OPZ290GPZ [ADI]

IC DUAL OP-AMP, 750 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8, Operational Amplifier;
OPZ290GPZ
型号: OPZ290GPZ
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 750 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8, Operational Amplifier

放大器 光电二极管
文件: 总12页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Low Power, Micropower  
Dual Operational Amplifier  
OP290  
FEATURES  
PIN CONNECTIONS  
OP290  
Single-/dual-supply operation: 1.6 V to 36 V, 0.8 V to 18 V  
True single-supply operation; input and output voltage  
Input/output ranges include ground  
Low supply current (per amplifier), 20 µA maximum  
High output drive, 5 mA minimum  
1
2
3
4
OUT A  
–IN A  
+IN A  
V–  
8
7
6
5
V+  
OUT B  
–IN B  
+IN B  
A
B
+
+
Low input offset voltage, 200 µV typical  
High open-loop gain, 400 V/mV minimum  
Outstanding PSRR, 5.6 µV/V maximum  
Figure 1. PDIP (P-Suffix)  
Industry standard 8-Mead dual pinout  
GENERAL DESCRIPTION  
The OP290 is a high performance micropower dual op amp that  
operates from a single supply of 1.6 V to 36 V or from dual  
supplies of 0.8 V to 18 V. Input voltage range includes the  
negative rail allowing the OP290 to accommodate input signals  
down to ground in single-supply operation. The OP290 output  
swing also includes ground when operating from a single  
supply, enabling zero-in, zero-out operation.  
common-mode rejection is better than 100 dB. The power  
supply rejection ratio of under 5.6 μV/V minimizes offset  
voltage changes experienced in battery-powered systems. The  
low offset voltage and high gain offered by the OP290 bring  
precision performance to micropower applications. The  
minimal voltage and current requirements of the OP290 suit it  
for battery- and solar-powered applications, such as portable  
instruments, remote sensors, and satellites. For a single op amp,  
see the OP90; for a quad, see the OP490.  
The OP290 draws less than 20 μA of quiescent supply current  
per amplifier, while being able to deliver over 5 mA of output  
current to a load. Input offset voltage is below 200 μV, eliminat-  
ing the need for external nulling. Gain exceeds 700,000 and  
V+  
+IN  
–IN  
OUTPUT  
NULL  
NULL  
V–  
ELECTRONICALLY ADJUSTED ON CHIP  
FOR MINIMUM OFFSET VOLTAGE  
Figure 2. Simplified Schematic (One of Two Amplifiers Is Shown)  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1988–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
OP290  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Battery-Powered Applications.....................................................9  
Input Voltage Protection ..............................................................9  
Single-Supply Output Voltage Range..........................................9  
Applications Information.............................................................. 10  
Temperature to 4 mA to 20 mA Transmitter.......................... 10  
Variable Slew Rate Filter............................................................ 11  
Low Overhead Voltage Reference ............................................ 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Pin Connections ............................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ........................................................................ 9  
REVISION HISTORY  
4/09—Rev. B to Rev. C  
12/03—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Features Section and Figure 2..................................... 1  
Changes to Input Voltage Range, Vs = 5 V Parameter,  
Deleted OP290E and OP290F...........................................Universal  
Replaced Pin Connections with PDIP............................................1  
Deleted Electrical Characteristics ...................................................3  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Changes to TPC 6..............................................................................5  
Change to Single Supply Output Voltage Range ...........................7  
Changes to Figure 5...........................................................................8  
Changes to Figure 6...........................................................................9  
Change to Low Overhead Voltage Reference ................................9  
Updated Outline Dimensions....................................................... 10  
Table 1 ................................................................................................ 3  
Changes to Figure 7 and Figure 8................................................... 6  
Deleted Figure 2; Renumbered Sequentially................................. 7  
Changes to Figure 9.......................................................................... 7  
Changed Applications Information Heading to Theory of  
Operation........................................................................................... 9  
Changes to Figure 19........................................................................ 9  
Changed Applications Heading to Applications Information.. 10  
Changes to Temperature to 4 mA to 20 mA Transmitter Section,  
Figure 20, and Table 5 .................................................................... 10  
Changes to Figure 21 and Figure 22............................................. 11  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
1/02—Rev. 0 to Rev. A  
Edits to Ordering Information ........................................................1  
Edits to Pin Connections..................................................................1  
Edits to Absolute Maximum Ratings..............................................2  
Edits to Package Type .......................................................................2  
Edits to Wafer Test Limits ................................................................5  
Edits to Dice Characteristics............................................................5  
Rev. C | Page 2 of 12  
 
OP290  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 1.5 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP290G  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
500  
5
Unit  
μV  
INPUT OFFSET VOLTAGE  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
LARGE-SIGNAL VOLTAGE GAIN  
VOS  
IOS  
IB  
125  
VCM = 0 V  
0.1  
nA  
VCM = 0 V  
4.0  
25  
nA  
AVO  
VS = 15 V, VO = 10 V  
RL = 100 kΩ  
400  
200  
100  
600  
400  
200  
V/mV  
V/mV  
V/mV  
RL = 10 kΩ  
RL = 2 kΩ  
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V  
RL = 100 kΩ  
RL = 10 kΩ  
100  
70  
250  
140  
V/mV  
V/mV  
V
INPUT VOLTAGE RANGE1  
OUTPUT VOLTAGE SWING  
IVR  
VO  
V+ = 5 V, V = 0 V  
VS = 5 V  
0/4  
−5/+3.5  
V
VS = 5 V  
RL = 10 kΩ  
RL = 2 kΩ  
V+ = 5 V, V− = 0 V  
RL = 10 kΩ  
13.5  
10.5  
4.0  
14.2  
11.5  
4.2  
50  
V
V
V
μV  
VOH, VOL  
CMR  
10  
COMMON-MODE REJECTION  
V+ = 5 V, V− = 0 V, 0 V < VCM < 4 V  
VS = 15 V, −15 V < VCM < +13.5 V  
80  
90  
100  
120  
3.2  
19  
dB  
dB  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT (ALL AMPLIFIERS)  
PSRR  
ISY  
10  
30  
40  
μV/V  
μA  
μA  
VS = 1.5 V  
VS = 15 V  
25  
CAPACITIVE LOAD STABILITY  
INPUT NOISE VOLTAGE1  
AV = +1, no oscillations  
fO = 0.1 Hz to 10 Hz, VS = 15 V  
VS = 15 V  
650  
3
pF  
en p-p  
μV p-p  
MΩ  
GΩ  
V/ms  
kHz  
dB  
INPUT RESISTANCE DIFFERENTIAL MODE RIN  
30  
INPUT RESISTANCE COMMON MODE  
SLEW RATE  
RINCM  
VS = 15 V  
20  
SR  
AV = +1, VS = 15 V  
VS = 15 V  
5
12  
GAIN BANDWIDTH PRODUCT  
CHANNEL SEPARATION2  
GBWP  
CS  
20  
fO = 10 Hz, VO = 20 V p-p, VS = 15 V  
120  
150  
1 Guaranteed by CMR test.  
2 Guaranteed but not 100% tested.  
Rev. C | Page 3 of 12  
 
 
 
 
 
OP290  
VS = 1.5 V to 15 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 2.  
OP290G  
Typ  
200  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max  
Unit  
μV  
INPUT OFFSET VOLTAGE  
AVERAGE INPUT OFFSET VOLTAGE DRIFT  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
750  
TCVOS  
IOS  
VS = 15 V  
1.2  
μV/°C  
nA  
VCM = 0 V  
0.1  
7
IB  
VCM = 0 V  
4.2  
25  
nA  
LARGE-SIGNAL VOLTAGE GAIN  
AVO  
VS = 5 V, VO = 0 V  
RL = 100 kΩ  
300  
150  
75  
600  
250  
125  
V/mV  
V/mV  
V/mV  
RL = 10 kΩ  
RL = 2 kΩ  
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V  
RL = 100 kΩ  
RL = 10 kΩ  
80  
40  
160  
90  
V/mV  
V/mV  
V
INPUT VOLTAGE RANGE1  
OUTPUT VOLTAGE SWING  
IVR  
VO  
V+ = 5 V, V− = 0 V  
VS = +15 V  
0/3.5  
–15/+13.5  
V
VS = 15 V  
RL = 10 kΩ  
RL = 2 kΩ  
13  
10  
14  
11  
V
V
VOH  
VOL  
V+ = 5 V, V − = 0 V, RL = 2 kΩ  
V+ = 5 V, V − = 0 V, RL = 10 kΩ  
V+ = 5 V, V − = 0 V, 0 V <VCM < 3.5 V  
VS = 15 V, −15 V < VCM < 13.5 V  
3.9  
4.1  
10  
V
100  
μV  
dB  
dB  
μV/V  
μA  
μA  
COMMON-MODE REJECTION  
CMR  
80  
90  
100  
110  
5.6  
24  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT (ALL AMPLIFIERS)  
PSRR  
ISY  
15  
50  
60  
VS = 1.5 V  
VS = 15 V  
31  
1 Guaranteed by CMR test.  
Rev. C | Page 4 of 12  
 
OP290  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
Table 3.  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter1  
Rating  
Supply Voltage  
18 V  
Differential Input Voltage  
Common-Mode Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
[(V−) − 20 V] to [(V+) + 20 V]  
[(V−) − 20 V] to [(V+) + 20 V]  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
Table 4.  
Package Type  
1
Junction Temperature Range (TJ) −65°C to +150°C  
θJA  
θJC  
Unit  
Lead Temperature  
(Soldering, 60 sec)  
300°C  
8-Lead Plastic DIP (P)  
96  
37  
°C/W  
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for  
device in socket for PDIP package.  
1 Absolute maximum ratings applies to packaged part.  
ESD CAUTION  
Rev. C | Page 5 of 12  
 
 
 
OP290  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
V
= ±15V  
NO LOAD  
S
80  
60  
40  
20  
0
V
= ±15V  
S
V
= ±1.5V  
S
4
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Input Offset Voltage vs. Temperature  
Figure 6. Supply Current vs. Temperature  
600  
500  
400  
300  
200  
100  
0
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
R
= 10k  
V
= ±15V  
L
S
T
= 25°C  
A
T
T
= 85°C  
A
A
= 125°C  
0
5
10  
15  
20  
25  
30  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 7. Open-Loop Gain vs. Supply Voltage  
Figure 4. Input Offset Current vs. Temperature  
140  
120  
100  
80  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
V
T
R
= ±15V  
= 25°C  
= 10k  
V
= ±15V  
S
A
S
L
0
GAIN  
45  
PHASE  
60  
90  
40  
135  
180  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 8. Open-Loop Gain and Phase Shift vs. Frequency  
Figure 5. Input Bias Current vs. Temperature  
Rev. C | Page 6 of 12  
 
OP290  
60  
40  
140  
120  
100  
80  
T
V
= 25°C  
= ±15V  
T = 25°C  
A
A
S
NEGATIVE SUPPLY  
POSITIVE SUPPLY  
G = 100  
G = 10  
G = 1  
20  
0
60  
–20  
10  
40  
100  
1k  
10k  
100k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. Closed-Loop Gain vs. Frequency  
Figure 12. Power Supply Rejection vs. Frequency  
6
5
4
3
2
1
0
140  
120  
100  
80  
T
= 25°C  
T = 25°C  
A
A
V+ = 5V  
V– = 0V  
V = ±15V  
S
60  
40  
100  
1k  
10k  
100k  
1
10  
100  
FREQUENCY (Hz)  
1k  
LOAD RESISTANCE (Ω)  
Figure 10. Output Voltage Swing vs. Load Resistance  
Figure 13. Common-Mode Rejection vs. Frequency  
16  
14  
12  
10  
8
1k  
100  
10  
T
V
= 25°C  
= ±15V  
A
T
V
= 25°C  
= ±15V  
A
S
S
6
4
2
0
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
LOAD RESISTANCE (Ω)  
FREQUENCY (Hz)  
Figure 11. Output Voltage Swing vs. Load Resistance  
Figure 14. Noise Voltage Density vs. Frequency  
Rev. C | Page 7 of 12  
OP290  
10  
T
V
= 25°C  
= ±15V  
A
S
T
V
A
R
C
= 25°C  
= ±15V  
= +1  
= 10k  
= 500pF  
A
S
V
L
L
100  
90  
1
10  
0%  
0.1  
0.1  
5V  
1ms  
1
10  
100  
1k  
FREQUENCY (Hz)  
Figure 17. Large-Signal Transient Response  
Figure 15. Current Noise Density vs. Frequency  
100  
90  
T
V
A
R
C
= 25°C  
= ±15V  
= +1  
= 10kΩ  
= 500pF  
A
S
V
L
L
10  
0%  
20mV  
100µs  
Figure 16. Small-Signal Transient Response  
Rev. C | Page 8 of 12  
OP290  
THEORY OF OPERATION  
BATTERY-POWERED APPLICATIONS  
INPUT VOLTAGE PROTECTION  
The OP290 can be operated on a minimum supply voltage of  
1.6 V, or with dual supplies of 0.8 V, and draws only 19 µA of  
supply current. In many battery-powered circuits, the OP290  
can be continuously operated for thousands of hours before  
requiring battery replacement, reducing equipment downtime  
and operating cost.  
The OP290 uses a PNP input stage with protection resistors in  
series with the inverting and noninverting inputs. The high  
breakdown of the PNP transistors coupled with the protection  
resistors provide a large amount of input protection, allowing  
the inputs to be taken 20 V beyond either supply without  
damaging the amplifier.  
High performance portable equipment and instruments  
frequently use lithium cells because of their long shelf-life, light  
weight, and high energy density relative to older primary cells.  
Most lithium cells have a nominal output voltage of 3 V and are  
noted for a flat discharge characteristic. The low supply voltage  
requirement of the OP290, combined with the flat discharge  
characteristic of the lithium cell, indicates that the OP290 can  
be operated over the entire useful life of the cell. Figure 18  
shows the typical discharge characteristic of a 1 Ah lithium cell  
powering an OP290, with each amplifier, in turn, driving full  
output swing into a 100 kΩ load.  
SINGLE-SUPPLY OUTPUT VOLTAGE RANGE  
In single-supply operation, the OP290 input and output ranges  
include ground. This allows true zero-in, zero-out operation.  
The output stage provides an active pull-down to around 0.8 V  
above ground. Below this level, a load resistance of up to 1 MΩ  
to ground is required to pull the output down to zero.  
In the region from ground to 0.8 V, the OP290 has voltage gain  
equal to the specification in Table 1. Output current source  
capability is maintained over the entire voltage range including  
ground.  
100  
80  
60  
40  
20  
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
HOURS  
Figure 18. Lithium Sulphur Dioxide Cell Discharge Characteristic with OP290  
and 100 kΩ Load  
+15V  
+15V  
1/2  
OP290  
A
1k  
V2  
OP37  
9kΩ  
10kΩ  
100Ω  
–15V  
–15V  
V
IN  
1/2  
V1 20V p-p @ 10Hz  
OP290  
B
V1  
CHANNEL SEPARATION = 20 log  
V2/1000  
Figure 19. Channel Separation Test Circuit  
Rev. C | Page 9 of 12  
 
 
 
 
 
OP290  
APPLICATIONS INFORMATION  
Calibration of the transmitter is simple. First, the slope of the  
output current vs. temperature is calibrated by adjusting the  
span trim, R7. A couple of iterations may be required to ensure  
that the slope is correct.  
TEMPERATURE TO 4 MA TO 20 mA TRANSMITTER  
A simple temperature to 4 mA to 20 mA transmitter is shown in  
Figure 20. After calibration, the transmitter is accurate to +0.5°C  
over the −50°C to +150°C temperature range. The transmitter  
operates from 8 V to 40 V with supply rejection better than  
3 ppm/V. One half of the OP290 is used to buffer the VTEMP pin  
while the other half regulates the output current to satisfy the  
current summation at its noninverting input.  
Once the span trim has been completed, the zero trim can be  
made. Remember that adjusting the offset trim does not affect  
the gain. The offset trim can be set at any known temperature  
by adjusting R5 until the output current equals  
IFS  
TOPERATING  
V
TEMP (R6 + R7)  
R2 ×R6 ×R7  
R2 ×R10  
IOUT  
=
(
TA TMIN + 4 mA  
)
IOUT  
=
V  
(1)  
SET   
R2 ×R10  
Table 5 shows the values of R6 that are required for various  
temperature ranges.  
The change in output current with temperature is the derivative  
of the following transfer function:  
Table 5.  
Temperature Range  
VTEMP  
T  
(R6 + R7)  
IOUT  
T  
R6 (k Ω)  
=
(2)  
0°C to +70°C  
10  
6.2  
3
R2 ×R10  
−40°C to +85°C  
−50°C to +150°C  
From Equation 1 and Equation 2, it can be seen that if the span  
trim is adjusted before the zero trim, the two trims are not  
interactive, which greatly simplifies the calibration procedure.  
1N4002  
V+  
8V TO 40V  
SPAN TRIM  
R6  
3k  
R4  
2
20kΩ  
V
R7  
5kΩ  
2
3
IN  
8
1/2  
6
3
4
V
TEMP  
V
6
5
1
OUT  
R8  
OP290GP  
REF43  
R2  
1kΩ  
R1  
1/2  
1kΩ  
7
V
TEMP  
GND  
4
2N1711  
OP290GP  
10kΩ  
V
SET  
R5  
5kΩ  
R3  
100kΩ  
R9  
100kΩ  
ZERO  
TRIM  
R10  
100Ω  
1%, 1/2W  
I
OUT  
R
L
Figure 20. Temperature to 4 mA to 20 mA Transmitter  
Rev. C | Page 10 of 12  
 
 
 
 
OP290  
VARIABLE SLEW RATE FILTER  
LOW OVERHEAD VOLTAGE REFERENCE  
The circuit shown in Figure 21 can be used to remove pulse  
noise from an input signal without limiting the response rate to  
a genuine signal. The nonlinear filter has use in applications  
where the input signal of interest is known to have physical  
limitations. An example of this is a transducer output where a  
change of temperature or pressure cannot exceed a certain rate  
due to physical limitations of the environment. The filter consists  
of a comparator that drives an integrator. The comparator  
compares the input voltage to the output voltage and forces  
the integrator output to equal the input voltage. A1 acts as a  
comparator with its output high or low. Diode D1 and Diode  
D2 clamp the voltage across R3, forcing a constant current to  
flow in or out of C2. R3, C2, and A2 form an integrator with the  
output of A2 slewing at a maximum rate of  
Figure 22 shows a voltage reference that requires only 0.1 V of  
overhead voltage. As shown, the reference provides a stable  
4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is  
only 12 ppm/°C. Line regulation of the reference is under  
5 μV/V with load regulation better than 10 μV/mA with up to  
50 mA of output current.  
The REF43 provides a stable 2.5 V that is multiplied by the  
OP290. The PNP output transistor enables the output voltage to  
approach the supply voltage.  
Resistor R1 and Resistor R2 determine the output voltage.  
R2  
R1  
VOUT  
=
2.5 V 1+  
The 200 Ω variable resistor is used to trim the output voltage.  
For the lowest temperature drift, parallel resistors can be used  
in place of the variable resistor and taken out of the circuit as  
required to adjust the output voltage.  
0.6 V  
VD  
Maximum slew rate =  
R3 ×C2 R3× C2  
For an input voltage slewing at a rate under this maximum slew  
V+  
rate, the output simply follows the input with A1 operating in  
its linear region.  
2
+15V  
V
IN  
R1  
250k  
8
2
3
REF43FZ  
8
2
3
6
V
C1  
0.1µF  
OUT  
1/2  
A1  
1
1/2  
1
OP290GP  
2N2907A  
GND  
4
OP290GP  
R2  
100kΩ  
4
V
OUT  
R2  
R1A  
2k  
2.37Ω  
1%  
R3  
1%  
C1  
10µF  
C2  
0.1µF  
1MΩ  
R4  
C2  
4700pF  
R1B  
200Ω  
25kΩ  
20-TURN  
D2  
D1  
BOURNS 3006P-1-201  
6
1/2  
A2  
7
V
OUT  
OP290GP  
Figure 22. Low Overhead Voltage Reference  
5
4
DIODES ARE 1N4148  
–15V  
Figure 21. Variable Slew Rate Filter  
Rev. C | Page 11 of 12  
 
 
 
 
OP290  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 23. 8-Lead Plastic Dual In-Line Package [PDIP]  
[P-Suffix]  
(N-8)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
TA = 25°C VOS Max (mV)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead Plastic PDIP  
8-Lead Plastic PDIP  
Package Option  
P-Suffix (N-8)  
P-Suffix (N-8)  
OP290GP  
OP290GPZ1  
500  
500  
1 Z = RoHS Compliant Part.  
©1988–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00327-0-4/09(C)  
Rev. C | Page 12 of 12  
 
 
 

相关型号:

OPZ297FPZ

DUAL OP-AMP, 300uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ297GPZ

DUAL OP-AMP, 400uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ37GPZ

OP-AMP, 220uV OFFSET-MAX, 63MHz BAND WIDTH, PDIP8, PLASTIC, MO-095AA, DIP-8
ADI

OPZ467GPZ

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier
ADI

OPZ90GPZ

IC OP-AMP, 675 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ97EPZ

OP-AMP, 60uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OPZ97FPZ

OP-AMP, 200uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OQ02125100J0G

Strip Terminal Block
AMPHENOL

OQ02125103J0G

Strip Terminal Block
AMPHENOL

OQ02126100J0G

Strip Terminal Block
AMPHENOL

OQ02126103J0G

Strip Terminal Block
AMPHENOL

OQ02128103J0G

Strip Terminal Block
AMPHENOL