REF01HSZ-REEL [ADI]

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10V, PDSO8, LEAD FREE, MS-012AA, SOIC-8;
REF01HSZ-REEL
型号: REF01HSZ-REEL
厂家: ADI    ADI
描述:

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10V, PDSO8, LEAD FREE, MS-012AA, SOIC-8

文件: 总20页 (文件大小:507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision 2.5 V, 5.0 V, and 10.0 V  
Voltage References  
REF01/REF02/REF03  
GENERAL DESCRIPTION  
FEATURES  
High output accuracy  
The REF0x series of precision voltage references provide a  
stable 10.0 V, 5.0 V, or 2.5 V output with minimal change in  
response to variations in supply voltage, ambient temperature  
or load conditions. The parts are available in 8-lead SOIC,  
PDIP, CERDIP, and TO-99 packages, as well as 20-terminal  
LCC packages (883 only), furthering the parts’ usability in  
both standard and high stress applications.  
REF01: 10.0 V, 0.3ꢀ maximum  
REF02: 5.0 V, 0.3ꢀ maximum  
REF03: 2.5 V, 0.6ꢀ maximum  
Adjustable output: 3ꢀ minimum  
Excellent temperature stability  
REF01: 8.5 ppm/°C maximum  
REF02: 8.5 ppm/°C maximum  
REF03: 50 ppm/°C maximum  
Low noise  
With an external buffer and a simple resistor network, the  
TEMP terminal can be used for temperature sensing and  
approximation. A TRIM terminal is also provided on the  
device for fine adjustment of the output voltage.  
REF01: 30 μV p-p typical  
REF02: 15 μV p-p typical  
The small footprint, wide supply range, and application  
versatility make the REF0x series of references ideal for general-  
purpose and space-constrained applications.  
REF03: 6 μV p-p typical  
High supply voltage range: up to 36 V maximum  
Low supply current: 1.4 mA maximum  
High load-driving capability: 10 mA maximum  
Temperature output function  
Newer designs should use the ADR0x series of references,  
which offer higher accuracy and temperature stability over a  
wider operating temperature range, while maintaining full pin-  
for-pin compatibility with the REF0x series. This data sheet  
applies to commercial-grade products only. Contact sales or  
visit analog.com for military-grade (883) data sheets.  
APPLICATIONS  
Precision data systems  
High resolution converters  
Industrial process control systems  
Precision instruments  
Table 1. Selection Guide  
Military and aerospace applications  
Part Number Output Voltage  
Input Voltage Range  
12 V to 36 V  
7.0 V to 36 V  
REF01  
REF02  
REF03  
10.0 V  
5.0 V  
2.5 V  
4.5 V to 36 V  
PIN CONFIGURATIONS  
3
2
1
20 19  
NC  
8
4
5
6
7
8
18  
17  
16  
15  
14  
NC  
NC  
NC  
NC  
V
IN  
NC  
2
NC  
REF01/  
REF02  
1
3
7
5
NC  
TEMP  
NC  
REF01/  
REF02/  
REF03  
TOP VIEW  
V
OUT  
NC  
V
6
V
OUT  
IN  
(Not to Scale)  
NC  
1
2
3
4
8
7
6
5
NC  
NC  
V
REF01/  
REF02/  
REF03  
V
IN  
NC  
TRIM  
TEMP  
GND  
OUT  
4
9
10 11 12 13  
TOP VIEW  
TRIM  
GROUND  
(CASE)  
(Not to Scale)  
NC = NO CONNECT. DO NOT CONNECT ANYTHING  
ON THESE PINS. SOME OF THEMARE RESERVED  
FOR FACTORY TESTING PURPOSES.  
NC = NO CONNECT. DO NOT CONNECT ANYTHING  
ON THESE PINS. SOME OF THEMARE RESERVED  
FOR FACTORY TESTING PURPOSES.  
NC = NO CONNECT. DO NOT CONNECT ANYTHING  
ON THESE PINS. SOME OF THEMARE RESERVED  
FOR FACTORY TESTING PURPOSES.  
Figure 1. 8-Lead PDIP (P-Suffix),  
8-Lead CERDIP (Z-Suffix),  
8-Lead SOIC (S-Suffix)  
Figure 2. 8-Lead TO-99 (J-Suffix)  
Figure 3. 20-Terminal LCC (RC-Suffix;  
883 Parts Only)  
Rev. K  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2000–2010 Analog Devices, Inc. All rights reserved.  
 
REF01/REF02/REF03  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Adjustment .................................................................... 14  
Temperature Monitoring........................................................... 15  
Long-Term Stability ................................................................... 15  
Burn-In ........................................................................................ 15  
Power Dissipation....................................................................... 15  
Applications Information.............................................................. 16  
Basic Reference Application...................................................... 16  
Low Cost Current Source.......................................................... 16  
Precision Current Source with Adjustable Output................ 16  
Precision Boosted Output Regulator....................................... 16  
Bipolar Voltage Reference ......................................................... 17  
Adjustable Reference With Positive and Negative Swing ..... 17  
Outline Dimensions....................................................................... 18  
REF01 Ordering Guide.............................................................. 20  
REF02 Ordering Guide.............................................................. 20  
REF03 Ordering Guide.............................................................. 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
REF01 Specifications.................................................................... 3  
REF02 Specifications.................................................................... 4  
REF03 Specifications.................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 14  
Input and Output Capacitors.................................................... 14  
REVISION HISTORY  
10/10—Rev. J to Rev. K  
10/09—Rev. J: Initial Version  
Deleted Negative References Section and Figure 39;  
Renumbered Sequentially.............................................................. 16  
Updated Format..................................................................Universal  
Combined REF01, REF02, and REF03 Data Sheets.......Universal  
Changes to Absolute Maximum Input Voltage .............................6  
Rev. K | Page 2 of 20  
 
REF01/REF02/REF03  
SPECIFICATIONS  
REF01 SPECIFICATIONS  
VIN = 15 V, TA = 25°C, ILOAD = 0 mA, all grades, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min Typ  
Max  
Unit  
V
V
OUTPUT VOLTAGE  
VO  
A and E grades  
H grade  
C grade  
9.97 10.00 10.03  
9.95 10.00 10.05  
9.90 10.00 10.10  
V
OUTPUT ADJUSTMENT RANGE1 ΔVTRIM  
A, E and H grades, POT = 10 kΩ  
C grade, POT = 10 kΩ  
A and E grades  
3.0  
2.7  
3.3  
3.0  
%
%
INITIAL ACCURACY  
VOERR  
30  
0.3  
50  
0.5  
mV  
%
mV  
%
H grade  
C grade  
100 mV  
1.0  
8.5  
25  
65  
65  
%
TEMPERATURE COEFFICIENT  
LINE REGULATION2  
TCVO  
A and E grades, −55°C ≤ TA ≤ +125°C  
H grade, 0°C ≤ TA ≤ +70°C  
3.0  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
V
10  
20  
20  
60  
70  
90  
90  
110  
110  
50  
60  
90  
60  
70  
90  
60  
80  
80  
C grade, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, −40 ≤ TA ≤ +85°C (-P and -S packages)  
A, E and H grades, VIN = 13 V to 33 V  
A, E and H grades, VIN = 13 V to 33 V, 0°C ≤ TA ≤ +70°C  
A, E and H grades, VIN = 13 V to 33 V, −55°C ≤ TA ≤ +125°C  
C grade, VIN = 13 V to 33 V  
∆VO/∆VIN  
100  
120  
150  
150  
180  
180  
80  
C grade, VIN = 13 V to 30 V, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, VIN = 13 V to 30 V, −40°C ≤ TA ≤ +85°C (-P and -S packages)  
LOAD REGULATION2  
∆VO/∆ILOAD A and E grades, ILOAD = 0 mA to 10 mA  
A and E grades, ILOAD = 0 mA to 8 mA, 0°C ≤ TA ≤ +70°C  
100  
150  
100  
120  
150  
150  
180  
180  
2
A and E grades, ILOAD = 0 mA to 8 mA, −55°C ≤ TA ≤ +125°C  
H grade, ILOAD = 0 mA to 10 mA  
H grade, ILOAD = 0 mA to 8 mA, 0°C ≤ TA ≤ +70°C  
H grade, ILOAD = 0 mA to 8 mA, −50°C ≤ TA ≤ +125°C  
C grade, ILOAD = 0 mA to 8 mA  
C grade, ILOAD = 0 mA to 5 mA, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, ILOAD = 0 mA to 5 mA, −40°C ≤ TA ≤ +85°C (-P and -S packages)  
DROPOUT VOLTAGE  
QUIESCENT CURRENT  
VDO  
IIN  
A, E, and H grades  
C grade  
1.0  
1.0  
1.4  
1.6  
mA  
mA  
LOAD CURRENT  
Sourcing  
ILOAD  
A, E, and H grades  
C grade  
10  
8
mA  
mA  
Sinking  
−0.3  
mA  
SHORT CIRCUIT TO GND  
VOLTAGE NOISE  
ISC  
VO = 0 V  
30  
30  
35  
50  
5
mA  
eN p-p  
0.1 Hz to 10.0 Hz (-S, -Z and -P packages)  
0.1 Hz to 10.0 Hz (-J package)  
After 1000 hours of operation  
Output settling to within 0.1% of final value  
μV p-p  
μV p-p  
ppm  
μs  
LONG-TERM STABILITY3  
TURN-ON SETTLING TIME  
TEMPERATURE SENSOR4  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
∆VO  
tR  
VTEMP  
TCVTEMP  
580  
1.96  
mV  
mV/°C  
1 Refer to the Output Adjustment section.  
2 Specification includes the effects of self-heating.  
3 Long-term stability is noncumulative; the drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour periods. Refer to Application Note AN-713.  
4 Refer to the Temperature Monitoring section.  
Rev. K | Page 3 of 20  
 
 
REF01/REF02/REF03  
REF02 SPECIFICATIONS  
VIN = 15 V, TA = 25°C, ILOAD = 0 mA, all grades, unless otherwise noted. Nongraded refers to REF02Z.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
VO  
A and E grades  
H grade and nongraded  
C grade  
4.985 5.000 5.015  
4.975 5.000 5.025  
4.950 5.000 5.050  
V
V
V
OUTPUT ADJUSTMENT RANGE1 ΔVTRIM  
A, E, H grades and nongraded, POT = 10 kΩ  
C grade, POT = 10 kΩ  
A and E grades  
3.0  
2.7  
6.0  
6.0  
%
%
INITIAL ACCURACY  
VOERR  
15  
0.3  
25  
0.5  
50  
1
mV  
%
mV  
%
mV  
%
H grade and nongraded  
C grade  
TEMPERATURE COEFFICIENT  
LINE REGULATION2  
TCVO  
A grade and non-graded, −55°C ≤ TA ≤ +125°C  
E and H grades, 0°C ≤ TA ≤ +70°C  
3
8.5  
25  
65  
65  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
V
10  
20  
20  
60  
70  
90  
90  
110  
110  
60  
60  
70  
60  
70  
90  
60  
80  
80  
C grade, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, −40 ≤ TA ≤ +85°C (-P and -S packages)  
A, E, H grades and nongraded, VIN = 8 V to 36 V  
A, E, H grades and nongraded, VIN = 8 V to 36 V, 0°C ≤ TA ≤ +70°C  
A, E, H grades and nongraded, VIN = 8V to 36 V, −55°C ≤ TA ≤ +125°C  
C grade, VIN = 8 V to 36 V  
∆VO/∆VIN  
100  
120  
150  
150  
180  
180  
100  
100  
120  
100  
120  
150  
150  
180  
180  
2
C grade, VIN = 8 V to 36 V, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, VIN = 8 V to 36 V,−40°C ≤ TA ≤ +85°C (-P and -S packages)  
LOAD REGULATION2  
∆VO/∆ILOAD A and E grades, ILOAD = 0 mA to 10 mA  
A and E grades, ILOAD = 0 mA to 8 mA, 0°C ≤ TA ≤ +70°C  
A and E grades, ILOAD = 0 mA to 8 mA, −55°C ≤ TA ≤ +125°C  
H grade and nongraded, ILOAD = 0 mA to 10 mA  
H grade and nongraded, ILOAD = 0 mA to 8 mA, 0°C ≤ TA ≤ +70°C  
H grade and nongraded, ILOAD = 0 mA to 8 mA, −50°C ≤ TA ≤ +125°C  
C grade, ILOAD = 0 mA to 8 mA  
C grade, ILOAD = 0 mA to 5 mA, 0°C ≤ TA ≤ +70°C (-J and -Z packages)  
C grade, ILOAD = 0 mA to 5 mA, −40°C ≤ TA ≤ +85°C (-P and -S packages)  
DROPOUT VOLTAGE  
QUIESCENT CURRENT  
VDO  
IIN  
A, E, H grades and nongraded  
C grade  
1.0  
1.0  
1.4  
1.6  
mA  
mA  
LOAD CURRENT  
Sourcing  
ILOAD  
A, E, H grades and nongraded  
C grade  
10  
8
mA  
mA  
Sinking  
−0.3  
mA  
SHORT CIRCUIT TO GND  
VOLTAGE NOISE  
ISC  
VO = 0 V  
30  
15  
20  
50  
5
mA  
eN p-p  
0.1 Hz to 10.0 Hz (-S, -Z and -P packages)  
0.1 Hz to 10.0 Hz (-J package)  
After 1000 hours of operation  
Output settling to within 0.1% of final value  
μV p-p  
μV p-p  
ppm  
μs  
LONG-TERM STABILITY3  
TURN-ON SETTLING TIME  
TEMPERATURE SENSOR4  
∆VO  
tR  
Voltage Output at TEMP Pin VTEMP  
580  
mV  
Temperature Sensitivity  
TCVTEMP  
1.96  
mV/°C  
1 Refer to the Output Adjustment section.  
2 Specification includes the effects of self-heating.  
3 Long-term stability is noncumulative; the drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour periods. Refer to Application Note AN-713.  
4 Refer to the Temperature Monitoring section.  
Rev. K | Page 4 of 20  
 
 
REF01/REF02/REF03  
REF03 SPECIFICATIONS  
VIN = 15 V, 40°C TA +85°C, ILOAD = 0 mA, unless otherwise noted.  
Parameter  
OUTPUT VOLTAGE  
OUTPUT ADJUSTMENT RANGE1  
Symbol  
VO  
Conditions  
Min  
2.495  
6
Typ  
2.500  
11  
Max  
2.515  
Unit  
V
ΔVTRIM  
VOERR  
POT = 10 kΩ  
%
INITIAL ACCURACY  
15  
0.6  
50  
mV  
%
TEMPERATURE COEFFICIENT  
LINE REGULATION2  
LOAD REGULATION2  
DROPOUT VOLTAGE  
QUIESCENT CURRENT  
LOAD CURRENT  
TCVO  
10  
20  
60  
ppm/°C  
ppm/V  
ppm/mA  
V
∆VO/∆VIN  
∆VO/∆ILOAD  
VDO  
VIN = 4.5 V to 33 V  
50  
ILOAD = 0 mA to 10 mA  
100  
2
IIN  
1.0  
1.4  
mA  
ILOAD  
Sourcing  
10  
mA  
Sinking  
−0.3  
mA  
SHORT CIRCUIT TO GND  
ISC  
VO = 0 V  
24  
6
mA  
VOLTAGE NOISE  
eN p-p  
∆VO  
tR  
0.1 Hz to 10.0 Hz  
μV p-p  
ppm  
μs  
LONG-TERM STABILITY3  
TURN-ON SETTLING TIME  
TEMPERATURE SENSOR4  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
After 1000 hours of operation  
Output settling to within 0.1% of final value  
50  
5
VTEMP  
TCVTEMP  
580  
1.96  
mV  
mV/°C  
1 Refer to the Output Adjustment section.  
2 Specification includes the effects of self-heating.  
3 Long-term stability is noncumulative; the drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour periods. Refer to Application Note AN-713.  
4 Refer to the Temperature Monitoring section.  
Rev. K | Page 5 of 20  
 
 
REF01/REF02/REF03  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Input Voltage  
36.0 V  
Output Short Circuit Duration  
Operating Temperature Range  
REF01A, REF02A  
REF01CP, REF01CS, REF01E, REF01H,  
REF02CP, REF02CS, REF02E, REF02H,  
REF03G  
Indefinite  
Table 3. Thermal Resistance  
Package Type  
8-lead SOIC (S)  
8-lead PDIP (P)  
8-lead CERDIP (Z)  
TO-99 (J)  
θJA  
θJC  
43  
50  
26  
24  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
−55°C to +125°C  
−40°C to +85°C  
130  
110  
162  
170  
REF01CJ  
0°C to +70°C  
Storage Temperature Range  
-J, -S, -Z and -RC Packages  
-P Package  
Junction Temperature Range (TJ)  
Lead Temperature (Soldering, 10 sec.)  
−65°C to +150°C  
−65°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. K | Page 6 of 20  
 
REF01/REF02/REF03  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NC  
1
2
3
4
8
7
6
5
NC  
NC  
V
REF01/  
REF02/  
REF03  
TOP VIEW  
(Not to Scale)  
V
IN  
TEMP  
GND  
OUT  
TRIM  
Figure 4. 8-Lead PDIP (P-Suffix), 8-Lead CERDIP (Z-Suffix), 8-Lead SOIC (S-Suffix) Pin Configuration  
Table 4. Pin Function Descriptions—PDIP, CERDIP, and SOIC Packages  
Pin No.  
Mnemonic Description  
1, 7, 8  
NC  
VIN  
TEMP  
GND  
TRIM  
VOUT  
No Internal Connection. Leave floating or tied to ground in actual application.  
Supply Voltage Input.  
Temperature (Band Gap) Output. Refer to the Temperature Monitoring section.  
Ground Connection.  
Output Voltage Trim. Refer to the Output Adjustment section.  
Reference Voltage Output.  
2
3
4
5
6
NC  
8
NC  
2
NC  
1
3
7
5
REF01/  
REF02/  
REF03  
V
6
V
OUT  
IN  
NC  
TRIM  
4
GROUND  
(CASE)  
Figure 5. 8-Lead TO-99 (J-Suffix) Pin Configuration  
Table 5. Pin Function Descriptions—8-Lead TO-99 Package  
Pin No.  
Mnemonic Description  
1, 3, 7, 8  
NC  
No Internal Connection. Leave floating or tied to ground in actual application.  
2
4
5
6
VIN  
Supply Voltage Input.  
Ground Connection.  
Output Voltage Trim. Refer to the Output Adjustment section.  
Reference Voltage Output.  
GND  
TRIM  
VOUT  
3
2
1
20 19  
4
5
6
7
8
18  
17  
16  
15  
14  
NC  
NC  
NC  
NC  
V
IN  
REF01/  
REF02  
NC  
TEMP  
NC  
TOP VIEW  
V
OUT  
NC  
(Not to Scale)  
9
10 11 12 13  
Figure 6. 20-Terminal LCC (RC-Suffix) Pin Configuration  
Table 6. Pin Function Descriptions—20-Terminal LCC Package  
Terminal No.  
Mnemonic  
Description  
1 to4, 6, 8, 9, 11,  
13, 14, 16 to 20  
NC  
No Internal Connection. Leave floating or tied to ground in actual application.  
5
VIN  
Supply Voltage Input.  
7
TEMP  
GND  
TRIM  
VOUT  
Temperature (Band Gap) Output. Refer to the Temperature Monitoring section.  
Ground Connection.  
Output Voltage Trim. Refer to the Output Adjustment section.  
Reference Voltage Output.  
10  
12  
15  
Rev. K | Page 7 of 20  
 
REF01/REF02/REF03  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.8  
0.7  
0.6  
10.010  
10.005  
10.000  
9.995  
9.990  
9.985  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
12  
16  
20  
24  
28  
32  
36  
40  
40  
40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. REF01 Supply Current vs. Input Voltage  
Figure 7. REF01 Typical Output Voltage vs. Temperature  
5.008  
0.8  
0.7  
0.6  
+125°C  
5.004  
5.000  
+25°C  
–40°C  
0.5  
0.4  
4.996  
4.992  
8
12  
16  
20  
24  
28  
32  
36  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 8. REF02 Typical Output Voltage vs. Temperature  
Figure 11. REF02 Supply Current vs. Input Voltage  
0.85  
0.80  
2.502  
0.75  
0.70  
0.65  
2.501  
2.500  
+125°C  
+25°C  
0.60  
0.55  
0.50  
–40°C  
2.499  
2.498  
0.45  
0.40  
5
10  
15  
20  
25  
30  
35  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 9. REF03 Typical Output Voltage vs. Temperature  
Figure 12. REF03 Supply Current vs. Input Voltage  
Rev. K | Page 8 of 20  
 
REF01/REF02/REF03  
40  
30  
2
0
I
= 0mA TO 10mA  
V
= 14V TO 36V  
L
IN  
V
= 36V  
IN  
20  
10  
–2  
–4  
–6  
0
V
= 14V  
IN  
–10  
–20  
–8  
–30  
–40  
–10  
–40  
0
50  
TEMPERATURE (°C)  
25  
85  
125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 13. REF01 Load Regulation vs. Temperature  
Figure 16. REF01 Line Regulation vs. Temperature  
50  
40  
30  
20  
10  
0
8
4
I
= 0mA TO 5mA  
V
= 8V TO 36V  
IN  
L
V
= 36V  
IN  
0
V
= 8V  
IN  
–4  
–10  
–20  
–8  
–40  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
25  
TEMPERATURE (°C)  
85  
125  
TEMPERATURE (°C)  
Figure 14. REF02 Load Regulation vs. Temperature  
Figure 17. REF02 Line Regulation vs. Temperature  
60  
50  
4
2
I
= 0mA TO 10mA  
L
V
= 5V TO 36V  
IN  
V
= 7V  
IN  
40  
30  
20  
V
= 36V  
IN  
0
–2  
10  
0
–4  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. REF03 Load Regulation vs. Temperature  
Figure 18. REF03 Line Regulation vs. Temperature  
Rev. K | Page 9 of 20  
REF01/REF02/REF03  
5
4
3
0.70  
0.65  
0.60  
T
= 25°C  
A
+125°C  
2
–40°C  
0.55  
0.50  
1
0
+25°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 22. REF01 Quiescent Current vs. Load Current  
Figure 19. REF01 Dropout Voltage vs. Load Current  
6
4
2
0
+125°C  
–40°C  
+25°C  
TIME (1s/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 23. REF02 Typical Low-Frequency Voltage Noise (0.1 Hz to 10.0 Hz)  
Figure 20. REF02 Dropout Voltage vs. Load Current  
6
5
4
3
2
1
0
+125°C  
+25°C  
–40°C  
TIME (1ms/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 24. REF02 Typical Wideband Voltage Noise (10 Hz to 10 kHz)  
Figure 21. REF03 Dropout Voltage vs. Load Current  
Rev. K | Page 10 of 20  
 
REF01/REF02/REF03  
10V  
8V  
V
10V/DIV  
IN  
V
5V/DIV  
OUT  
C
= 0.01µF  
IN  
NO LOAD CAPACITOR  
V
5V/DIV  
OUT  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
TIME (2ms/DIV)  
TIME (4µs/DIV)  
Figure 25. REF02 Line Transient Response  
Figure 28. REF02 Turn-Off Response  
C
= 0.01µF  
NO LOAD CAPACITOR  
IN  
NO LOAD CAPACITOR  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
LOAD OFF  
LOAD ON  
V
5V/DIV  
V
100mV/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (4µs/DIV)  
TIME (1ms/DIV)  
Figure 29. REF02 Turn-On Response  
Figure 26. REF02 Load Transient Response  
C
= 100nF  
LOAD  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
V
5V/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (1ms/DIV)  
TIME (4µs/DIV)  
Figure 27. REF02 Load Transient Response  
Figure 30. REF02 Turn-Off Response (No Input Capacitor)  
Rev. K | Page 11 of 20  
REF01/REF02/REF03  
0.80  
C
= 0.01µF  
V
= 15V  
L
IN  
SAMPLE SIZE = 5  
NO INPUT CAPACITOR  
0.75  
0.70  
V
10V/DIV  
IN  
0.65  
0.60  
ΔV  
/ΔT 1.96mV/°C  
TEMP  
0.55  
0.50  
0.45  
V
5V/DIV  
OUT  
0.40  
TIME (4µs/DIV)  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 31. REF02 Turn-Off Response (No Input Capacitor)  
Figure 32. Output Voltage at TEMP Pin vs. Temperature  
Rev. K | Page 12 of 20  
 
REF01/REF02/REF03  
TERMINOLOGY  
Long-Term Stability (ΔVOUT_LTD  
)
Dropout Voltage (VDO  
)
Long-term stability refers to the shift in output voltage at 25°C  
after 1000 hours of operation in a 25°C environment. This may  
also be expressed as either a shift in voltage or a difference in  
ppm from the nominal output.  
Dropout voltage, sometimes referred to as supply voltage  
headroom or supply-output voltage differential, is defined as  
the minimum voltage differential between the input and output  
necessary for the device to operate.  
ΔVOUT _ LTD = VOUT  
VOUT t1  
VOUT  
(
t1  
VOUT  
t0  
)
VOUT  
t0 V  
( )[ ]  
VDO =  
(
VIN VOUT  
)
min  
IL = constant  
(
)
(
t0  
)
ΔVOUT _ LTD  
=
×106  
[
ppm  
]
Since the dropout voltage depends upon the current passing  
through the device, it is always specified for a given load  
current.  
(
)
where:  
VOUT(t0) is VOUT at 25°C at time 0.  
OUT(t1) is VOUT at 25°C after 1000 hours of operation at 25°C.  
Temperature Coefficient (TCVO)  
V
The temperature coefficient relates the change in output voltage  
to the change in ambient temperature of the device, as normal-  
ized by the output voltage at 25°C. This parameter is expressed  
in ppm/°C and can be determined by the following equation:  
Line Regulation  
Line regulation refers to the change in output voltage in  
response to a given change in input voltage. It is expressed in  
either percent per volt, ppm per volt, or microvolt per volt  
change in input voltage. This parameter accounts for the effects  
of self-heating.  
VOUT  
(
T2  
)
VOUT  
( )  
T1  
TCVOUT  
=
×106  
[
ppm/oC  
]
VOUT  
(
25o C  
)
×
(
T2 T1  
)
Load Regulation  
where:  
VOUT(25°C) is output voltage at 25°C.  
VOUT(T1) is output voltage at temperature 1.  
Load regulation refers to the change in output voltage in  
response to a given change in load current, and is expressed  
in either microvolts per milliamp, ppm per milliamp, or ohms  
of DC output resistance. This parameter accounts for the effects  
of self-heating.  
VOUT(T2) is output voltage at temperature 2.  
Thermally Induced Output Voltage Hysteresis (ΔVOUT_HYS  
Thermally induced output voltage hysteresis represents the  
change in output voltage after the device is exposed to a  
)
specified temperature cycle. This may be expressed as either a  
shift in voltage or a difference in ppm from the nominal output.  
VOUT _ HYS = VOUT  
(
25o C  
)
VOUT  
V
[ ]  
_TC  
VOUT  
(
25o C  
)
VOUT _TC  
VOUT _ HYS  
where:  
=
×106  
[ppm  
]
VOUT  
(
25o C  
)
VOUT(25°C)is output voltage at 25°C.  
VOUT_TC is output voltage after temperature cycling.  
Thermal hysteresis occurs mainly as a result of forces exhibited  
upon the internal die by its packaging. The effect is more  
pronounced in parts with smaller packages.  
Rev. K | Page 13 of 20  
 
REF01/REF02/REF03  
THEORY OF OPERATION  
REF01, REF02, and REF03 are high precision, low drift 10.0 V,  
5.0 V, and 2.5 V voltage references available in a variety of  
packages. These devices are standard band gap references (see  
Figure 33). The band gap cell contains two NPN transistors  
(Q18 and Q19) that differ in emitter area by a factor of 2. The  
difference in the VBE values of these transistors produces a  
proportional-to-absolute temperature current (PTAT) through  
R14, and, when combined with the VBE of Q19, produces a band  
gap voltage, VBG, that is almost constant over temperature.  
While the REF0x series of references are designed to function  
stably without any external components, connecting a 0.1 μF  
ceramic capacitor to the output is highly recommended to  
improve stability and filter out low level voltage noise. An  
additional 1 μF to 10 μF electrolytic, tantalum, or ceramic  
capacitor can be added in parallel to improve transient perfor-  
mance in response to sudden changes in load current; however,  
the designer should keep in mind that doing so increases the  
turn-on time of the device.  
With an internal op amp and the feedback network created by  
R5 and R6, VO is set precisely at 10.0 V, 5.0 V, or 2.5 V. Precision  
laser trimming of various resistors and other proprietary circuit  
techniques are used to further enhance the initial accuracy,  
temperature curvature, and drift performance of the device.  
A 1 μF to 10 μF electrolytic, tantalum, or ceramic capacitor  
can also be connected to the input to improve transient  
response in applications where the supply voltage may fluctuate.  
An additional 0.1 μF ceramic capacitor should be connected in  
parallel to reduce supply noise.  
The PTAT voltage is brought out directly from the band gap,  
unbuffered, at the TEMP pin. Since this voltage output has a  
stable 1.96 mV/°C temperature coefficient, users can estimate  
the temperature change of the device by simply monitoring the  
change in voltage at this pin.  
Both input and output capacitors should be mounted as close to  
the device pins as possible.  
OUTPUT ADJUSTMENT  
The REF0x trim terminal can be used to adjust the output  
up or down from the internally trimmed, nominal output  
voltage. This feature allows the system designer to trim out  
system errors due to changes in line and load conditions,  
thermal hysteresis, output offset due to solder reflow, or other  
error sources. The basic trim circuit configuration is shown  
in Figure 35.  
V
IN  
R4  
R1  
R2  
R3  
Q23  
Q1  
Q2  
Q3  
Q7  
Q8  
Q9  
D1  
D2  
Q10  
Table 7 also lists the range of output voltages obtainable from  
each model in this configuration.  
V
Q4  
O
U1  
D3  
C1  
REF01/  
Q13  
R5  
REF02/  
Q12  
R12  
R13  
REF03  
I1  
V
R20  
V
IN  
V
V
O
IN  
OUT  
TRIM  
POT  
10k  
Q14 Q15  
TEMP TRIM  
GND  
R1  
470kΩ  
2×  
V
BG  
1×  
Q19  
Q18  
R27  
R14  
R2  
1kΩ  
TEMP  
Q16  
Q17  
Q20  
R6  
R32  
R17 R11  
Figure 35. Optional Trim Adjustment Circuit  
R24  
R41  
R42  
GND  
Table 7. Adjustment Range Using Trim Circuit  
Figure 33. REF0x Simplified Schematic  
Model  
REF01  
REF02  
REF03  
VOUT, Low Limit  
VOUT, High Limit  
9.70 V  
4.95 V  
2.3 V  
10.05 V  
5.02 V  
2.8 V  
INPUT AND OUTPUT CAPACITORS  
Figure 34 shows the basic input/output capacitor configuration  
for the REF0x series of references.  
Adjustment of the output does not significantly affect the  
temperature performance of the reference itself, provided the  
temperature coefficients of the resistors used are low.  
U1  
REF01/  
REF02/  
REF03  
V
V
V
V
O
IN  
IN  
OUT  
C1  
0.1µF  
C2  
0.1µF  
TEMP TRIM  
GND  
Figure 34. Basic REF0x Capacitor Configuration  
Rev. K | Page 14 of 20  
 
 
 
 
 
 
 
REF01/REF02/REF03  
It is important to understand that long-term stability is not  
guaranteed by design, and that the output from the device may  
shift beyond the typical 50 ppm specification at any time, especially  
during the first 200 hours of operation. For systems that require  
highly stable output over long periods of time, the designer should  
consider burning-in the devices prior to use to minimize the  
amount of output drift exhibited by the reference over time. Refer  
to the AN-713 Application Note for more information regarding  
the effects of long-term drift and how it can be minimized.  
TEMPERATURE MONITORING  
In addition to the optional TRIM function, the REF0x series of  
references provides the ability to monitor changes in temper-  
ature by way of tracking the voltage present at the TEMP pin.  
The output voltage of this pin is taken directly from the band  
gap core and, as a result, varies linearly with temperature. The  
nominal voltage at the TEMP pin (VTEMP) is approximately  
550 mV at 25°C, with a temperature coefficient (TCVTEMP) of  
approximately 1.96 mV/°C. Refer to Figure 32 for a graph of  
output voltage vs. temperature.  
BURN-IN  
As an example, given these ideal values, a voltage change of  
39.2 mV at the TEMP pin corresponds to a 20°C change in  
temperature.  
Burn-in, wherein the part is powered and allowed to operate  
normally for an extended period of time, can be useful for  
minimizing the effects of long-term drift. A sample burn-in  
circuit is shown below in Figure 37.  
The TEMP function is provided as a convenience, rather than a  
precise feature, of the reference. In addition, because the voltage  
at the TEMP pin is taken directly from the band gap core, any  
current injected into or pulled from this pin has a significant  
effect on VOUT. As such, even tens of microamps drawn from the  
TEMP pin can cause the output to fall out of regulation. Should  
the designer wish to take advantage of this feature, it is neces-  
sary to buffer the output of the TEMP pin with a low bias  
current op amp, such as the AD8601 or AD8641. Any of these  
op amps, if used as shown in Figure 36, causes less than a  
+18V  
+
10µF  
10Ω  
V
IN  
REF01/  
REF02/  
REF03  
R
L
OPTIONAL  
V
OUT  
GND  
100 ꢀV change in VOUT  
.
10µF  
+
–18V  
U1  
Figure 37. Burn-In Circuit  
REF01/  
REF02/  
REF03  
The part may be burned in with or without a constant resistive  
load. The load current should not exceed 10 mA.  
15V  
V
V
V
V
O
IN  
IN  
OUT  
POWER DISSIPATION  
TEMP TRIM  
GND  
V+  
AD8641  
V–  
The REF0x series of voltage references are capable of sourcing  
up to 10 mA of load current at room temperature across the  
rated input voltage range. However, when used in applications  
subject to high ambient temperatures, the input voltage and  
load current should be carefully monitored to ensure that the  
device does not exceeded its maximum power dissipation  
rating. The maximum power dissipation of the device can be  
calculated via the following equation:  
V
TEMP  
1.9mV/°C  
U2  
Figure 36. Temperature Monitoring  
LONG-TERM STABILITY  
One of the key parameters of the REF0x series of references is  
long-term stability. Regardless of output voltage, internal testing  
during development showed a typical drift of approximately  
50 ppm after 1,000 hours of continuous, nonloaded operation  
in a +25°C environment.  
Tj TA  
PD  
=
W
[ ]  
θJA  
where:  
PD is device power dissipation.  
Tj is device junction temperature.  
TA is ambient temperature.  
θJA is package (junction-to-air) thermal resistance.  
Because of this relationship, acceptable load current in high-  
temperature conditions may be less than the maximum  
current-sourcing capability of the device. In no case should  
the part be operated outside of its maximum power rating as  
doing so may result in premature failure or permanent damage  
to the device.  
Rev. K | Page 15 of 20  
 
 
 
 
 
REF01/REF02/REF03  
APPLICATIONS INFORMATION  
BASIC REFERENCE APPLICATION  
PRECISION CURRENT SOURCE WITH ADJUSTABLE  
OUTPUT  
Figure 38 shows the basic configuration for any REF0x device.  
Input and output capacitance values can be tailored for  
performance, provided they follow the guidelines described  
in the Input and Output Capacitors section.  
U1  
A higher-precision current source can be implemented with the  
circuit shown in Figure 40.  
U1  
REF02  
0V TO (5V + V )  
L
REF01/  
REF02/  
REF03  
V
V
OUT  
+12V  
IN  
B
AD5201  
W
TEMP TRIM  
GND  
100k  
V
V
V
V
O
IN  
IN  
OUT  
A
C1  
0.1µF  
C2  
0.1µF  
TEMP TRIM  
GND  
+12V  
R
1kΩ  
SET  
U2  
V+  
OP1177  
V–  
Figure 38. Basic Reference Application  
–5V TO V  
V
L
L
LOW COST CURRENT SOURCE  
R
L
1kΩ  
I
L
–12V  
Unlike most references, the quiescent current of the REF0x  
series remains constant with respect to the load current (refer to  
Figure 22). As a result, a simple, low cost current source can be  
constructed by configuring the reference as shown in Figure 39.  
Figure 40. Programmable 0 mA to 5 mA Current Source  
By adding a mechanical or digital potentiometer, this circuit  
becomes an adjustable current source. If a digital potentiometer  
is used, the load current is simply the voltage across terminal B  
to terminal W of the digital potentiometer divided by the value  
V
IN  
I
IN  
of the resistor RSET  
.
REF01/  
V
REF02/  
OUT  
VREF × D  
REF03  
IL  
=
A
[ ]  
R
I
= (V  
– V )/R  
OUT L  
SET  
SET  
RSET  
SET  
GND  
where D is the decimal equivalent of the digital potentiometer  
input code.  
V
L
I
0.6mA  
Q
A dual-supply op amp should be used since the ground  
potential of REF02 can swing from −5.0 V to VL while the  
potentiometer is swung from zero-scale to full-scale.  
I
= I  
SET  
+ I  
Q
R
L
L
Figure 39. Simple Current Source  
PRECISION BOOSTED OUTPUT REGULATOR  
The output current sourcing capability of the REF0x series can  
be boosted by using an external op amp and MOSFET, as shown  
in Figure 41.  
In this configuration, the current through the resistor RSET (ISET  
is equal to (VOUT − VL)/RSET. IL is simply the sum of ISET and IQ.  
However, since IQ typically varies from 0.55 mA to 0.65 mA,  
)
this circuit should be limited to low precision, general-purpose  
N1  
applications.  
V
V
O
IN  
R
200  
C
L
1µF  
U1  
L
2N7002  
REF01/  
REF02/  
REF03  
15V  
V+  
R
100Ω  
R
2
100Ω  
1
V
V
OUT  
IN  
OP1177  
V–  
TEMP TRIM  
GND  
U2  
C
1
1000pF  
Figure 41. Precision Boosted Output Regulator  
In this circuit, U2 forces VO to VREF by regulating the current  
through N1, thereby sourcing the load current directly from the  
input voltage source connected at VIN. Using the components  
shown, this circuit can source up to 50 mA with an input volt-  
age of 15.0 V. The circuit’s current sourcing capability can be  
further increased by replacing N1 with a higher-power MOSFET.  
Rev. K | Page 16 of 20  
 
 
 
 
 
REF01/REF02/REF03  
BIPOLAR VOLTAGE REFERENCE  
ADJUSTABLE REFERENCE WITH POSITIVE AND  
NEGATIVE SWING  
Many applications require both a positive and reference voltage  
of the same magnitude. A simple method of generating such a  
bipolar reference is shown in Figure 42.  
V+  
The output voltage of the REF0x references can be readily  
adjusted via a simple trim circuit (explained in the Output  
Adjustment section). The circuit shown in Figure 43 extends  
the negative range of adjustment beyond that obtainable with  
the simple trim circuit by employing a precision op amp with  
a potentiometer feeding the op amp’s noninverting input.  
V+  
U1  
2
V
IN  
6
+2.5V  
V
OUT  
REF03  
100k  
U1  
2
50k  
GND  
4
100kΩ  
V
IN  
+15V  
6
50kΩ  
6
2
7
V
U2  
OUT  
V
2
3
OUT  
–2.5V TO +2.5V  
7
OP97  
4
REF03  
3
6
U2  
–2.5V  
OP97  
4
50kΩ  
GND  
4
V+  
V–  
Figure 42. Bipolar Voltage Reference  
Figure 43. Negatively Adjustable Reference  
In this configuration, the negative rail is generated simply  
with an inverting amplifier with a gain of −1. A low offset  
op amp should be used to minimize the voltage error at the  
negative output.  
The voltage output from the op amp can be adjusted by  
changing the value of the potentiometer: as shown, the op  
amp outputs +2.5 V when the pot is pulled completely high,  
and −2.5V when pulled completely low. In this configuration,  
the load current is sourced by the op amp; therefore, a low  
offset op amp with a current rating that meets or exceeds the  
current requirements of the load should be used.  
Rev. K | Page 17 of 20  
 
 
REF01/REF02/REF03  
OUTLINE DIMENSIONS  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 44. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
Z-Suffix (Q-8)  
Dimensions shown in inches and (millimeters)  
REFERENCE PLANE  
0.5000 (12.70)  
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
0.1000 (2.54)  
BSC  
0.2500 (6.35) MIN  
0.0500 (1.27) MAX  
0.1600 (4.06)  
0.1400 (3.56)  
5
6
8
4
0.2000  
(5.08)  
BSC  
3
7
0.0450 (1.14)  
0.0270 (0.69)  
2
1
0.1000  
(2.54)  
BSC  
0.0190 (0.48)  
0.0160 (0.41)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0.0210 (0.53)  
0.0160 (0.41)  
0.0400 (1.02)  
0.0100 (0.25)  
45° BSC  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MO-002-AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
.
Figure 45. 8-Pin Metal Header Package [TO-99]  
J-Suffix (H-08)  
Dimensions shown in inches and (millimeters)  
Rev. K | Page 18 of 20  
 
REF01/REF02/REF03  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 46. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body, P-Suffix (N-8)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
RC-Suffix (E-20-1)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body, S-Suffix (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. K | Page 19 of 20  
REF01/REF02/REF03  
REF01 ORDERING GUIDE  
Model1, 2  
Initial Accuracy (mV)  
Temperature Range  
−55°C to +125°C  
0°C to 70°C  
Package Description  
8-Pin TO-99  
8-Pin TO-99  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead PDIP  
Package Option  
J-Suffix (H-08)  
J-Suffix (H-08)  
Z-Suffix (Q-8)  
Z-Suffix (Q-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
REF01AJ/883C  
REF01CJ  
REF01EZ  
30  
100  
30  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
REF01HZ  
50  
REF01CPZ  
REF01HPZ  
100  
50  
8-Lead PDIP  
REF01CS  
100  
100  
100  
100  
100  
100  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
REF01CS-REEL  
REF01CS-REEL7  
REF01CSZ  
REF01CSZ-REEL  
REF01CSZ-REEL7  
1 Contact sales for 883 data sheet.  
2 Z = RoHS Compliant Part.  
REF02 ORDERING GUIDE  
Model1, 2  
Initial Accuracy (mV)  
Temperature Range  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
−55°C to +125°C  
Package Description  
8-Pin TO-99  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead PDIP  
Package Option  
J-Suffix (H-08)  
Z-Suffix (Q-8)  
Z-Suffix (Q-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
Z-Suffix (Q-8)  
Z-Suffix (Q-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
RC-Suffix (E-20-1)  
Z-Suffix (Q-8)  
REF02AJ/883C  
REF02AZ  
REF02AZ/883C  
REF02CP  
REF02CPZ  
REF02CS  
REF02CS-REEL  
REF02CS-REEL7  
REF02CSZ  
REF02CSZ-REEL  
REF02CSZ-REEL7  
REF02EZ  
REF02HZ  
REF02HPZ  
REF02HSZ  
REF02RC/883  
REF02Z  
15  
15  
15  
50  
50  
50  
50  
50  
50  
50  
50  
15  
25  
25  
25  
25  
25  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead PDIP  
8-Lead SOIC_N  
20-Terminal LCC  
8-Lead CERDIP  
1 Contact sales for 883 data sheet.  
2 Z = RoHS Compliant Part.  
REF03 ORDERING GUIDE  
Model1  
Initial Accuracy (mV)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
N-8 (P-Suffix)  
R-8 (P-Suffix)  
R-8 (P-Suffix)  
R-8 (P-Suffix)  
REF03GPZ  
REF03GSZ  
REF03GSZ-REEL  
REF03GSZ-REEL7  
15  
15  
15  
15  
1 Z = RoHS Compliant Part.  
©2000–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00375-0-10/10(K)  
Rev. K | Page 20 of 20  
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY