REF198ESZ [ADI]

Precision Micropower, Low Dropout Voltage References; 精密微功耗,低压差电压基准
REF198ESZ
型号: REF198ESZ
厂家: ADI    ADI
描述:

Precision Micropower, Low Dropout Voltage References
精密微功耗,低压差电压基准

电源电路 参考电压源 光电二极管
文件: 总28页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower, Low Dropout  
Voltage References  
REF19x Series  
TEST PINS  
FEATURES  
Test Pin 1 and Test Pin 5 are reserved for in-package Zener zap.  
To achieve the highest level of accuracy at the output, the Zener  
zapping technique is used to trim the output voltage. Since each  
unit may require a different amount of adjustment, the resistance  
value at the test pins varies widely from pin to pin and from  
part to part. The user should leave Pin 1 and Pin 5  
unconnected.  
Initial accuracy: 2 mV maximum  
Temperature coefficient: 5 ppm/°C maximum  
Low supply current: 45 μA maximum  
Sleep mode: 15 μA maximum  
Low dropout voltage  
Load regulation: 4 ppm/mA  
Line regulation: 4 ppm/V  
High output current: 30 mA  
Short-circuit protection  
TP  
1
2
3
4
8
7
6
5
NC  
REF19x  
SERIES  
TOP VIEW  
(Not to Scale)  
V
NC  
S
APPLICATIONS  
Portable instruments  
ADCs and DACs  
Smart sensors  
Solar-powered applications  
Loop current-powered instruments  
SLEEP  
GND  
OUTPUT  
TP  
NOTES  
1. NC = NO CONNECT.  
2. TP PINS ARE FACTORY TEST  
POINTS, NO USER CONNECTION.  
Figure 1. 8-Lead SOIC_N and TSSOP Pin Configuration  
(S Suffix and RU Suffix)  
GENERAL DESCRIPTION  
TP  
1
2
3
4
8
7
6
5
NC  
The REF19x series precision band gap voltage references use a  
patented temperature drift curvature correction circuit and  
laser trimming of highly stable, thin-film resistors to achieve a  
very low temperature coefficient and high initial accuracy.  
REF19x  
SERIES  
TOP VIEW  
(Not to Scale)  
V
NC  
S
SLEEP  
GND  
OUTPUT  
TP  
NOTES  
1. NC = NO CONNECT.  
2. TP PINS ARE FACTORY TEST  
POINTS, NO USER CONNECTION.  
The REF19x series is made up of micropower, low dropout  
voltage (LDV) devices, providing stable output voltage from  
supplies as low as 100 mV above the output voltage and  
consuming less than 45 μA of supply current. In sleep mode,  
which is enabled by applying a low TTL or CMOS level to the  
Figure 2. 8-Lead PDIP Pin Configuration  
(P Suffix)  
SLEEP  
Table 1. Nominal Output Voltage  
pin, the output is turned off, and supply current is  
Part Number  
Nominal Output Voltage (V)  
further reduced to less than 15 μA.  
REF191  
REF192  
REF193  
REF194  
REF195  
REF196  
REF198  
2.048  
2.50  
3.00  
4.50  
5.00  
3.30  
4.096  
The REF19x series references are specified over the extended  
industrial temperature range (−40°C to +85°C), with typical  
performance specifications over −40°C to +125°C for  
applications such as automotive.  
All electrical grades are available in an 8-lead SOIC_N package;  
the PDIP and TSSOP packages are available only in the lowest  
electrical grade. Products are also available in die form.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
REF19x Series  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Wafer Test Limits........................................................................ 14  
Absolute Maximum Ratings ......................................................... 15  
Thermal Resistance.................................................................... 15  
ESD Caution................................................................................ 15  
Typical Performance Characteristics ........................................... 16  
Applications..................................................................................... 19  
Output Short-Circuit Behavior ................................................ 19  
Device Power Dissipation Considerations.............................. 19  
Output Voltage Bypassing......................................................... 19  
Sleep Mode Operation............................................................... 19  
Basic Voltage Reference Connections ..................................... 19  
Membrane Switch-Controlled Power Supply......................... 19  
Current-Boosted References with Current Limiting............. 20  
Negative Precision Reference without Precision Resistors... 20  
Stacking Reference ICs for Arbitrary Outputs ....................... 21  
Precision Current Source .......................................................... 21  
Switched Output 5 V/3.3 V Reference..................................... 22  
Kelvin Connections.................................................................... 22  
Fail-Safe 5 V Reference.............................................................. 23  
Low Power, Strain Gage Circuit ............................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Electrical Characteristics—REF191 @ TA = 25°C.................... 3  
Electrical Characteristics—REF191 @ −40°C ≤ TA ≤ +85°C .. 4  
Electrical Characteristics—REF191 @ −40°C ≤ TA ≤+125°C. 5  
Electrical Characteristics—REF192 @ TA = 25°C.................... 5  
Electrical Characteristics—REF192 @ −40°C ≤ TA ≤ +85°C.. 6  
Electrical Characteristics—REF192 @ −40°C ≤ TA ≤ +125°C 6  
Electrical Characteristics—REF193 @ TA = 25°C.................... 7  
Electrical Characteristics—REF193 @ −40°C ≤ TA ≤ +85°C.. 7  
Electrical Characteristics—REF193 @ TA ≤ −40°C ≤ +125°C 8  
Electrical Characteristics—REF194 @ Ta = 25°C..................... 8  
Electrical Characteristics—REF194 @ −40°C ≤ TA ≤ +85°C.. 9  
Electrical Characteristics—REF194 @ −40°C ≤ TA ≤ +125°C 9  
Electrical Characteristics—REF195 @ TA = 25°C.................. 10  
Electrical Characteristics—REF195 @ −40°C ≤ TA ≤ +85°C 10  
Electrical Characteristics—REF195 @ −40°C ≤ TA ≤ +125°C  
....................................................................................................... 11  
Electrical Characteristics—REF196 @ TA = 25°C.................. 11  
Electrical Characteristics—REF196 @ −40°C ≤ TA ≤ +85°C 12  
Electrical Characteristics—REF196 @ −40°C ≤ TA ≤ +125°C  
....................................................................................................... 12  
Electrical Characteristics—REF198 @ TA = 25°C.................. 13  
Electrical Characteristics—REF198 @ −40°C ≤ TA ≤ +85°C 13  
Electrical Characteristics—REF198 @ −40°C ≤ TA +125°C  
....................................................................................................... 14  
REVISION HISTORY  
7/04—Rev. F to Rev. G  
Changes to Ordering Guide.............................................................4  
9/06—Rev. H to Rev. I  
Updated Format..................................................................Universal  
Changes to Table 25 ....................................................................... 15  
Changes to Figure 6........................................................................ 16  
Changes to Figure 10, Figure 12, Figure 14, and Figure 16....... 17  
Changes to Figure 18...................................................................... 18  
Changes to Figure 20...................................................................... 19  
Changes to Figure 23...................................................................... 20  
Changes to Figure 25...................................................................... 21  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide .......................................................... 26  
3/04—Rev. E to Rev. F  
Updated Absolute Maximum Rating..............................................4  
Changes to Ordering Guide.......................................................... 14  
Updated Outline Dimensions....................................................... 24  
1/03—Rev. D to Rev. E  
Changes to Figure 3 and Figure 4................................................. 15  
Changes to Output Short Circuit Behavior................................. 17  
Changes to Figure 20...................................................................... 17  
Changes to Figure 24...................................................................... 19  
Updated Outline Dimensions....................................................... 23  
6/05—Rev. G to Rev. H  
Updated Format..................................................................Universal  
Changes to Caption in Figure 7 .................................................... 16  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide .......................................................... 26  
1/96—Revision 0: Initial Version  
Rev. I | Page 2 of 28  
REF19x Series  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—REF191 @ TA = 25°C  
@ VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
INITIAL ACCURACY1  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade  
VO  
IOUT = 0 mA  
2.046  
2.043  
2.038  
2.048  
2.050  
2.053  
2.058  
V
V
V
LINE REGULATION2  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 30 mA  
2
4
4
8
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION2  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
4
6
10  
15  
ppm/mA  
ppm/mA  
VS = 3.15 V, ILOAD = 2 mA  
VS = 3.3 V, ILOAD = 10 mA  
VS = 3.6 V, ILOAD = 30 mA  
1000 hours @ 125°C  
0.1 Hz to 10 Hz  
0.95  
1.25  
1.55  
V
V
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
20  
mV  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
Rev. I | Page 3 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF191 @ −40°C TA +85°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 3.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
5
10  
25  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 25°C  
5
10  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
15  
20  
ppm/mA  
ppm/mA  
VS = 3.15 V, ILOAD = 2 mA  
VS = 3.3 V, ILOAD = 10 mA  
VS = 3.6 V, ILOAD = 25 mA  
0.95  
1.25  
1.55  
V
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 4 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF191 @ 40°C ≤ TA ≤+125°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 4.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 20 mA  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
10  
20  
ppm/mA  
ppm/mA  
VS = 3.3 V, ILOAD = 10 mA  
VS = 3.6 V, ILOAD = 20 mA  
1.25  
1.55  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF192 @ TA = 25°C  
@ VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
INITIAL ACCURACY1  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade  
VO  
IOUT = 0 mA  
2.498  
2.495  
2.490  
2.500  
2.502  
2.505  
2.510  
V
V
V
LINE REGULATION2  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 30 mA  
2
4
4
8
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION2  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
4
6
10  
15  
ppm/mA  
ppm/mA  
V
VS = 3.5 V, ILOAD = 10 mA  
VS = 3.9 V, ILOAD = 30 mA  
1000 hours @ 125°C  
0.1 Hz to 10 Hz  
1.00  
1.40  
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
25  
mV  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
Rev. I | Page 5 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF192 @ 40°C TA ≤ +85°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 6.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
5
10  
25  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 25 mA  
5
10  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
15  
20  
ppm/mA  
ppm/mA  
VS = 3.5 V, ILOAD = 10 mA  
VS = 4.0 V, ILOAD = 25 mA  
1.00  
1.50  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF192 @ 40°C TA ≤ +125°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 7.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
3.0 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 20 mA  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
10  
20  
ppm/mA  
ppm/mA  
VS = 3.5 V, ILOAD = 10 mA  
VS = 4.0 V, ILOAD = 20 mA  
1.00  
1.50  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 6 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF193 @ TA = 25°C  
@ VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 8.  
Parameter  
Mnemonic  
VO  
Condition  
Min  
Typ  
3.0  
4
Max  
3.010  
8
Unit  
V
INITIAL ACCURACY1  
G Grade  
LINE REGULATION2  
G Grade  
IOUT = 0 mA  
2.990  
ΔVO/ΔVIN  
3.3 V, ≤ VS ≤ 15 V, IOUT = 0 mA  
ppm/V  
LOAD REGULATION2  
G Grade  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 30 mA  
VS = 3.8 V, ILOAD = 10 mA  
VS = 4.0 V, ILOAD = 30 mA  
1000 hours @ 125°C  
6
15  
0.80  
1.00  
ppm/mA  
DROPOUT VOLTAGE  
V
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
30  
mV  
0.1 Hz to 10 Hz  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
ELECTRICAL CHARACTERISTICS—REF193 @ 40°C TA ≤ +85°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 9.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
G Grade3  
LINE REGULATION4  
G Grade  
Mnemonic  
TCVO/°C  
Condition  
Min  
Typ  
10  
Max  
25  
Unit  
IOUT = 0 mA  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
3.3 V ≤ VS ≤ 15 V, IOUT = 0 mA  
10  
20  
LOAD REGULATION4  
G Grade  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 25 mA  
VS = 3.8 V, ILOAD = 10 mA  
VS = 4.1 V, ILOAD = 30 mA  
10  
20  
ppm/mA  
DROPOUT VOLTAGE  
0.80  
1.10  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 7 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF193 @ TA 40°C +125°C  
@ VS = 3.3 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 10.  
Parameter  
TEMPERATURE COEFFICIENT1 ,2  
G Grade3  
LINE REGULATION4  
G Grade  
LOAD REGULATION4  
G Grade  
Mnemonic  
TCVO/°C  
Condition  
Min  
Typ Max Unit  
IOUT = 0 mA  
10  
20  
10  
ppm/°C  
ΔVO/ΔVIN  
3.3 V ≤ VS ≤ 15 V, IOUT = 0 mA  
ppm/V  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 20 mA  
VS = 3.8 V, ILOAD = 10 mA  
VS = 4.1 V, ILOAD = 20 mA  
ppm/mA  
DROPOUT VOLTAGE  
0.80  
1.10  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF194 @ TA = 25°C  
@ VS = 5.0 V, TA = 25°C, unless otherwise noted.  
Table 11.  
Parameter  
INITIAL ACCURACY1  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade  
VO  
IOUT = 0 mA  
4.498 4.5  
4.495  
4.490  
4.502  
4.505  
4.510  
V
V
V
LINE REGULATION2  
E Grade  
∆VO/∆VIN  
4.75 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.8 V, 0 mA ≤ IOUT ≤ 30 mA  
2
4
4
8
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION2  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
∆VO/∆VLOAD  
VS − VO  
2
4
4
8
ppm/mA  
ppm/mA  
V
VS = 5.00 V, ILOAD = 10 mA  
VS = 5.8 V, ILOAD = 30 mA  
1000 hours @ 125°C  
0.1 Hz to 10 Hz  
0.50  
1.30  
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
2
mV  
45  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
Rev. I | Page 8 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF194 @ 40°C TA ≤ +85°C  
@ VS = 5.0 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 12.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
5
10  
25  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
∆VO/∆VIN  
4.75 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.80 V, 0 mA ≤ IOUT ≤ 25 mA  
5
10  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
∆VO/∆VLOAD  
VS − VO  
5
10  
15  
20  
ppm/mA  
ppm/mA  
VS = 5.00 V, ILOAD = 10 mA  
VS = 5.80 V, ILOAD = 25 mA  
0.5  
1.30  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF194 @ 40°C TA ≤ +125°C  
@ VS = 5.0 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 13.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
4.75 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.80 V, 0 mA ≤ IOUT ≤ 20 mA  
5
10  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
ppm/mA  
ppm/mA  
VS = 5.10 V, ILOAD = 10 mA  
VS = 5.95 V, ILOAD = 20 mA  
0.60  
1.45  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 9 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF195 @ TA = 25°C  
@ VS = 5.10 V, TA = 25°C, unless otherwise noted.  
Table 14.  
Parameter  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
INITIAL ACCURACY1  
E Grade  
F Grade  
G Grade  
VO  
IOUT = 0 mA  
4.998 5.0  
4.995  
4.990  
5.002  
5.005  
5.010  
V
V
V
LINE REGULATION2  
E Grade  
ΔVO/ΔVIN  
5.10 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 6.30 V, 0 mA ≤ IOUT ≤ 30 mA  
2
4
4
8
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION2  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
2
4
4
8
ppm/mA  
ppm/mA  
V
VS = 5.50 V, ILOAD = 10 mA  
VS = 6.30 V, ILOAD = 30 mA  
1000 hours @ 125°C  
0.1 Hz to 10 Hz  
0.50  
1.30  
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
50  
mV  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
ELECTRICAL CHARACTERISTICS—REF195 @ 40°C TA ≤ +85°C  
@ VS = 5.15 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 15.  
Parameter  
TEMPERATURE COEFFICIENT1,2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
5
10  
25  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
5.15 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 6.30 V, 0 mA ≤ IOUT ≤ 25 mA  
5
10  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
10  
20  
ppm/mA  
ppm/mA  
VS = 5.50 V, ILOAD = 10 mA  
VS = 6.30 V, ILOAD = 25 mA  
0.50  
1.30  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 10 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF195 @ 40°C TA ≤ +125°C  
@ VS = 5.20 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 16.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
5.20 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 6.45 V, 0 mA ≤ IOUT ≤ 20 mA  
5
10  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
ΔVO/ΔVLOAD  
5
ppm/mA  
F and G Grades  
DROPOUT VOLTAGE  
10  
ppm/mA  
VS = 5.60 V, ILOAD = 10 mA  
VS = 6.45 V, ILOAD = 20 mA  
0.60  
1.45  
V
V
VS VO  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF196 @ TA = 25°C  
@ VS = 3.5 V, TA = 25°C, unless otherwise noted.  
Table 17.  
Parameter  
Mnemonic  
VO  
Condition  
Min  
Typ  
Max  
3.310  
8
Unit  
V
INITIAL ACCURACY1  
G Grade  
LINE REGULATION2  
G Grade  
LOAD REGULATION2  
G Grade  
IOUT = 0 mA  
3.290 3.3  
ΔVO/ΔVIN  
3.50 V ≤ VS ≤ 15 V, IOUT = 0 mA  
4
6
ppm/V  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 30 mA  
VS = 4.1 V, ILOAD = 10 mA  
VS = 4.3 V, ILOAD = 30 mA  
1000 hours @ 125°C  
15  
ppm/mA  
DROPOUT VOLTAGE  
0.80  
1.00  
V
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
33  
mV  
0.1 Hz to 10 Hz  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
Rev. I | Page 11 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF196 @ 40°C TA ≤ +85°C  
@ VS = 3.5 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 18.  
Parameter  
Mnemonic  
TCVO/°C  
Condition  
Min  
Typ  
10  
Max  
25  
Unit  
TEMPERATURE COEFFICIENT1, 2  
G Grade3  
LINE REGULATION4  
G Grade  
IOUT = 0 mA  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
3.5 V ≤ VS ≤ 15 V, IOUT = 0 mA  
10  
20  
LOAD REGULATION4  
G Grade  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 25 mA  
VS = 4.1 V, ILOAD = 10 mA  
VS = 4.3 V, ILOAD = 25 mA  
10  
20  
ppm/mA  
DROPOUT VOLTAGE  
0.80  
1.00  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
ELECTRICAL CHARACTERISTICS—REF196 @ 40°C TA ≤ +125°C  
@ VS = 3.50 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 19.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
G Grade3  
LINE REGULATION4  
G Grade  
Mnemonic  
TCVO/°C  
Condition  
Min  
Typ  
10  
Max  
Unit  
IOUT = 0 mA  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
3.50 V ≤ VS ≤ 15 V, IOUT = 0 mA  
20  
LOAD REGULATION4  
G Grade  
ΔVO/ΔVLOAD  
VS − VO  
VS = 5.0 V, 0 mA ≤ IOUT ≤ 20 mA  
VS = 4.1 V, ILOAD = 10 mA  
VS = 4.4 V, ILOAD = 20 mA  
20  
ppm/mA  
DROPOUT VOLTAGE  
0.80  
1.10  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 12 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF198 @ TA = 25°C  
@ VS = 5.0 V, TA = 25°C, unless otherwise noted.  
Table 20.  
Parameter  
INITIAL ACCURACY1  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade  
VO  
IOUT = 0 mA  
4.094  
4.091  
4.086  
4.096  
4.098  
4.101  
4.106  
V
V
V
LINE REGULATION2  
E Grade  
ΔVO/ΔVIN  
4.5 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.4 V, 0 mA ≤ IOUT ≤ 30 mA  
2
4
4
8
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION2  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
2
4
4
8
ppm/mA  
ppm/mA  
V
VS = 4.6 V, ILOAD = 10 mA  
VS = 5.4 V, ILOAD = 30 mA  
1000 hours @ 125°C  
0.1 Hz to 10 Hz  
0.502  
1.30  
V
LONG-TERM STABILITY3  
NOISE VOLTAGE  
DVO  
eN  
1.2  
40  
mV  
μV p-p  
1 Initial accuracy includes temperature hysteresis effect.  
2 Line and load regulation specifications include the effect of self-heating.  
3 Long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
ELECTRICAL CHARACTERISTICS—REF198 @ 40°C TA ≤ +85°C  
@ VS = 5.0 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 21.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
5
10  
25  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
4.5 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.4 V, 0 mA ≤ IOUT ≤ 25 mA  
5
10  
10  
20  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
10  
20  
ppm/mA  
ppm/mA  
VS = 4.6 V, ILOAD = 10 mA  
VS = 5.4 V, ILOAD = 25 mA  
0.502  
1.30  
V
V
SLEEP  
PIN  
Logic High Input Voltage  
Logic High Input Current  
Logic Low Input Voltage  
Logic Low Input Current  
SUPPLY CURRENT  
VH  
IH  
VL  
IL  
2.4  
V
μA  
V
μA  
μA  
μA  
−8  
0.8  
−8  
45  
15  
No load  
No load  
Sleep Mode  
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
Rev. I | Page 13 of 28  
REF19x Series  
ELECTRICAL CHARACTERISTICS—REF198 @ −40°C ≤ TA +125°C  
@ VS = 5.0 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 22.  
Parameter  
TEMPERATURE COEFFICIENT1, 2  
Mnemonic  
Condition  
Min  
Typ  
Max  
Unit  
E Grade  
F Grade  
G Grade3  
TCVO/°C  
IOUT = 0 mA  
2
5
10  
ppm/°C  
ppm/°C  
ppm/°C  
LINE REGULATION4  
E Grade  
ΔVO/ΔVIN  
4.5 V ≤ VS ≤ 15 V, IOUT = 0 mA  
VS = 5.6 V, 0 mA ≤ IOUT ≤ 20 mA  
5
10  
ppm/V  
ppm/V  
F and G Grades  
LOAD REGULATION4  
E Grade  
F and G Grades  
DROPOUT VOLTAGE  
ΔVO/ΔVLOAD  
VS − VO  
5
10  
ppm/mA  
ppm/mA  
VS = 4.7 V, ILOAD = 10 mA  
VS = 5.6 V, ILOAD = 20 mA  
0.60  
1.50  
V
V
1 For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.  
2 TCVO is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C.  
TCVO = (VMAX VMIN)/VO(TMAX TMIN  
)
3 Guaranteed by characterization.  
4 Line and load regulation specifications include the effect of self-heating.  
WAFER TEST LIMITS  
For proper operation, a 1 μF capacitor is required between the output pins and the GND pin of the REF19x. Electrical tests and wafer  
probe to the limits are shown in  
Table 23. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice.  
Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
@ ILOAD = 0 mA, TA = 25°C, unless otherwise noted.  
Table 23.  
Parameter  
INITIAL ACCURACY  
REF191  
REF192  
REF193  
REF194  
REF195  
REF196  
REF198  
Mnemonic  
Condition  
Limit  
Unit  
VO  
2.043/2.053  
2.495/2.505  
2.990/3.010  
4.495/4.505  
4.995/5.005  
3.290/3.310  
4.091/4.101  
15  
V
V
V
V
V
V
V
LINE REGULATION  
LOAD REGULATION  
DROPOUT VOLTAGE  
ΔVO/ΔVIN  
ΔVO/ΔILOAD  
VO − V+  
(VO + 0.5 V) < VIN < 15 V, IOUT = 0 mA  
0 mA < ILOAD < 30 mA, VIN = (VO + 1.3 V)  
ILOAD = 10 mA  
ppm/V  
15  
ppm/mA  
1.25  
1.55  
V
V
ILOAD = 30 mA  
SLEEP  
MODE INPUT  
Logic Input High  
Logic Input Low  
SUPPLY CURRENT  
Sleep Mode  
VIH  
VIL  
2.4  
0.8  
45  
V
V
VIN = 15 V  
No load  
No load  
μA  
μA  
15  
Rev. I | Page 14 of 28  
REF19x Series  
ABSOLUTE MAXIMUM RATINGS  
Table 24.  
Parameter1  
Rating  
THERMAL RESISTANCE  
Supply Voltage  
Output to GND  
−0.3 V, +18 V  
−0.3 V, VS + 0.3 V  
Indefinite  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Output to GND Short-Circuit Duration  
Storage Temperature Range  
PDIP, SOIC_N Package  
Operating Temperature Range  
REF19x  
Junction Temperature Range  
PDIP, SOIC_N Package  
Lead Temperature Range (Soldering 60 sec)  
Table 25. Thermal Resistance  
Package Type  
1
−65°C to +150°C  
−40°C to +85°C  
Unit  
θJA  
θJC  
43  
43  
8-Lead PDIP  
8-Lead SOIC_N  
103  
158  
°C/W  
°C/W  
1 θJA is specified for worst-case conditions; that is, θJA is specified for the device  
in socket for PDIP and is specified for the device soldered in the circuit board  
for the SOIC package.  
−65°C to +150°C  
300°C  
1 Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. I | Page 15 of 28  
REF19x Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.004  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3 TYPICAL PARTS  
BASED ON 600  
UNITS, 4 RUNS  
5.15V < V < 15V  
IN  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
–40°C T +85°C  
A
0
20  
–50  
–25  
0
25  
50  
75  
100  
15  
10  
5
0
5
10  
15  
20  
TEMPERATURE (°C)  
T
—V  
OUT  
(ppm/°C)  
C
Figure 3. REF195 Output Voltage vs. Temperature  
Figure 6. TC—VOUT Distribution  
32  
28  
24  
20  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
5
5.15V V 15V  
S
NORMAL MODE  
–40°C  
+25°C  
+85°C  
4
SLEEP MODE  
0
0
–50  
0
5
10  
15  
(mA)  
20  
25  
30  
–25  
0
25  
50  
75  
100  
I
TEMPERATURE (°C)  
LOAD  
Figure 4. REF195 Load Regulator vs. ILOAD  
Figure 7. Supply Current vs. Temperature  
20  
16  
12  
8
–6  
–5  
–4  
–3  
–2  
–1  
0
0mA I  
OUT  
25mA  
+85°C  
+25°C  
–40°C  
V
V
L
4
H
0
4
6
8
10  
(V)  
12  
14  
16  
–50  
–25  
0
25  
50  
75  
100  
V
TEMPERATURE (°C)  
IN  
Figure 5. REF195 Line Regulator vs. VIN  
SLEEP  
Pin Current vs. Temperature  
Figure 8.  
Rev. I | Page 16 of 28  
REF19x Series  
REF19x  
2
4
V
= 15V  
IN  
0
–20  
6
10mA  
0
1µF  
Figure 13. Load Transient Response Measurement Circuit  
–40  
–60  
–80  
2V  
100%  
90%  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 9. Ripple Rejection vs. Frequency  
1mA  
LOAD  
30mA  
LOAD  
10µF  
10%  
0%  
REF19x  
10µF  
1k  
1kΩ  
V
= 15V  
2
6
OUTPUT  
IN  
2V  
100µs  
4
10µF  
1µF  
REF  
Figure 10. Ripple Rejection vs. Frequency Measurement Circuit  
Figure 14. Power-On Response Time  
REF19x  
V
= 7V  
200V  
IN  
REF19x  
2
6
2
4
V
V
= 2V p-p  
= 4V  
6
G
S
V
= 7V  
4
IN  
1µF  
1µF  
1µF  
Z
Figure 15. Power-On Response Time Measurement Circuit  
4
3
2
1
0
5V  
100%  
90%  
ON  
OFF  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 11. Output Impedance vs. Frequency  
I
= 1mA  
L
V
OUT  
I
= 10mA  
L
5V  
10%  
0%  
OFF  
ON  
100%  
90%  
2ms  
1V  
SLEEP  
Figure 16.  
Response Time  
REF19x  
= 15V  
V
IN  
2
V
OUT  
6
10%  
0%  
3
1µF  
4
20mV  
100µs  
Figure 12. Load Transient Response  
SLEEP  
Response Time Measurement Circuit  
Figure 17.  
Rev. I | Page 17 of 28  
REF19x Series  
35  
30  
25  
20  
15  
10  
5
5V  
100%  
90%  
10%  
0%  
200mV  
200µs  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
REF195 DROPOUT VOLTAGE (V)  
Figure 18. Line Transient Response  
Figure 19. Load Current vs. Dropout Voltage  
Rev. I | Page 18 of 28  
REF19x Series  
APPLICATIONS  
OUTPUT SHORT-CIRCUIT BEHAVIOR  
SLEEP MODE OPERATION  
The REF19x family of devices is completely protected from  
damage due to accidental output shorts to GND or to V+. In the  
event of an accidental short-circuit condition, the reference  
device shuts down and limits its supply current to 40 mA.  
All REF19x devices include a sleep capability that is  
TTL/CMOS-level compatible. Internally, a pull-up current  
source to VIN is connected at the  
pin. This permits the  
SLEEP  
pin to be driven from an open collector/drain driver. A  
SLEEP  
logic low or a 0 V condition on the  
V
+
pin is required to  
SLEEP  
turn off the output stage. During sleep, the output of the  
references becomes a high impedance state where its potential  
would then be determined by external circuitry. If the sleep  
V
OUT  
SLEEP  
feature is not used, it is recommended that the  
connected to VIN (Pin 2).  
pin be  
SLEEP (SHUTDOWN)  
BASIC VOLTAGE REFERENCE CONNECTIONS  
The circuit in Figure 21 illustrates the basic configuration for  
the REF19x family of references. Note the 10 μF/0.1 μF bypass  
network on the input and the 1 μF/0.1 μF bypass network on  
the output. It is recommended that no connections be made to  
Pin 1, Pin 5, Pin 7, and Pin 8. If the sleep feature is not required,  
Pin 3 should be connected to VIN.  
GND  
Figure 20. Simplified Schematic  
DEVICE POWER DISSIPATION CONSIDERATIONS  
REF19x  
The REF19x family of references is capable of delivering load  
currents to 30 mA with an input voltage that ranges from  
3.3 V to 5 V. When these devices are used in applications with  
large input voltages, exercise care to avoid exceeding the  
maximum internal power dissipation of these devices.  
Exceeding the published specifications for maximum power  
dissipation or junction temperature can result in premature  
device failure. The following formula should be used to  
calculate a devices maximum junction temperature or  
dissipation:  
1
2
3
4
8
7
6
5
NC  
NC  
V
IN  
NC  
OUTPUT  
10µF  
0.1µF  
SLEEP  
+
1µF  
TANT  
0.1µF  
NC  
NC = NO CONNECT  
Figure 21. Basic Voltage Reference Configuration  
MEMBRANE SWITCH-CONTROLLED POWER  
SUPPLY  
With output load currents in the tens of mA, the REF19x family  
of references can operate as a low dropout power supply in  
hand-held instrument applications. In the circuit shown in  
Figure 22, a membrane on/off switch is used to control the  
operation of the reference. During an initial power-on condition,  
TJ TA  
PD =  
θJA  
In this equation, TJ and TA are the junction and ambient  
temperatures, respectively; PD is the device power dissipation;  
and θJA is the device package thermal resistance.  
the  
pin is held to GND by the 10 kΩ resistor. Recall that  
SLEEP  
this condition (read: three-state) disables the REF19x output.  
SLEEP  
OUTPUT VOLTAGE BYPASSING  
When the membrane on switch is pressed, the  
pin is  
momentarily pulled to VIN, enabling the REF19x output. At this  
point, current through the 10 kΩ resistor is reduced, and the  
For stable operation, low dropout voltage regulators and  
references generally require a bypass capacitor connected from  
their VOUT pins to their GND pins. Although the REF19x family  
of references is capable of stable operation with capacitive loads  
exceeding 100 μF, a 1 μF capacitor is sufficient to guarantee  
rated performance. The addition of a 0.1 μF ceramic capacitor  
in parallel with the bypass capacitor improves load current  
transient performance. For best line voltage transient  
performance, it is recommended that the voltage inputs of these  
devices be bypassed with a 10 μF electrolytic capacitor in  
parallel with a 0.1 μF ceramic capacitor.  
SLEEP  
internal current source connected to the  
control. Pin 3 assumes and remains at the same potential as VIN.  
When the membrane off switch is pressed, the pin is  
pin takes  
SLEEP  
momentarily connected to GND, which once again disables the  
REF19x output.  
Rev. I | Page 19 of 28  
REF19x Series  
REF19x  
The requirement for a heat sink on Q1 depends on the maximum  
input voltage and short-circuit current. With VS = 5 V and a 300  
mA current limit, the worst-case dissipation of Q1 is 1.5 W, less  
than the TO-220 package 2 W limit. However, if smaller TO-39  
or TO-5 packaged devices, such as the 2N4033, are used, the  
current limit should be reduced to keep maximum dissipation  
below the package rating. This is accomplished by simply  
raising R4.  
1
2
3
4
8
7
6
5
NC  
NC  
V
IN  
NC  
1kΩ  
5%  
OUTPUT  
+
1µF  
TANT  
NC  
ON  
10kΩ  
OFF  
NC = NO CONNECT  
A tantalum output capacitor is used at C1 for its low equivalent  
series resistance (ESR), and the higher value is required for  
stability. Capacitor C2 provides input bypassing and can be an  
ordinary electrolytic.  
Figure 22. Membrane Switch-Controlled Power Supply  
CURRENT-BOOSTED REFERENCES WITH  
CURRENT LIMITING  
While the 30 mA rated output current of the REF19x series is  
higher than is typical of other reference ICs, it can be boosted to  
higher levels, if desired, with the addition of a simple external  
PNP transistor, as shown in Figure 23. Full-time current  
limiting is used to protect the pass transistor against shorts.  
Shutdown control of the booster stage is an option, and when  
used, some cautions are needed. Due to the additional active  
devices in the VS line to U1, a direct drive to Pin 3 does not  
work as with an unbuffered REF19x device. To enable shutdown  
control, the connection from U1 to U2 is broken at the X, and  
Diode D1 then allows a CMOS control source, VC, to drive U1  
to U3 for on/off operation. Startup from shutdown is not as  
clean under heavy load as it is in basic REF19x series, and can  
require several milliseconds under load. Nevertheless, it is still  
effective and can fully control 150 mA loads. When shutdown  
control is used, heavy capacitive loads should be minimized.  
+V = 6V  
TO 9V  
(SEE TEXT)  
S
Q1  
TIP32A  
(SEE TEXT)  
OUTPUT TABLE  
U1 (V)  
R4  
2  
V
OUT  
REF192 2.5  
REF193 3.0  
REF196 3.3  
REF194 4.5  
REF195 5.0  
R1  
1kΩ  
Q2  
2N3906  
C2  
100µF  
25V  
R2  
1.5kΩ  
+
2
C3  
0.1µF  
F
U1  
+V  
3.3V  
D1  
OUT  
S
NEGATIVE PRECISION REFERENCE WITHOUT  
PRECISION RESISTORS  
3
6
V
C
REF196  
(SEE TABLE)  
@ 150mA  
1N4148  
(SEE TEXT  
ON SLEEP)  
C1  
10µF/25V  
(TANTALUM)  
4
R3  
1.82kΩ  
+
In many current-output CMOS DAC applications where the  
output signal voltage must be the same polarity as the reference  
voltage, it is often necessary to reconfigure a current-switching  
DAC into a voltage-switching DAC using a 1.25 V reference, an  
op amp, and a pair of resistors. Using a current-switching DAC  
directly requires an additional operational amplifier at the  
output to reinvert the signal. A negative voltage reference is  
then desirable, because an additional operational amplifier is  
not required for either reinversion (current-switching mode) or  
amplification (voltage-switching mode) of the DAC output  
voltage. In general, any positive voltage reference can be  
converted into a negative voltage reference using an operational  
amplifier and a pair of matched resistors in an inverting  
configuration. The disadvantage to this approach is that the  
largest single source of error in the circuit is the relative  
matching of the resistors used.  
R1  
S
V
OUT  
COMMON  
F
V
S
COMMON  
Figure 23. Boosted 3.3 V Referenced with Current Limiting  
In this circuit, the power supply current of reference U1 flowing  
through R1 to R2 develops a base drive for Q1, whose collector  
provides the bulk of the output current. With a typical gain of  
100 in Q1 for 100 mA to 200 mA loads, U1 is never required to  
furnish more than a few mA, so this factor minimizes tempera-  
ture-related drift. Short-circuit protection is provided by Q2,  
which clamps the drive to Q1 at about 300 mA of load current,  
with values as shown in Figure 23. With this separation of  
control and power functions, dc stability is optimum, allowing  
most advantageous use of premium grade REF19x devices for  
U1. Of course, load management should still be exercised. A  
short, heavy, low dc resistance (DCR) conductor should be used  
from U1 to U6 to the VOUT Sense Point S, where the collector of  
Q1 connects to the load, Point F.  
The circuit illustrated in Figure 24 avoids the need for tightly  
matched resistors by using an active integrator circuit. In this  
circuit, the output of the voltage reference provides the input  
drive for the integrator. To maintain circuit equilibrium, the  
integrator adjusts its output to establish the proper relationship  
between the references VOUT and GND. Thus, any desired  
negative output voltage can be selected by substituting for the  
appropriate reference IC. The sleep feature is maintained in the  
circuit with the simple addition of a PNP transistor and a 10 kΩ  
resistor.  
Because of the current limiting configuration, the dropout  
voltage circuit is raised about 1.1 V over that of the REF19x  
devices, due to the VBE of Q1 and the drop across Current Sense  
Resistor R4. However, overall dropout is typically still low  
enough to allow operation of a 5 V to 3.3 V regulator/reference  
using the REF196 for U1 as noted, with a VS as low as 4.5 V and  
a load current of 150 mA.  
Rev. I | Page 20 of 28  
REF19x Series  
One caveat to this approach is that although rail-to-rail output  
amplifiers work best in the application, these operational amplifiers  
require a finite amount (mV) of headroom when required to  
provide any load current. The choice for the circuits negative  
supply should take this issue into account.  
While this concept is simple, some cautions are needed. Since  
the lower reference circuit must sink a small bias current from  
U2 (50 μA to 100 μA), plus the base current from the series  
PNP output transistor in U2, either the external load of U1 or  
R1 must provide a path for this current. If the U1 minimum  
load is not well defined, Resistor R1 should be used, set to a  
value that conservatively passes 600 μA of current with the  
applicable VOUT1 across it. Note that the two U1 and U2  
reference circuits are locally treated as macrocells, each having  
its own bypasses at input and output for best stability. Both U1  
and U2 in this circuit can source dc currents up to their full  
rating. The minimum input voltage, VS, is determined by the  
sum of the outputs, VOUT2, plus the dropout voltage of U2.  
V
IN  
10k  
2N3906  
SLEEP  
TTL/CMOS  
2
V
IN  
1µF  
1kΩ  
3
6
SLEEP V  
OUT  
+5V  
A1  
REF19x  
GND  
4
100Ω  
–V  
1µF  
REF  
10kΩ  
100kΩ  
A related variation on stacking two 3-terminal references is  
shown in Figure 26, where U1, a REF192, is stacked with a  
2-terminal reference diode, such as the AD589. Like the  
3-terminal stacked reference above, this circuit provides two  
outputs, VOUT1 and VOUT2, which are the individual terminal  
voltages of D1 and U1, respectively. Here this is 1.235 V and 2.5 V,  
which provides a VOUT2 of 3.735 V. When using 2-terminal  
reference diodes, such as D1, the rated minimum and maximum  
device currents must be observed, and the maximum load  
current from VOUT1 can be no greater than the current setup by  
R1 and VO (U1). When VO (U1) is equal to 2.5 V, R1 provides a  
500 μA bias to D1, so the maximum load current available at  
–5V  
A1 = 1/2 OP295,  
1/2 OP291  
Figure 24. Negative Precision Voltage Reference Uses No Precision Resistors  
STACKING REFERENCE ICS FOR  
ARBITRARY OUTPUTS  
Some applications may require two reference voltage sources  
that are a combined sum of standard outputs. The circuit shown  
in Figure 25 shows how this stacked output reference can be  
implemented.  
OUTPUT TABLE  
U1/U2  
V
(V)  
V
(V)  
OUT1  
OUT2  
V
OUT1 is 450 μA or less.  
+VS  
REF192/REF192 2.5  
REF192/REF194 2.5  
REF192/REF195 2.5  
5.0  
7.0  
7.5  
V
> V  
+ 0.15V  
S
OUT2  
+V  
S
V
> V  
+ 0.15V  
S
OUT2  
2
U2  
2
C1  
0.1µF  
3
6
+V  
REF19x  
OUT2  
(SEE TABLE)  
U1  
REF192  
C1  
0.1µF  
+
3
6
+V  
OUT2  
3.735V  
V
O
(U2)  
C2  
1µF  
4
R1  
4.99k  
(SEE TEXT)  
+
+
V
V
(U1)  
(D1)  
C2  
1µF  
O
4
2
+V  
OUT1  
1.235V  
U1  
C3  
1µF  
D1  
AD589  
C3  
0.1µF  
3
6
O
+V  
REF19x  
OUT1  
R1  
3.9k  
(SEE TEXT)  
(SEE TABLE)  
V
+
C4  
1µF  
IN  
COMMON  
V
O
(U1)  
4
V
OUT  
COMMON  
V
IN  
COMMON  
V
OUT  
COMMON  
Figure 26. Stacking Voltage References with the REF192  
Figure 25. Stacking Voltage References with the REF19x  
PRECISION CURRENT SOURCE  
Two reference ICs are used, fed from a common unregulated  
input, VS. The outputs of the individual ICs are connected in  
series, as shown in Figure 25, which provide two output  
voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1,  
while VOUT2 is the sum of this voltage and the terminal voltage  
of U2. U1 and U2 are chosen for the two voltages that supply  
the required outputs (see Output Table in Figure 25). If, for  
example, both U1 and U2 are REF192s, the two outputs are 2.5 V  
and 5.0 V.  
In low power applications, the need often arises for a precision  
current source that can operate on low supply voltages. As shown  
in Figure 27, any one of the devices in the REF19x family of  
references can be configured as a precision current source.  
The circuit configuration illustrated is a floating current source  
with a grounded load. The output voltage of the reference is  
bootstrapped across RSET, which sets the output current into the  
load. With this configuration, circuit precision is maintained for  
load currents in the range from the references supply current  
(typically 30 μA) to approximately 30 mA. The low dropout  
voltage of these devices maximizes the current sources output  
voltage compliance without excess headroom.  
Rev. I | Page 21 of 28  
REF19x Series  
V
OUTPUT TABLE  
IN  
*
U1/U2  
V
V
(V)  
C
OUT  
5.0  
LO 3.3  
REF195/  
REF196  
HI  
2
V
REF194/  
REF195  
HI  
LO 5.0  
4.5  
IN  
+V = 6V  
S
REF19x  
2
*
CMOS LOGIC LEVELS  
3
6
SLEEP  
V
REF  
U1  
1
2
3
4
1µF  
R1  
P1  
GND  
4
3
6
V
C
REF19x  
R
SET  
(SEE TABLE)  
I
SY  
ADJUST  
U3A  
U3B  
4
74HC04 74HC04  
+V  
OUT  
I
OUT  
V
I  
× R (MAX) + V (MIN)  
SY  
IN  
OUT  
L
V
R
OUT  
L
2
I
=
+ I (REF19x)  
SY  
OUT  
R
+
C2  
SET  
U2  
1µF  
3
6
REF19x  
V
E.G., REF195: V  
= 5V  
OUT  
= 5mA  
OUT  
>> I  
SY  
(SEE TABLE)  
I
OUT  
R
SET  
C1  
0.1µF  
R1 = 953Ω  
P1 = 100, 10-TURN  
4
V
IN  
COMMON  
Figure 27. A Low Dropout, Precision Current Source  
V
OUT  
COMMON  
The governing equations for the circuit are  
Figure 28. Switched Output Reference  
VIN = IOUT × RL  
(
Max  
)
+ VSY  
(
Min, REF19x  
)
Using dissimilar REF19x series devices with this configuration  
allows logic selection between the U1/U2-specified terminal  
voltages. For example, with U1 (a REF195) and U2 (a REF196),  
as noted in the table in Figure 28, changing the CMOS-  
compatible VC logic control voltage from HI to LO selects  
between a nominal output of 5 V and 3.3 V, and vice versa.  
Other REF19x family units can also be used for U1/U2, with  
similar operation in a logic sense, but with outputs as per the  
individual paired devices (see the table in Figure 28). Of course,  
the exact output voltage tolerance, drift, and overall quality of  
the reference voltage is consistent with the grade of individual  
U1 and U2 devices.  
VOUT  
RSET  
IOUT  
=
+ ISY  
(
REF19x  
)
VOUT  
RSET  
〉〉 ISY  
(
REF19x  
)
SWITCHED OUTPUT 5 V/3.3 V REFERENCE  
Applications often require digital control of reference voltages,  
selecting between one stable voltage and a second. With the  
sleep feature inherent to the REF19x series, switched output  
reference configurations are easily implemented with little  
additional hardware.  
Due to the nature of the wire-OR, one application caveat should  
be understood about this circuit. Since U1 and U2 can only  
source current effectively, negative going output voltage  
changes, which require the sinking of current, necessarily takes  
longer than positive going changes. In practice, this means that  
the circuit is quite fast when undergoing a transition from 3.3 V  
to 5 V, but the transition from 5 V to 3.3 V takes longer. Exactly  
how much longer is a function of the load resistance, RL, seen at  
the output and the typical 1 μF value of C2. In general, a  
conservative transition time is approximately several milliseconds  
for load resistances in the range of 100 Ω to 1 kΩ. Note that for  
highest accuracy at the new output voltage, several time  
constants should be allowed (>7.6 time constants for <1/2 LSB  
error @ 10 bits, for example).  
The circuit in Figure 28 illustrates the general technique, which  
takes advantage of the output wire-OR capability of the REF19x  
device family. When off, a REF19x device is effectively an open  
circuit at the output node with respect to the power supply.  
When on, a REF19x device can source current up to its current  
rating, but sink only a few μA (essentially, just the relatively low  
current of the internal output scaling divider). Consequently,  
when two devices are wired together at their common outputs,  
the output voltage is the same as the output voltage for the on  
device. The off state device draws a small standby current of  
15 μA (max), but otherwise does not interfere with operation of  
the on device, which can operate to its full current rating. Note  
that the two devices in the circuit conveniently share both input  
and output capacitors, and with CMOS logic drive, it is power  
efficient.  
KELVIN CONNECTIONS  
In many portable applications where the PC board cost and area  
go hand-in-hand, circuit interconnects are very often narrow.  
These narrow lines can cause large voltage drops if the voltage  
reference is required to provide load currents to various  
functions. The interconnections of a circuit can exhibit a typical  
line resistance of 0.45 mΩ/square (1 oz. Cu, for example).  
Rev. I | Page 22 of 28  
REF19x Series  
In applications where these devices are configured as low  
dropout voltage regulators, these wiring voltage drops can  
become a large source of error. To circumvent this problem,  
force and sense connections can be made to the reference  
through the use of an operational amplifier, as shown in Figure 29.  
This method provides a means by which the effects of wiring  
resistance voltage drops can be eliminated. Load currents flowing  
through wiring resistance produce an I-R error (ILOAD × RWIRE) at  
the load. However, the Kelvin connection overcomes the problem  
by including the wiring resistance within the forcing loop of the  
op amp. Because the op amp senses the load voltage, op amp  
loop control forces the output to compensate for the wiring  
error and to produce the correct voltage at the load. Depending  
on the reference device chosen, operational amplifiers that can  
be used in this application are the OP295, OP292, and OP183.  
The circuit in Figure 30 illustrates this concept, which borrows  
from the switched output idea of Figure 28, again using the  
REF19x device family output wire-OR capability. In this case,  
since a constant 5 V reference voltage is desired for all  
conditions, two REF195 devices are used for U1 and U2, with  
their on/off switching controlled by the presence or absence of  
the primary dc supply source, VS. VBAT is a 6 V battery backup  
source that supplies power to the load only when VS fails. For  
normal (VS present) power conditions, VBAT sees only the 15 μA  
(maximum) standby current drain of U1 in its off state.  
In operation, it is assumed that for all conditions, either U1 or  
U2 is on, and a 5 V reference output is available. With this  
voltage constant, a scaled down version is applied to the  
Comparator IC U3, providing a fixed 0.5 V input to the negative  
input for all power conditions. The R1 to R2 divider provides  
a signal to the U3 positive input proportionally to VS, which  
switches U3 and U1/U2, dependent upon the absolute level of  
VS. In Figure 30, Op Amp U3 is configured as a comparator  
with hysteresis, which provides clean, noise-free output  
switching. This hysteresis is important to eliminate rapid  
switching at the threshold due to VS ripple. Furthermore, the  
device chosen is the AD820, a rail-to-rail output device. This  
device provides HI and LO output states within a few mV of VS,  
ground for accurate thresholds, and compatible drive for U2 for  
all VS conditions. R3 provides positive feedback for circuit  
hysteresis, changing the threshold at the positive input as  
a function of the output of U3.  
V
IN  
V
IN  
R
LW  
+V  
OUT  
SENSE  
2
2
3
V
IN  
R
LW  
1
+V  
OUT  
FORCE  
A1  
3
6
SLEEP  
V
OUT  
REF19x  
GND  
4
A1 = 1/2 OP295  
1/2 OP292  
R
L
1µF 100k  
OP183  
Figure 29. A Low Dropout, Kelvin-Connected Voltage Reference  
FAIL-SAFE 5 V REFERENCE  
Some critical applications require a reference voltage to be  
maintained at a constant voltage, even with a loss of primary  
power. The low standby power of the REF19x series and the  
switched output capability allow a fail-safe reference  
configuration to be implemented rather easily. This reference  
maintains a tight output voltage tolerance for either a primary  
power source (ac line derived) or a standby (battery derived)  
power source, automatically switching between the two as the  
power conditions change.  
+V  
BAT  
2
+V  
C2  
0.1µF  
S
U1  
R1  
1.1M  
3
6
R3  
10MΩ  
R6  
100Ω  
REF195  
(SEE TABLE)  
Q1  
5.000V  
2N3904  
4
C1  
3
+
0.1µF  
7
4
6
U3  
AD820  
2
2
+
C3  
U2  
1µF  
3
6
REF195  
R2  
100kΩ  
(SEE TABLE)  
R4  
4
900kΩ  
C4  
R5  
0.1µF 100kΩ  
V , V  
BAT  
COMMON  
S
V
OUT  
COMMON  
Figure 30. A Fail-Safe 5 V Reference  
Rev. I | Page 23 of 28  
REF19x Series  
100Ω  
For VS levels lower than the lower threshold, U3 output is low;  
thus, U2 and Q1 are off while U1 is on. For VS levels higher  
than the upper threshold, the situation reverses, with U1 off and  
both U2 and Q1 on. In the interest of battery power  
conservation, all of the comparison switching circuitry is  
powered from VS and is arranged so that when VS fails, the  
default output comes from U1.  
REF195  
10µF  
2
6
+
+
4
10µF  
1µF  
57kΩ  
1%  
0.1µF  
4
For the R1 to R3 values, as shown in Figure 30, lower/upper VS  
switching thresholds are approximately 5.5 V and 6 V, respectively.  
These can be changed to suit other VS supplies, as can the REF19x  
devices used for U1 and U2, over a range of 2.5 V to5 V of output.  
U3 can operate down to a VS of 3.3 V, which is generally  
compatible with all REF19x family devices.  
3
+
1/4  
OP492  
1
2N2222  
10kΩ  
1%  
2
11  
0.1µF  
500Ω  
0.1%  
LOW POWER, STRAIN GAGE CIRCUIT  
10kΩ  
1%  
0.01µF  
As shown in Figure 31, the REF19x family of references can be  
used in conjunction with low supply voltage operational amplifiers,  
such as the OP492 or the OP283, in a self-contained strain gage  
circuit in which the REF195 is used as the core. Other  
references can be easily accommodated by changing circuit  
element values. The references play a dual role, first as the  
voltage regulator to provide the supply voltage requirements of  
the strain gage and the operational amplifiers, and second as  
a precision voltage reference for the current source used to  
stimulate the bridge. A distinct feature of the circuit is that it  
can be remotely controlled on or off by digital means via  
20kΩ  
1%  
20kΩ  
13  
12  
1/4  
OP492  
+
10kΩ  
1%  
1%  
14  
6
5
1/4  
OP492  
+
7
OUTPUT  
2.21kΩ  
20kΩ  
9
1%  
1/4  
OP492  
+
8
20kΩ  
1%  
10  
Figure 31. A Low Power, Strain Gage Circuit  
SLEEP  
the  
pin.  
Rev. I | Page 24 of 28  
REF19x Series  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
5.00 (0.1968)  
4.80 (0.1890)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
8
1
5
4
0.100 (2.54)  
6.20 (0.2440)  
5.80 (0.2284)  
BSC  
4.00 (0.1574)  
3.80 (0.1497)  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
PLANE  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
SEATING  
PLANE  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-001  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 8-Lead Plastic Dual In-Line Package [PDIP]  
Figure 34. 8-Lead Standard Small Outline Package [SOIC_N]  
(N-8)  
P-Suffix  
Narrow Body  
(R-8)  
S-Suffix  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
8
5
4
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
0.15  
0.05  
1.20  
MAX  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
Figure 33. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters  
Rev. I | Page 25 of 28  
REF19x Series  
ORDERING GUIDE  
Model  
REF191ES  
REF191ES-REEL  
REF191ESZ1  
REF191ESZ-REEL1  
REF191GP  
REF191GPZ1  
REF191GS  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
Package Option  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
RU-8  
Minimum Quantities/Reel  
2500  
2500  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
REF191GS-REEL  
REF191GSZ1  
REF191GSZ-REEL1  
2500  
2500  
REF192ES  
REF192ES-REEL  
REF192ES-REEL7  
REF192ESZ1  
REF192ESZ-REEL1  
REF192ESZ-REEL71  
REF192FS  
REF192FS-REEL  
REF192FS-REEL7  
REF192FSZ1  
REF192FSZ-REEL1  
REF192FSZ-REEL71  
REF192GP  
REF192GPZ1  
REF192GRU  
REF192GRU-REEL7  
REF192GRUZ1  
REF192GRUZ-REEL71  
REF192GS  
REF192GS-REEL  
REF192GS-REEL7  
REF192GSZ1  
REF192GSZ-REEL1  
REF192GSZ-REEL71  
REF193GS  
2500  
1000  
2500  
1000  
2500  
1000  
2500  
1000  
8-Lead PDIP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
RU-8  
RU-8  
RU-8  
1000  
1000  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
2500  
1000  
2500  
1000  
REF193GS-REEL  
REF193GSZ1  
REF193GSZ-REEL1  
2500  
2500  
2500  
2500  
REF194ES  
REF194ES-REEL  
REF194ESZ1  
REF194ESZ-REEL1  
REF194FS  
REF194FSZ1  
REF194GP  
REF194GPZ1  
REF194GS  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
REF194GS-REEL  
REF194GS-REEL7  
REF194GSZ1  
2500  
1000  
REF194GSZ-REEL1  
2500  
Rev. I | Page 26 of 28  
REF19x Series  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
Package Option  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
RU-8  
RU-8  
RU-8  
RU-8  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
RU-8  
Minimum Quantities/Reel  
REF194GSZ-REEL71  
1000  
REF195ES  
REF195ES-REEL  
REF195ESZ1  
REF195ESZ-REEL1  
2500  
2500  
2500  
2500  
REF195FS  
REF195FS-REEL  
REF195FSZ1  
REF195FSZ-REEL1  
REF195GP  
REF195GPZ1  
8-Lead PDIP  
REF195GRU  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
REF195GRU-REEL7  
REF195GRUZ1  
REF195GRUZ-REEL71  
REF195GS  
REF195GS-REEL  
REF195GS-REEL7  
REF195GSZ1  
REF195GSZ-REEL1  
REF195GSZ-REEL71  
REF196GRU-REEL7  
REF196GRUZ-REEL71  
REF196GS  
REF196GS-REEL  
REF196GSZ1  
REF196GSZ-REEL1  
REF196GSZ-REEL71  
REF198ES  
REF198ES-REEL  
REF198ESZ1  
REF198ESZ-REEL1  
REF198ESZ-REEL71  
REF198FS  
1000  
1000  
2500  
1000  
2500  
1000  
1000  
1000  
RU-8  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
RU-8  
RU-8  
RU-8  
RU-8  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
2500  
2500  
1000  
2500  
2500  
1000  
REF198FS-REEL  
REF198FSZ1  
REF198FSZ-REEL1  
REF198GP  
REF198GPZ1  
2500  
2500  
8-Lead PDIP  
REF198GRU  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
REF198GRU-REEL7  
REF198GRUZ1  
REF198GRUZ-REEL71  
REF198GS  
REF198GS-REEL  
REF198GSZ1  
REF198GSZ-REEL1  
1000  
2500  
2500  
2500  
1 Z = Pb-free part.  
Rev. I | Page 27 of 28  
REF19x Series  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners  
C00371-0-10/06(I)  
Rev. I | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY