  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP413  
OP213  
TOP VIEW  
OUT B  
–IN B  
+IN B  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
GENERAL DESCRIPTION  
9
NC  
The OPx13 family of single-supply operational amplifiers  
features both low noise and drift. It has been designed for  
systems with internal calibration. Often these processor-based  
systems are capable of calibrating corrections for offset and  
gain, but they cannot correct for temperature drifts and noise.  
Optimized for these parameters, the OPx13 family can be used  
to take advantage of superior analog performance combined  
with digital correction. Many systems using internal calibration  
operate from unipolar supplies, usually either 5 V or 12 V. The  
OPx13 family is designed to operate from single supplies from  
4 V to 36 V and to maintain its low noise and precision  
performance.  
NC = NO CONNECT  
Figure 3. 8-Lead PDIP  
Figure 4. 16-Lead Wide-Body  
SOIC_W  
Digital scales and other strain gage applications benefit from  
the very low noise and low drift of the OPx13 family. Other  
applications include use as a buffer or amplifier for both analog-  
to-digital (ADC) and digital-to-analog (DAC) sigma-delta  
converters. Often these converters have high resolutions  
requiring the lowest noise amplifier to utilize their full  
potential. Many of these converters operate in either single-  
supply or low-supply voltage systems, and attaining the greater  
signal swing possible increases system performance.  
The OPx13 family is unity gain stable and has a typical gain  
bandwidth product of 3.4 MHz. Slew rate is in excess of 1 V/μs.  
Noise density is a very low 4.7 nV/√Hz, and noise in the 0.1 Hz  
to 10 Hz band is 120 nV p-p. Input offset voltage is guaranteed  
and offset drift is guaranteed to be less than 0.8 μV/°C. Input  
common-mode range includes the negative supply and to  
within 1 V of the positive supply over the full supply range.  
Phase reversal protection is designed into the OPx13 family for  
cases where input voltage range is exceeded. Output voltage  
swings also include the negative supply and go to within 1 V of  
the positive rail. The output is capable of sinking and sourcing  
current throughout its range and is specified with 600 Ω loads.  
The OPx13 family is specified for single 5 V and dual 15 V  
operation over the XIND—extended industrial temperature  
range (–40°C to +85°C). They are available in PDIP and SOIC  
surface-mount packages.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1993–2007 Analog Devices, Inc. All rights reserved.  
 
OP113/OP213/OP413  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
A Low Voltage, Single Supply Strain Gage Amplifier............ 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Applications..................................................................................... 13  
Phase Reversal............................................................................. 13  
OP113 Offset Adjust .................................................................. 13  
Application Circuits ....................................................................... 14  
A High Precision Industrial Load-Cell Scale Amplifier........ 14  
A High Accuracy Linearized RTD Thermometer  
Amplifier ..................................................................................... 14  
A High Accuracy Thermocouple Amplifier........................... 15  
An Ultralow Noise, Single Supply Instrumentation  
Amplifier ..................................................................................... 15  
Supply Splitter Circuit................................................................ 15  
Low Noise Voltage Reference.................................................... 16  
5 V Only Stereo DAC for Multimedia..................................... 16  
Low Voltage Headphone Amplifiers........................................ 17  
Low Noise Microphone Amplifier for Multimedia ............... 17  
Precision Voltage Comparator.................................................. 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
REVISION HISTORY  
3/07—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Pin Configurations....................................................... 1  
Changes to Absolute Maximum Ratings Section......................... 6  
Deleted Spice Model....................................................................... 15  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
8/02—Rev. D to Rev. E  
Edits to Figure 6.............................................................................. 13  
Edits to Figure 7.............................................................................. 13  
Edits to OUTLINE DIMENSIONS.............................................. 16  
9/01—Rev. C to Rev. E  
Edits to ORDERING GUIDE.......................................................... 4  
Rev. F | Page 2 of 24  
 
OP113/OP213/OP413  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS = ±±15. V, TA = 21°C, unless otherwise noted5  
Table 1.  
E Grade  
Min Typ  
F Grade  
Parameter  
Symbol  
Conditions  
Max  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP113  
−40°C ≤ TA ≤ +85°C  
OP213  
−40°C ≤ TA ≤ +85°C  
OP413  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V  
75  
150  
225  
250  
325  
275  
350  
600  
700  
μV  
μV  
μV  
μV  
μV  
μV  
nA  
nA  
125  
100  
150  
125  
175  
600  
700  
Input Bias Current  
IB  
240  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
50  
+14  
50  
+14  
nA  
V
dB  
Input Voltage Range  
VCM  
−15  
100 116  
−15  
96  
Common-Mode Rejection  
CMR  
−15 V ≤ VCM ≤ +14 V  
−15 V ≤ VCM ≤ +14 V,  
−40°C ≤ TA ≤ +85°C  
OP113, OP213,  
RL = 600 Ω,  
97  
116  
94  
dB  
Large-Signal Voltage Gain  
AVO  
−40°C ≤ TA ≤ +85°C  
OP413, RL = 1 kΩ,  
−40°C ≤ TA ≤ +85°C  
RL = 2 kΩ,  
1
1
2
2.4  
2.4  
8
1
1
2
V/μV  
V/μV  
−40°C ≤ TA ≤ +85°C  
V/μV  
μV  
μV/°C  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
ΔVOS/ΔT  
150  
0.8  
300  
1.5  
0.2  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
RL = 2 kΩ  
14  
14  
V
RL = 2 kΩ,  
−40°C ≤ TA ≤ +85°C  
RL = 2 kΩ  
RL = 2 kΩ,  
13.9  
13.9  
V
V
Output Voltage Swing Low  
VOL  
−14.5  
−14.5  
−14.5  
−14.5  
−40°C ≤ TA ≤ +85°C  
V
Short-Circuit Limit  
POWER SUPPLY  
ISC  
40  
40  
mA  
Power Supply Rejection Ratio  
PSRR  
VS = 2 V to 18 V  
VS = 2 V to 18 V  
−40°C ≤ TA ≤ +85°C  
VOUT = 0 V, RL = ∞,  
VS = 18 V  
103 120  
100 120  
100  
97  
dB  
dB  
Supply Current/Amplifier  
Supply Voltage Range  
ISY  
3
3.8  
18  
3
3.8  
18  
mA  
mA  
V
−40°C ≤ TA ≤ +85°C  
VS  
4
4
Rev. F | Page 3 of 24  
 
OP113/OP213/OP413  
E Grade  
Min Typ  
F Grade  
Typ  
Parameter  
Symbol  
Conditions  
Max  
Min  
Max  
Unit  
AUDIO PERFORMANCE  
THD + Noise  
VIN = 3 V rms, RL = 2 kΩ,  
f = 1 kHz  
0.0009  
9
4.7  
0.4  
120  
0.0009  
9
4.7  
0.4  
120  
%
Voltage Noise Density  
en  
f = 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
nV p-p  
Current Noise Density  
Voltage Noise  
in  
en p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
0.8  
1.2  
3.4  
0.8  
1.2  
3.4  
V/μs  
MHz  
VOUT = 10 V p-p  
RL = 2 kΩ, f = 1 kHz  
to 0.01%, 0 V to 10 V step  
105  
9
105  
9
dB  
μs  
Settling Time  
tS  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2 Guaranteed specifications, based on characterization data.  
@ VS = 15. V, TA = 21°C, unless otherwise noted5  
Table 2.  
E Grade  
F Grade  
Parameter  
Symbol  
Conditions  
Min Typ  
Max Min Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP113  
−40°C ≤ TA ≤ +85°C  
OP213  
−40°C ≤ TA ≤ +85°C  
OP413  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V, VOUT = 2  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V, VOUT = 2  
−40°C ≤ TA ≤ +85°C  
125  
175  
150  
225  
175  
250  
650  
750  
175  
250  
300  
375  
325  
400  
650  
750  
μV  
μV  
μV  
μV  
μV  
μV  
nA  
nA  
Input Bias Current  
IB  
300  
Input Offset Current  
IOS  
50  
4
50  
4
nA  
V
Input Voltage Range  
VCM  
0
Common-Mode Rejection  
CMR  
0 V ≤ VCM ≤ 4 V  
0 V ≤ VCM ≤ 4 V,  
−40°C ≤ TA ≤ +85°C  
OP113, OP213,  
93  
106  
90  
87  
dB  
90  
dB  
Large-Signal Voltage Gain  
AVO  
RL = 600 Ω, 2 kΩ,  
0.01 V ≤ VOUT ≤ 3.9 V  
OP413, RL = 600, 2 kΩ,  
0.01 V ≤ VOUT ≤ 3.9 V  
2
1
2
1
V/μV  
V/μV  
μV  
Long-Term Offset Voltage1  
Offset Voltage Drift2  
VOS  
200  
1.0  
350  
1.5  
∆VOS/∆T  
0.2  
μV/°C  
Rev. F | Page 4 of 24  
 
OP113/OP213/OP413  
E Grade  
Min Typ  
F Grade  
Parameter  
Symbol  
Conditions  
Max Min Typ  
Max Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
RL = 600 kΩ  
RL = 100 kΩ,  
−40°C ≤ TA ≤ +85°C  
RL = 600 Ω,  
−40°C ≤ TA ≤ +85°C  
RL = 600 Ω,  
4.0  
4.1  
3.9  
4.0  
4.1  
3.9  
V
V
V
Output Voltage Swing Low  
VOL  
−40°C ≤ TA ≤ +85°C  
RL = 100 kΩ,  
8
8
mV  
−40°C ≤ TA ≤ +85°C  
8
8
mV  
mA  
Short-Circuit Limit  
POWER SUPPLY  
ISC  
30  
30  
Supply Current  
ISY  
ISY  
VOUT = 2.0 V, no load  
–40°C ≤ TA ≤ +85°C  
1.6  
2.7  
3.0  
2.7  
3.0  
mA  
mA  
AUDIO PERFORMANCE  
THD + Noise  
Voltage Noise Density  
VOUT = 0 dBu, f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
0.001  
9
4.7  
0.45  
120  
0.001  
9
4.7  
0.45  
120  
%
en  
nV/√Hz  
nV/√Hz  
pA/√Hz  
nV p-p  
Current Noise Density  
Voltage Noise  
in  
en p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
0.6  
0.9  
3.5  
5.8  
0.6  
V/μs  
MHz  
μs  
3.5  
5.8  
to 0.01%, 2 V step  
1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2 Guaranteed specifications, based on characterization data.  
Rev. F | Page 5 of 24  
 
OP113/OP213/OP413  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Table 4. Thermal Resistance  
Parameter  
Rating  
Supply Voltage  
±±1 V  
Package Type  
θJA  
θJC  
Unit  
Input Voltage  
±±1 V  
±±ꢀ V  
Indefinite  
−65°C to +±5ꢀ°C  
−4ꢀ°C to +15°C  
−65°C to +±5ꢀ°C  
1-Lead PDIP (P)  
1-Lead SOIC_N (S)  
±6-Lead SOIC_W (S)  
±ꢀ3  
±51  
92  
43  
43  
27  
°C/W  
°C/W  
°C/W  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
ESD CAUTION  
Lead Temperature Range (Soldering, 6ꢀ sec) 3ꢀꢀ°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. F | Page 6 of 24  
 
OP113/OP213/OP413  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
150  
120  
90  
60  
30  
0
V
T
= ±15V  
= 25°C  
V
= ±15V  
S
S
–40°C T +85°C  
400 × OP AMPS  
PLASTIC PACKAGE  
A
A
400 × OP AMPS  
PLASTIC PACKAGE  
80  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
OS  
0.6  
0.7  
0.8  
0.9  
1.0  
–50 –40 –30 –20 –10  
0
10  
20  
OS  
30  
40  
50  
TCV (µV)  
INPUT OFFSET VOLTAGE, V (µV)  
Figure 5. OP113 Input Offset (VOS) Distribution @ 15 V  
Figure 8. OP113 Temperature Drift (TCVOS) Distribution @ 15 V  
500  
400  
300  
200  
100  
0
500  
V
= ±15V  
V
T
= ±15V  
= 25°C  
S
S
–40°C T +85°C  
896 × OP AMPS  
PLASTIC PACKAGE  
A
A
896 × OP AMPS  
PLASTIC PACKAGE  
400  
300  
200  
100  
0
–100 –80 –60 –40 –20  
0
20  
40  
OS  
60  
80  
100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
OS  
0.6  
0.7  
0.8  
0.9  
1.0  
TCV (µV)  
INPUT OFFSET VOLTAGE, V (µV)  
Figure 6. OP213 Input Offset (VOS) Distribution @ 15 V  
Figure 9. OP213 Temperature Drift (TCVOS) Distribution @ 15 V  
500  
400  
300  
200  
100  
0
600  
V
= ±15V  
= 25°C  
S
V = ±15V  
S
T
A
–40°C T +85°C  
A
1220 × OP AMPS  
PLASTIC PACKAGE  
1220 × OP AMPS  
PLASTIC PACKAGE  
500  
400  
300  
200  
100  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
OS  
0.6  
0.7  
0.8  
0.9  
1.0  
–60 –40 –20  
0
20  
40  
60  
80  
OS  
100 120 140  
TCV (µV)  
INPUT OFFSET VOLTAGE, V (µV)  
Figure 7. OP413 Input Offset (VOS) Distribution @ 15 V  
Figure 10. OP413 Temperature Drift (TCVOS) Distribution @ 15 V  
Rev. F | Page 7 of 24  
 
OP113/OP213/OP413  
1000  
500  
400  
300  
200  
100  
0
800  
V
= 0V  
V = +5V  
S
CM  
600  
V
= ±15V  
S
V
V
= +5V  
S
= +2.5V  
400  
200  
0
CM  
V
V
= ±15V  
S
= 0V  
CM  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. OP213 Input Bias Current vs. Temperature  
Figure 11. OP113 Input Bias Current vs. Temperature  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
5.0  
2.0  
1.5  
V
= ±15V  
S
V
= 5V  
+SWING  
= 2k  
S
R
L
4.5  
4.0  
3.5  
+SWING  
= 2k  
R
L
+SWING  
R
= 600Ω  
L
–SWING  
= 2kΩ  
1.0  
R
L
+SWING  
R
= 600Ω  
L
–SWING  
= 2kΩ  
–13.5  
–14.0  
–14.5  
–15.0  
R
L
0.5  
0
–SWING  
R
= 600Ω  
L
–SWING  
R
= 600Ω  
L
3.0  
–75  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Output Swing vs. Temperature and RL @ 5 V  
Figure 15. Output Swing vs. Temperature and RL @ 15 V  
60  
40  
20  
18  
V
T
= ±15V  
= 25°C  
S
V
V
= 5V  
= 3.9V  
S
A
O
20  
16  
14  
12  
R
= 2kΩ  
0
L
–20  
–40  
–60  
–80  
–100  
–120  
10  
8
R
= 600Ω  
L
6
4
2
0
105  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 13. Channel Separation  
Figure 16. Open-Loop Gain vs. Temperature @ 5 V  
Rev. F | Page 1 of 24  
OP113/OP213/OP413  
12.5  
10.0  
7.5  
5.0  
2.5  
0
10  
9
V
V
= ±15V  
= ±10V  
V
V
= ±15V  
= ±10V  
S
S
D
R
= 2kΩ  
L
O
8
7
6
R
= 2kΩ  
L
R
= 1kΩ  
L
5
4
3
R
= 600Ω  
L
R
= 600Ω  
L
2
1
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. OP213 Open-Loop Gain vs. Temperature  
Figure 17. OP413 Open-Loop Gain vs. Temperature  
100  
80  
100  
80  
60  
40  
20  
0
V+ = 5V  
V– = 0V  
= 25°C  
T
V
= 25°C  
= ±15V  
A
S
T
A
0
0
60  
45  
45  
GAIN  
GAIN  
40  
90  
90  
PHASE  
PHASE  
20  
θm = 72°  
135  
180  
225  
θm = 57°  
135  
180  
225  
0
–20  
1k  
–20  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 21. Open-Loop Gain, Phase vs. Frequency @ 15 V  
Figure 18. Open-Loop Gain, Phase vs. Frequency @ 5 V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V+ = 5V  
V– = 0V  
A
T = 25°C  
A
V
= ±15V  
S
T
= 25°C  
A
= 100  
A
A
A
= 100  
= 10  
= 1  
V
V
A
A
= 10  
= 1  
V
V
V
V
–10  
–20  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Closed-Loop Gain vs. Frequency @ 15 V  
Figure 19. Closed-Loop Gain vs. Frequency @ 5 V  
Rev. F | Page 9 of 24  
OP113/OP213/OP413  
70  
65  
60  
55  
50  
5
4
3
2
1
70  
5
4
3
2
1
V+ = 5V  
V– = 0V  
V
= ±15V  
S
65  
GBW  
GBW  
θm  
60  
θm  
55  
50  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. Gain Bandwidth Product and Phase Margin vs. Temperature @ 5 V  
Figure 26. Gain Bandwidth Product and Phase Margin vs. Temperature @ 15 V  
30  
3.0  
T
V
= 25°C  
= ±15V  
T
V
= 25°C  
= ±15V  
A
A
S
S
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Voltage Noise Density vs. Frequency  
Figure 27. Current Noise Density vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V+ = 5V  
V– = 0V  
A
T
V
= 25°C  
= ±15V  
A
S
T
= 25°C  
60  
60  
40  
40  
20  
20  
0
100  
0
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Common-Mode Rejection vs. Frequency @ 5 V  
Figure 28. Common-Mode Rejection vs. Frequency @ 15 V  
Rev. F | Page ±ꢀ of 24  
OP113/OP213/OP413  
40  
30  
20  
10  
0
140  
T
V
= 25°C  
= ±15V  
A
T
V
= 25°C  
= ±15V  
A
S
S
120  
100  
+PSRR  
80  
60  
–PSRR  
A
= 100  
V
40  
20  
A
= 10  
V
A
= 1  
V
0
100  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 29. Power Supply Rejection vs. Frequency @ 15 V  
Figure 32. Closed-Loop Output Impedance vs. Frequency @ 15 V  
6
5
4
3
2
1
0
30  
V
R
= ±15V  
= 2kΩ  
= 25°C  
= 1  
V
= 5V  
S
S
R
T
= 2k  
= 25°C  
= 1  
L
L
T
A
A
25  
20  
15  
10  
5
A
A
VOL  
VCL  
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. Maximum Output Swing vs. Frequency @ 15 V  
Figure 30. Maximum Output Swing vs. Frequency @ 5 V  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
R
V
= ±15V  
= 2kΩ  
S
V
R
V
= 5V  
= 2kΩ  
S
L
L
= 100mV p-p  
= 25°C  
IN  
= 100mV p-p  
= 25°C  
IN  
T
A
T
A
A
= 1  
VCL  
A
= 1  
VCL  
POSITIVE  
EDGE  
NEGATIVE  
EDGE  
NEGATIVE  
EDGE  
POSITIVE  
EDGE  
6
4
2
0
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 34. Small-Signal Overshoot vs. Load Capacitance @ 15 V  
Figure 31. Small-Signal Overshoot vs. Load Capacitance @ 5 V  
Rev. F | Page ±± of 24  
OP113/OP213/OP413  
2.0  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
V
= ±15V  
S
S
0.5V V  
4.0V  
–10V V  
+10V  
OUT  
OUT  
+SLEW RATE  
1.5  
1.0  
0.5  
0
–SLEW RATE  
+SLEW RATE  
–SLEW RATE  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. Slew Rate vs. Temperature @ 5 V (0.5 V ≤ VOUT ≤ 4.0 V)  
Figure 38. Slew Rate vs. Temperature @ 15 V (–10 V ≤ VOUT ≤ +10.0 V)  
1s  
1s  
100  
100  
90  
90  
10  
10  
0%  
0%  
20mV  
20mV  
Figure 36. Input Voltage Noise @ 15 V (20 nV/div)  
Figure 39. Input Voltage Noise @ 5 V (20 nV/div)  
5
4
V
= ±18V  
S
V
= ±15V  
= +5V  
909Ω  
S
3
2
100Ω  
V
S
0.1Hz TO 10Hz  
A
= 1000  
V
A
= 100  
tOUT  
V
1
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 37. Noise Test Diagram  
Figure 40. Supply Current vs. Temperature  
Rev. F | Page ±2 of 24  
OP113/OP213/OP413  
APPLICATIONS  
The OP113, OP213, and OP413 form a new family of high  
performance amplifiers that feature precision performance in  
standard dual-supply configurations and, more importantly,  
maintain precision performance when a single power supply is  
used. In addition to accurate dc specifications, it is the lowest  
noise single-supply amplifier available with only 4.7 nV/√Hz  
typical noise density.  
PHASE REVERSAL  
The OPx13 family is protected against phase reversal as long as  
both of the inputs are within the supply ranges. However, if  
there is a possibility of either input going below the negative  
supply (or ground in the single-supply case), the inputs should  
be protected with a series resistor to limit input current to 2 mA.  
OP113 OFFSET ADJUST  
Single-supply applications have special requirements due to the  
generally reduced dynamic range of the output signal. Single-  
supply applications are often operated at voltages of 5 V or 12 V,  
compared to dual-supply applications with supplies of 12 V or  
15 V. This results in reduced output swings. Where a dual-  
supply application may often have 20 V of signal output swing,  
single-supply applications are limited to, at most, the supply  
range and, more commonly, several volts below the supply.  
In order to attain the greatest swing, the single-supply output  
stage must swing closer to the supply rails than in dual-supply  
applications.  
The OP113 has the facility for external offset adjustment, using  
the industry standard arrangement. Pin 1 and Pin 5 are used in  
conjunction with a potentiometer of 10 kΩ total resistance,  
connected with the wiper to V− (or ground in single-supply  
applications). The total adjustment range is about 2 mV using  
this configuration.  
Adjusting the offset to 0 has minimal effect on offset drift  
(assuming the potentiometer has a tempco of less than  
1000 ppm/°C). Adjustment away from 0, however, (as with all  
bipolar amplifiers) results in a TCVOS of approximately  
3.3 μV/°C for every millivolt of induced offset.  
The OPx13 family has a new patented output stage that allows  
the output to swing closer to ground, or the negative supply,  
than previous bipolar output stages. Previous op amps had  
outputs that could swing to within about 10 mV of the negative  
supply in single-supply applications. However, the OPx13  
family combines both a bipolar and a CMOS device in the output  
stage, enabling it to swing to within a few hundred ꢀV of ground.  
It is, therefore, not generally recommended that this trim be  
used to compensate for system errors originating outside of the  
OP113. The initial offset of the OP113 is low enough that  
external trimming is almost never required, but if necessary, the  
2 mV trim range may be somewhat excessive. Reducing the  
trimming potentiometer to a 2 kΩ value results in a more  
reasonable range of 400 μV.  
When operating with reduced supply voltages, the input range  
is also reduced. This reduction in signal range results in  
reduced signal-to-noise ratio for any given amplifier. There are  
only two ways to improve this: increase the signal range or  
reduce the noise. The OPx13 family addresses both of these  
parameters. Input signal range is from the negative supply to  
within 1 V of the positive supply over the full supply range.  
Competitive parts have input ranges that are 0.5 V to 5 V less  
than this. Noise has also been optimized in the OPx13 family.  
At 4.7 nV/√Hz, the noise is less than one fourth that of competitive  
devices.  
Rev. F | Page ±3 of 24  
 
OP113/OP213/OP413  
APPLICATION CIRCUITS  
A HIGH PRECISION INDUSTRIAL LOAD-CELL  
SCALE AMPLIFIER  
5V  
2
IN  
2.5V  
8
6
3
2
OUT REF43  
+
The OPx13 family makes an excellent amplifier for  
conditioning a load-cell bridge. Its low noise greatly improves  
the signal resolution, allowing the load cell to operate with a  
smaller output range, thus reducing its nonlinearity. Figure 41  
shows one half of the OPx13 family used to generate a very  
stable 10 V bridge excitation voltage while the second amplifier  
provides a differential gain. R4 should be trimmed for  
maximum common-mode rejection.  
1/2  
2N2222A  
4V  
1
OP295  
GND  
4
4
5V  
8
350Ω  
35mV  
FS  
R8  
12kΩ  
R7  
20kΩ  
OUTPUT  
0V 3.5V  
5
6
+
1/2  
7
OP295  
4
3
2
R3  
20kΩ  
+
1/2  
OP213  
+15V  
1
–15V  
R4  
100kΩ  
2
16  
R2  
20kΩ  
+10V  
R5  
8
14  
15  
8
1
3
9
3
2
+
1kΩ  
2N2219A  
1
A2  
AD588BQ  
R1  
100kΩ  
1/2  
R5  
R6  
27.4Ω  
2.1kΩ  
OP213  
10  
4
6
11 12 13  
7
R
= 2127.4Ω  
G
+10V  
+
10µF  
R3  
Figure 42. Single Supply Strain Gage Amplifier  
17.2kΩ  
R4  
500Ω  
0.1%  
350Ω  
CMRR TRIM  
10-TURN  
LOAD  
CELL  
A HIGH ACCURACY LINEARIZED RTD  
THERMOMETER AMPLIFIER  
T.C. LESS THAN 50ppm/°C  
A1  
6
5
100mV  
F.S.  
7
OUTPUT  
Zero suppressing the bridge facilitates simple linearization of  
the resistor temperature device (RTD) by feeding back a small  
amount of the output signal to the RTD. In Figure 43, the left  
leg of the bridge is servoed to a virtual ground voltage by  
Amplifier A1, and the right leg of the bridge is servoed to 0 V  
by Amplifier A2. This eliminates any error resulting from  
common-mode voltage change in the amplifier. A 3-wire RTD  
is used to balance the wire resistance on both legs of the bridge,  
thereby reducing temperature mismatch errors. The 5 V bridge  
excitation is derived from the extremely stable AD588 reference  
device with 1.5 ppm/°C drift performance.  
+
0
10V  
4
1/2  
FS  
OP213  
–15V  
R1  
R2  
17.2k301Ω  
0.1%  
0.1%  
Figure 41. Precision Load-Cell Scale Amplifier  
A LOW VOLTAGE, SINGLE SUPPLY STRAIN GAGE  
AMPLIFIER  
The true zero swing capability of the OPx13 family allows the  
amplifier in Figure 42 to amplify the strain gage bridge  
accurately even with no signal input while being powered by a  
single 5 V supply. A stable 4 V bridge voltage is made possible  
by the rail-to-rail OP295 amplifier, whose output can swing to  
within a millivolt of either rail. This high voltage swing greatly  
increases the bridge output signal without a corresponding  
increase in bridge input.  
Linearization of the RTD is done by feeding a fraction of the  
output voltage back to the RTD in the form of a current. With  
just the right amount of positive feedback, the amplifier output  
will be linearly proportional to the temperature of the RTD.  
Rev. F | Page ±4 of 24  
 
 
 
OP113/OP213/OP413  
–15V +15V  
16  
5V  
R1  
12V  
2
REF02EZ  
4
6
+
2
R9  
0.1µF  
124k  
11  
12  
13  
R5  
10.7k40.2kΩ  
14  
15  
12V  
1N4148  
D1  
10µF  
+
AD588BQ  
0.1µF  
+
4
6
1
3
R3  
R
FULL SCALE ADJUST  
R8  
453Ω  
R2  
G
50  
2.74kΩ  
+
+
8
2
3
R2  
K-TYPE  
THERMOCOUPLE  
40.7µV/°C  
R5  
R7  
1/2  
8.25kΩ  
7
9
8
10  
4.02k100Ω  
1
OP213  
+
R1  
8.25kΩ  
R6  
0V TO 10V  
(0°C TO 1000°C)  
10µF  
+
4
200Ω  
+15V  
8
R4  
5.62kΩ  
R3  
53.6Ω  
R
W1  
6
5
R4  
A2  
7
V
(10mV/°C)  
100Ω  
RTD  
OUT  
Figure 44. Accurate K-Type Thermocouple Amplifier  
100Ω  
–1.5V = –150°C  
+5V = +500°C  
+
4
1/2  
OP213  
R
R
W2  
W3  
R6 should be adjusted for a 0 V output with the thermocouple  
measuring tip immersed in a 0°C ice bath. When calibrating, be  
sure to adjust R6 initially to cause the output to swing in the  
positive direction first. Then back off in the negative direction  
until the output just stops changing.  
–15V  
R9  
5kΩ  
R8  
49.9kΩ  
LINEARITY  
ADJUST  
@1/2 FS  
2
3
A1  
1
+
1/2  
AN ULTRALOW NOISE, SINGLE SUPPLY  
INSTRUMENTATION AMPLIFIER  
OP213  
Figure 43. Ultraprecision RTD Amplifier  
Extremely low noise instrumentation amplifiers can be built  
using the OPx13 family. Such an amplifier that operates from a  
single supply is shown in Figure 45. Resistors R1 to R5 should  
be of high precision and low drift type to maximize CMRR  
performance. Although the two inputs are capable of operating  
to 0 V, the gain of −100 configuration limits the amplifier input  
common-mode voltage to 0.33 V.  
To calibrate the circuit, first immerse the RTD in a 0°C ice bath  
or substitute an exact 100 Ω resistor in place of the RTD. Adjust  
the zero adjust potentiometer for a 0 V output, and then set R9,  
linearity adjust potentiometer, to the middle of its adjustment  
range. Substitute a 280.9 Ω resistor (equivalent to 500°C) in  
place of the RTD, and adjust the full-scale adjust potentiometer  
for a full-scale voltage of 5 V.  
5V TO 36V  
To calibrate out the nonlinearity, substitute a 194.07 Ω resistor  
(equivalent to 250°C) in place of the RTD, and then adjust the  
linearity adjust potentiometer for a 2.5 V output. Check and  
readjust the full-scale and half-scale as needed.  
+
+
1/2  
V
V
IN  
OP213  
OUT  
+
1/2  
OP213  
*R1  
10kΩ  
*R2  
*R3  
*R4  
10kΩ  
Once calibrated, the amplifier outputs a 10 mV/°C temperature  
coefficient with an accuracy better than 0.5°C over an RTD  
measurement range of −150°C to +500°C. Indeed the amplifier  
can be calibrated to a higher temperature range, up to 850°C.  
10kΩ  
10kΩ  
*R  
G
20kΩ  
GAIN =  
+ 6  
(200+ 12.7)  
R
G
*ALL RESISTORS ±0.1%, ±25ppm/°C.  
A HIGH ACCURACY THERMOCOUPLE AMPLIFIER  
Figure 45. Ultralow Noise, Single Supply Instrumentation Amplifier  
Figure 44 shows a popular K-type thermocouple amplifier with  
cold-junction compensation. Operating from a single 12 V  
supply, the OPx13 family’s low noise allows temperature  
measurement to better than 0.02°C resolution over a 0°C to  
1000°C range. The cold-junction error is corrected by using an  
inexpensive silicon diode as a temperature measuring device.  
It should be placed as close to the two terminating junctions as  
physically possible. An aluminum block might serve well as an  
isothermal system.  
SUPPLY SPLITTER CIRCUIT  
The OPx13 family has excellent frequency response  
characteristics that make it an ideal pseudoground reference  
generator, as shown in Figure 46. The OPx13 family serves as a  
voltage follower buffer. In addition, it drives a large capacitor  
that serves as a charge reservoir to minimize transient load  
changes, as well as a low impedance output device at high  
frequencies. The circuit easily supplies 25 mA load current with  
good settling characteristics.  
Rev. F | Page ±5 of 24  
 
 
 
 
OP113/OP213/OP413  
V + = 5V 12V  
S
R3  
5V  
8
2.5kΩ  
5V  
10µF  
+
C1  
0.1µF  
2
3
2
1/2  
OP213  
R1  
5kΩ  
OUTPUT  
2.5V  
1
IN  
10kΩ  
10kΩ  
6
OUT  
+
8
4
2
3
+
3µV p-p NOISE  
R4  
100Ω  
REF43  
C2  
V +  
S
1/2  
OP213  
10µF  
1
GND  
4
OUTPUT  
+
2
C2  
1µF  
+
4
R2  
5kΩ  
Figure 47. Low Noise Voltage Reference  
5 V ONLY STEREO DAC FOR MULTIMEDIA  
Figure 46. False Ground Generator  
The OPx13 familys low noise and single supply capability are  
ideally suited for stereo DAC audio reproduction or sound  
synthesis applications such as multimedia systems. Figure 48  
shows an 18-bit stereo DAC output setup that is powered from a  
single 5 V supply. The low noise preserves the 18-bit dynamic  
range of the AD1868. For DACs that operate on dual supplies,  
the OPx13 family can also be powered from the same supplies.  
LOW NOISE VOLTAGE REFERENCE  
Few reference devices combine low noise and high output drive  
capabilities. Figure 47 shows the OPx13 family used as a two-  
pole active filter that band limits the noise of the 2.5 V reference.  
Total noise measures 3 μV p-p.  
5V SUPPLY  
AD1868  
V
V
L
L
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
L
18-BIT  
DAC  
8
3
+
LL  
220µF  
+
LEFT  
CHANNEL  
OUTPUT  
1/2  
OP213  
1
+
7.68kΩ  
9.76kΩ  
18-BIT  
SERIAL  
REG.  
2
47kΩ  
4
DL  
+
O
330pF  
100pF  
V
V
REF  
CK  
DR  
7.68kΩ  
7.68kΩ  
AGND  
18-BIT  
SERIAL  
REG.  
LR  
REF  
+
V
R
O
DGND  
18-BIT  
100pF  
7
7.68kΩ  
9.76kΩ  
DAC  
6
V
S
220µF  
RIGHT  
CHANNEL  
OUTPUT  
+
1/2  
V
R
B
330pF  
OP213  
+
+
47kΩ  
5
Figure 48. 5 V Only 18-Bit Stereo DAC  
Rev. F | Page ±6 of 24  
 
 
 
 
OP113/OP213/OP413  
10k  
LOW VOLTAGE HEADPHONE AMPLIFIERS  
5V  
Figure 49 shows a stereo headphone output amplifier for the  
AD1849 16-bit SOUNDPORT® stereo codec device.1 The  
pseudo-reference voltage is derived from the common-mode  
voltage generated internally by the AD1849, thus providing a  
convenient bias for the headphone output amplifiers.  
1/2  
17  
MINL  
10µF  
+
OP213  
+
50Ω  
LEFT  
ELECTRET  
CONDENSER  
MIC  
20Ω  
10kΩ  
100Ω  
INPUT  
AD1849  
CMOUT  
OPTIONAL  
GAIN  
5V  
1/2  
19  
1k  
5kΩ  
V
REF  
OP213  
+
100Ω  
5V  
10µF  
20Ω  
10µF  
31  
LOUT1L  
220µF  
+
10kΩ  
50Ω  
16Ω  
1/2  
L VOLUME  
CONTROL  
HEADPHONE  
LEFT  
OP213  
+
+
+
10kΩ  
1/2  
OP213  
47kΩ  
15  
MINR  
RIGHT  
ELECTRET  
CONDENSER  
MIC  
5V  
INPUT  
AD1849  
10kΩ  
Figure 50. Low Noise Stereo Microphone Amplifier for Multimedia Sound  
Codec  
1/2  
V
REF  
OP213  
+
PRECISION VOLTAGE COMPARATOR  
19  
29  
CMOUT  
LOUT1R  
With its PNP inputs and 0 V common-mode capability, the  
OPx13 family can make useful voltage comparators. There is  
only a slight penalty in speed in comparison to IC comparators.  
However, the significant advantage is its voltage accuracy. For  
example, VOS can be a few hundred microvolts or less, combined  
with CMRR and PSRR exceeding 100 dB, while operating from  
a 5 V supply. Standard comparators like the 111/311 family  
operate on 5 V, but not with common mode at ground, nor with  
offset below 3 mV. Indeed, no commercially available single-  
supply comparator has a VOS less than 200 μV.  
10kΩ  
220µF  
+
16Ω  
1/2  
HEADPHONE  
RIGHT  
OP213  
+
47kΩ  
10µF  
R VOLUME  
CONTROL  
5kΩ  
1kΩ  
OPTIONAL  
GAIN  
V
REF  
Figure 49. Headphone Output Amplifier for Multimedia Sound Codec  
LOW NOISE MICROPHONE AMPLIFIER FOR  
MULTIMEDIA  
The OPx13 family is ideally suited as a low noise microphone  
preamp for low voltage audio applications. Figure 50 shows a  
gain of 100 stereo preamp for the AD1849 16-bit SOUNDPORT  
stereo codec chip. The common-mode output buffer serves as a  
phantom power driver for the microphones.  
± SOUNDPORT is a registered trademark of Analog Devices, Inc.  
Rev. F | Page ±7 of 24  
 
 
 
 
OP113/OP213/OP413  
Figure 51 shows the OPx13 family response to a 10 mV  
overdrive signal when operating in open loop. The top trace  
shows the output rising edge has a 15 μs propagation delay,  
whereas the bottom trace shows a 7 μs delay on the output  
falling edge. This ac response is quite acceptable in many  
applications.  
The low noise and 250 μV (maximum) offset voltage enhance  
the overall dc accuracy of this type of comparator. Note that zero-  
crossing detectors and similar ground referred comparisons can be  
implemented even if the input swings to −0.3 V below ground.  
±10mV OVERDRIVE  
5V  
+IN  
+2.5V  
25kΩ  
9V 9V  
0V  
+
OUT  
1/2  
–IN  
–2.5V  
= t = 5ms  
f
100Ω  
OP113  
t
r
5µs  
2V  
100  
90  
Figure 52. OP213 Simplified Schematic  
10  
0%  
2V  
Figure 51. Precision Comparator  
Rev. F | Page ±1 of 24  
 
OP113/OP213/OP413  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 53. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
P-Suffix  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 54. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
S-Suffix  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 19 of 24  
 
OP113/OP213/OP413  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
S-Suffix  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
Package Options  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
N-8 (P-Suffix)  
N-8 (P-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
R-8 (S-Suffix)  
OP113ES  
OP113ES-REEL  
OP113ES-REEL7  
OP113ESZ1  
OP113ESZ-REEL1  
OP113ESZ-REEL71  
OP113FS  
OP113FS-REEL  
OP113FS-REEL7  
OP113FSZ1  
OP113FSZ-REEL1  
OP113FSZ-REEL71  
OP213ES  
OP213ES-REEL  
OP213ES-REEL7  
OP213ESZ1  
OP213ESZ-REEL1  
OP213ESZ-REEL71  
OP213FP  
OP213FPZ1  
OP213FS  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
OP213FS-REEL  
OP213FS-REEL7  
OP213FSZ1  
OP213FSZ-REEL1  
OP213FSZ-REEL71  
Rev. F | Page 20 of 24  
 
OP113/OP213/OP413  
Model  
Temperature Range  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
−4ꢀ°C to +15°C  
Package Description  
Package Options  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
RW-±6 (S-Suffix)  
OP4±3ES  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
±6-Lead Wide Body SOIC_W  
OP4±3ES-REEL  
OP4±3ESZ±  
OP4±3ESZ-REEL±  
OP4±3FS  
OP4±3FS-REEL  
OP4±3FSZ±  
OP4±3FSZ-REEL±  
± Z = RoHS Compliant Part.  
Rev. F | Page 2± of 24  
OP113/OP213/OP413  
NOTES  
Rev. F | Page 22 of 24  
OP113/OP213/OP413  
NOTES  
Rev. F | Page 23 of 24  
OP113/OP213/OP413  
NOTES  
©1993–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00286-0-3/07(F)  
Rev. F | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY