SSM2019 [ADI]

Self-Contained Audio Preamplifier; 自包含的音频前置放大器
SSM2019
型号: SSM2019
厂家: ADI    ADI
描述:

Self-Contained Audio Preamplifier
自包含的音频前置放大器

放大器
文件: 总8页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Self-Contained  
Audio Preamplifier  
a
SSM2019  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Excellent Noise Performance: 1.0 nV/ Hz or  
÷
1.5 dB Noise Figure  
V+  
Ultra-low THD: < 0.01% @ G = 100 Over the  
Full Audio Band  
Wide Bandwidth: 1 MHz @ G = 100  
High Slew Rate: 16 V/s @ G = 10  
10 V rms Full-Scale Input,  
G = 1, VS = 18 V  
V–  
+IN  
1  
–IN  
Unity Gain Stable  
5kꢀ  
True Differential Inputs  
RG  
1
1  
5kꢀ  
5kꢀ  
Subaudio 1/f Noise Corner  
8-Lead PDIP or 16-Lead SOIC  
Only One External Component Required  
Very Low Cost  
RG  
2
5kꢀ  
5kꢀ  
OUT  
V–  
5kꢀ  
Extended Temperature Range: –40C to +85C  
REFERENCE  
APPLICATIONS  
Audio Mix Consoles  
Intercom/Paging Systems  
2-Way Radio  
Sonar  
Digital Audio Systems  
PIN CONNECTIONS  
8-Lead PDIP (N Suffix)  
8-Lead Narrow Body SOIC (RN Suffix)*  
GENERAL DESCRIPTION  
1
2
3
4
8
7
6
5
RG  
V+  
RG  
2
1
The SSM2019 is a latest generation audio preamplifier, combin-  
ing SSM preamplifier design expertise with advanced processing.  
The result is excellent audio performance from a monolithic  
device, requiring only one external gain set resistor or potentiom-  
eter. The SSM2019 is further enhanced by its unity gain stability.  
SSM2019  
–IN  
+IN  
V–  
TOP VIEW  
OUT  
(Not to Scale)  
REFERENCE  
16-Lead Wide Body SOIC (RW Suffix)  
Key specifications include ultra-low noise (1.5 dB noise figure) and  
THD (<0.01% at G = 100), complemented by wide bandwidth  
and high slew rate.  
1
2
3
4
5
6
7
8
NC  
16 NC  
Applications for this low cost device include microphone pream-  
plifiers and bus summing amplifiers in professional and consumer  
audio equipment, sonar, and other applications requiring a low  
noise instrumentation amplifier with high gain capability.  
RG  
15  
14  
13  
12  
11  
10  
9
RG  
NC  
V+  
1
2
NC  
SSM2019  
–IN  
+IN  
NC  
V–  
TOP VIEW  
NC  
(Not to Scale)  
OUT  
REFERENCE  
NC  
NC  
NC = NO CONNECT  
*Consult factory for availability.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VS = 15 V and –40C £ TA £ +85C, unless otherwise noted. Typical specifications  
SSM2019–SPECIFICATIONS apply at T = 25C.)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DISTORTION PERFORMANCE  
V
O = 7 V rms  
RL = 2 kW  
Total Harmonic Distortion Plus Noise  
THD + N  
f = 1 kHz, G = 1000  
f = 1 kHz, G = 100  
f = 1 kHz, G = 10  
f = 1 kHz, G = 1  
BW = 80 kHz  
0.017  
%
%
%
%
0.0085  
0.0035  
0.005  
NOISE PERFORMANCE  
Input Referred Voltage Noise Density  
en  
f = 1 kHz, G = 1000  
f = 1 kHz, G = 100  
f = 1 kHz, G = 10  
f = 1 kHz, G = 1  
1.0  
1.7  
7
50  
2
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
pA/÷Hz  
Input Current Noise Density  
in  
f = 1 kHz, G = 1000  
DYNAMIC RESPONSE  
Slew Rate  
SR  
G = 10  
16  
V/ms  
RL = 2 kW  
C
L = 100 pF  
Small Signal Bandwidth  
BW–3 dB  
G = 1000  
G = 100  
G = 10  
G = 1  
200  
kHz  
kHz  
kHz  
kHz  
1000  
1600  
2000  
INPUT  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
Common-Mode Rejection  
VIOS  
IB  
Ios  
0.05  
3
±0.001 ±1.0  
0.25  
10  
mV  
mA  
mA  
VCM = 0 V  
VCM = 0 V  
VCM = ±12 V  
G = 1000  
G = 100  
G = 10  
G = 1  
CMR  
110  
90  
70  
130  
113  
94  
dB  
dB  
dB  
dB  
50  
74  
Power Supply Rejection  
PSR  
VS = ±5 V to ±18 V  
G = 1000  
G = 100  
G = 10  
G = 1  
110  
110  
90  
124  
118  
101  
82  
dB  
dB  
dB  
dB  
70  
Input Voltage Range  
Input Resistance  
IVR  
RIN  
±12  
V
Differential, G = 1000  
G = 1  
Common Mode, G = 1000  
G = 1  
1
MW  
MW  
MW  
MW  
30  
5.3  
7.1  
OUTPUT  
Output Voltage Swing  
Output Offset Voltage  
Maximum Capacitive Load Drive  
Short Circuit Current Limit  
Output Short Circuit Duration  
VO  
VOOS  
RL = 2 kW, TA = 25C  
±13.5  
±13.9  
V
4
30  
mV  
pF  
mA  
sec  
5000  
±50  
Continuous  
ISC  
Output-to-Ground Short  
GAIN  
Gain Accuracy  
10 kW  
G – 1  
TA = 25C  
RG  
G
=
RG = 10 W, G = 1000  
RG = 101 W, G = 100  
RG = 1.1 kW, G = 10  
RG = , G = 1  
0.5  
0.5  
0.5  
0.1  
0.1  
0.2  
0.2  
0.2  
70  
dB  
dB  
dB  
dB  
dB  
Maximum Gain  
REFERENCE INPUT  
Input Resistance  
Voltage Range  
10  
±12  
1
kW  
V
V/V  
Gain to Output  
POWER SUPPLY  
Supply Voltage Range  
Supply Current  
VS  
ISY  
±5  
±18  
±7.5  
±8.5  
V
mA  
mA  
VCM = 0 V, RL = ꢅ  
VCM = 0 V, VS = ±18 V, RL = ꢅ  
±4.6  
±4.7  
Specifications subject to change without notice.  
–2–  
REV. 0  
SSM2019  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±19 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . . . 10 sec  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300C  
Operating Temperature Range . . . . . . . . . . . –40C to +85C  
Thermal Resistance2  
8-Lead PDIP (N) . . . . . . . . . . . . . . . . . . . . . . . JA = 96C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JC = 37C/W  
16-Lead SOIC (RW) . . . . . . . . . . . . . . . . . . . . JA = 92C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JC = 27C/W  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
SSM2019BN  
SSM2019BRW  
–40C to +85C 8-Lead PDIP  
–40C to +85C 16-Lead SOIC  
SSM2019BRWRL –40C to +85C 16-Lead SOIC, Reel RW-16  
SSM2019BRN* –40C to +85C 8-Lead SOIC RN-8  
N-8  
RW-16  
SSM2019BRNRL* –40C to +85C 8-Lead SOIC, Reel RN-8  
*Consult factory for availability.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 qJA is specified for worst-case mounting conditions, i.e., qJA is specified for device  
in socket for PDIP; qJA is specified for device soldered to printed circuit board for  
SOIC package.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the SSM2019 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
Typical Performance Characteristics  
100  
10  
0.1  
T
V
= 25؇C  
= ؎15V  
A
S
G = 1000  
G = 1000  
G = 100  
G = 1  
0.01  
G = 10  
1
0.001  
؎15V  
7Vrms  
V
V
؎18V  
10Vrms  
S
O
R
600⍀  
L
BW = 80kHz  
0.1  
0.0001  
10 20  
100  
1k  
FREQUENCY – Hz  
10k 20k  
1
10  
100  
1k  
10k  
FREQUENCY – Hz  
TPC 1. Typical THD + Noise vs. Gain  
TPC 2. Voltage Noise Density vs. Frequency  
REV. 0  
–3–  
SSM2019  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
T
V
= 25 C  
= 15V  
A
S
GAIN 10  
GAIN = 1  
10  
1
f = 1kHz OR 10kHz  
T
R
V
= 25 C  
= 2kꢀ  
= 15V  
A
L
S
15  
10  
0.1  
1
10  
100  
1k  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
GAIN  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 5. Maximum Output Swing  
vs. Frequency  
TPC 4. Output Impedance vs.  
Frequency  
TPC 3. RTI Voltage Noise Density  
vs. Gain  
16  
20  
40  
30  
T
V
= 25 C  
= 15V  
A
T = 25 C  
A
T
= 25 C  
f A= 100kHz  
G
10  
S
14  
12  
10  
8
G = 1  
15  
10  
5
20  
10  
0
6
4
2
0
10  
0
100  
1k  
10k  
100k  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
LOAD RESISTANCE – ꢀ  
SUPPLY VOLTAGE (V – V ) – V  
+
SUPPLY VOLTAGE (V – V ) – V  
+
TPC 8. Output Voltage Range vs.  
Supply Voltage  
TPC 7. Input Voltage Range vs.  
Supply Voltage  
TPC 6. Output Voltage vs. Load  
Resistance  
150  
200  
150  
V  
= 100mV  
= 15V  
= 25C  
G = 1000  
CM  
G = 1000  
G = 100  
V
180  
160  
140  
120  
100  
80  
S
T
A
125  
125  
G = 100  
G = 10  
G = 1  
G = 10  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
G = 1000  
G = 100  
G = 10  
G = 1  
G = 1  
60  
V = 100mV  
V  
CM  
= 100mV  
S
40  
T = 25 C  
T
= 25 C  
A
A
20  
V = 15V  
S
V
= 15V  
S
0
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY– Hz  
TPC 11. Negative PSRR vs. Frequency  
TPC 10. Positive PSRR vs. Frequency  
TPC 9. CMRR vs. Frequency  
–4–  
REV. 0  
SSM2019  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.02  
0.01  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
V+/V– = 15V  
V+/V– = 15V  
T
= 25C  
A
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–50  
–25  
0
25  
50  
75  
100  
0
5
10 15 20 25 30 35 40  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – C  
SUPPLY VOLTAGE (V – V ) – V  
TEMPERATURE – C  
CC  
EE  
TPC 13. VIOS vs. Supply Voltage  
TPC 14. VOOS vs. Temperature  
TPC 12. VIOS vs. Temperature  
5
6
30  
T
= 25C  
A
V+/V– = 15V  
T
= 25C  
A
5
4
3
2
1
0
20  
10  
4
3
I
OR I  
B–  
B+  
0
2
1
–10  
–20  
–30  
0
–50  
0
10  
20  
30  
40  
–25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
SUPPLY VOLTAGE (V – V ) – V  
CC EE  
TEMPERATURE – C  
SUPPLY VOLTAGE (V – V ) – V  
CC  
EE  
TPC 15. VOOS vs. Supply Voltage  
TPC 16. IB vs. Temperature  
TPC 17. IB vs. Supply Voltage  
8
8
6
16  
14  
12  
10  
8
T
= 25C  
T
= 25 C  
A
A
6
I+  
I+ @ V+/V– = 18V  
4
4
I+ @ V+/V– = 15V  
2
0
2
0
–2  
–2  
–4  
–6  
–8  
6
I– @ V+/V– = 15V  
–4  
4
I–  
I– @ V+/V– = 18V  
–6  
2
0
–8  
–50  
0
5
10 15 20 25 30 35 40  
–25  
0
25  
50  
75  
100  
0
5  
10  
15  
20  
SUPPLY VOLTAGE (V – V ) – V  
TEMPERATURE – C  
CC  
EE  
SUPPLY VOLTAGE – V  
TPC 18. Supply Current vs.  
Temperature  
TPC 19. Supply Current vs. Supply  
Voltage  
TPC 20. ISY vs. Supply Voltage  
–5–  
REV. 0  
SSM2019  
V+  
V
T
= ؎15V  
= 25؇C  
S
A
+IN  
–IN  
R
G1  
R
OUT  
REFERENCE  
G
SSM2019  
R
G2  
60  
40  
V
OUT  
10k  
R
G
V–  
G =  
=
+ 1  
20  
0
(+IN) – (–IN)  
Figure 1. Basic Circuit Connections  
GAIN  
1k  
10k  
100k  
1M  
10M  
The SSM2019 only requires a single external resistor to set the  
voltage gain. The voltage gain, G, is:  
Figure 2. Bandwidth for Various Values of Gain  
10 kW  
G =  
+1  
NOISE PERFORMANCE  
RG  
and the external gain resistor, RG , is:  
The SSM2019 is a very low noise audio preamplifier exhibiting  
a typical voltage noise density of only 1 nV/÷Hz at 1 kHz. The  
exceptionally low noise characteristics of the SSM2019 are in  
part achieved by operating the input transistors at high collector  
currents since the voltage noise is inversely proportional to the  
square root of the collector current. Current noise, however, is  
directly proportional to the square root of the collector current.  
As a result, the outstanding voltage noise performance of the  
SSM2019 is obtained at the expense of current noise performance.  
At low preamplifier gains, the effect of the SSM2019 voltage  
and current noise is insignificant.  
10 kW  
G 1  
RG  
=
For convenience, Table I lists various values of RG for common  
gain levels.  
Table I. Values of RG for Various Gain Levels  
RG () AV  
dB  
NC  
4.7 k  
1.1 k  
330  
100  
32  
1
3.2  
10  
31.3  
100  
314  
0
The total noise of an audio preamplifier channel can be calculated by:  
10  
20  
30  
40  
50  
2
En  
=
en 2 +(in RS )2 + et  
where:  
En = total input referred noise  
en = amplifier voltage noise  
in = amplifier current noise  
RS = source resistance  
10  
1000 60  
The voltage gain can range from 1 to 3500. A gain set resistor is  
not required for unity gain applications. Metal film or wire-wound  
resistors are recommended for best results.  
et = source resistance thermal noise  
The total gain accuracy of the SSM2019 is determined by the  
tolerance of the external gain set resistor, RG, combined with the  
gain equation accuracy of the SSM2019. Total gain drift combines  
the mismatch of the external gain set resistor drift with that of  
the internal resistors (20 ppm/C typ).  
For a microphone preamplifier, using a typical microphone  
impedance of 150 W, the total input referred noise is:  
En  
= =  
(1nV Hz)2 + 2(pA / Hz ¥150 W)2 + (1.6 nV/ Hz)2  
1.93 nV/ Hz @ 1kHz  
Bandwidth of the SSM2019 is relatively independent of gain,  
as shown in Figure 2. For a voltage gain of 1000, the SSM2019  
has a small-signal bandwidth of 200 kHz. At unity gain, the  
bandwidth of the SSM2019 exceeds 4 MHz.  
where:  
en = 1 nV/÷Hz @ 1 kHz, SSM2019 en  
in = 2 pA/÷Hz @ 1 kHz, SSM2019 in  
RS = 150 W, microphone source impedance  
et = 1.6 nV/÷Hz @ 1 kHz, microphone thermal noise  
This total noise is extremely low and makes the SSM2019  
virtually transparent to the user.  
–6–  
REV. 0  
SSM2019  
INPUTS  
Although the SSM2019 inputs are fully floating, care must be  
exercised to ensure that both inputs have a dc bias connection  
capable of maintaining them within the input common-mode  
range. The usual method of achieving this is to ground one side  
of the transducer as in Figure 3a. An alternative way is to float  
the transducer and use two resistors to set the bias point as in  
Figure 3b. The value of these resistors can be up to 10 kW, but  
they should be kept as small as possible to limit common-mode  
pickup. Noise contribution by resistors is negligible since it is  
attenuated by the transducer’s impedance. Balanced transducers  
give the best noise immunity and interface directly as in Figure 3c.  
The SSM2019 has protection diodes across the base emitter  
junctions of the input transistors. These prevent accidental  
avalanche breakdown, which could seriously degrade noise  
performance. Additional clamp diodes are also provided to prevent  
the inputs from being forced too far beyond the supplies.  
(INVERTING)  
SSM2019  
TRANSDUCER  
(NONINVERTING)  
For stability, it is required to put an RF bypass capacitor directly  
across the inputs, as shown in Figures 3 and 4. This capacitor  
should be placed as close as possible to the input terminals. Good  
RF practice should also be followed in layout and power supply  
bypassing, since the SSM2019 uses very high bandwidth devices.  
a. Single-Ended  
R
REFERENCE TERMINAL  
R
TRANSDUCER  
SSM2019  
The output signal is specified with respect to the reference terminal,  
which is normally connected to analog ground. The reference  
may also be used for offset correction or level shifting. A refer-  
ence source resistance will reduce the common-mode rejection  
by the ratio of 5 kW/RREF. If the reference source resistance is  
1 W, then the CMR will be reduced to 74 dB (5 kW/1 W = 74 dB).  
b. Pseudo-Differential  
COMMON-MODE REJECTION  
Ideally, a microphone preamplifier responds to only the difference  
between the two input signals and rejects common-mode voltages  
and noise. In practice, there is a small change in output voltage  
when both inputs experience the same common-mode voltage  
change; the ratio of these voltages is called the common-mode  
gain. Common-mode rejection (CMR) is the logarithm of the ratio  
of differential-mode gain to common-mode gain, expressed in dB.  
TRANSDUCER  
SSM2019  
c. True Differential  
Figure 3. Three Ways of Interfacing Transducers for  
High Noise Immunity  
PHANTOM POWERING  
A typical phantom microphone powering circuit is shown in  
Figure 4. Z1 to Z4 provide transient overvoltage protection for  
the SSM2019 whenever microphones are plugged in or unplugged.  
C1  
+48V  
+18V  
+IN  
Z1  
Z2  
R5  
R3  
6.8kꢀ  
1%  
R1  
100ꢀ  
10kꢀ  
R
G1  
C4  
200pF  
R
V
SSM2019  
G
OUT  
R
Z3  
G2  
C3  
47F  
R4  
6.8kꢀ  
1%  
R2  
10kꢀ  
Z4  
–IN  
–18V  
C2  
C1, C2: 22F TO 47F, 63V, TANTALUM OR ELECTROLYTIC  
Z1–Z4: 12V, 1/2W  
Figure 4. SSM2019 in Phantom Powered Microphone Circuit  
REV. 0  
–7–  
SSM2019  
BUS SUMMING AMPLIFIER  
critical, then the servo loop can be replaced by the diode biasing  
scheme of Figure 5. If ac coupling is used throughout, then Pins 2  
and 3 may be directly grounded.  
In addition to its use as a microphone preamplifier, the SSM2019  
can be used as a very low noise summing amplifier. Such a circuit  
is particularly useful when many medium impedance outputs  
are summed together to produce a high effective noise gain.  
The principle of the summing amplifier is to ground the SSM2019  
inputs. Under these conditions, Pins 1 and 8 are ac virtual grounds  
sitting about 0.55 V below ground. To remove the 0.55 V offset,  
the circuit of Figure 5 is recommended.  
+IN  
V
SSM2019  
OUT  
IN  
V
C1  
0.33F  
R2  
R3  
6.2kꢀ  
33kꢀ  
R5  
10kꢀ  
R4  
5.1kꢀ  
A2 forms a “servo” amplifier feeding the SSM2019 inputs. This  
places Pins l and 8 at a true dc virtual ground. R4 in conjunction  
with C2 removes the voltage noise of A2, and in fact just about  
any operational amplifier will work well here since it is removed  
from the signal path. If the dc offset at Pins l and 8 is not too  
TO PINS  
2 AND 3  
A2  
C2  
IN4148  
200F  
Figure 5. Bus Summing Amplifier  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
16-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(RW-16)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
10.50 (0.4134)  
10.10 (0.3976)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
16  
1
9
8
4
7.60 (0.2992)  
7.40 (0.2913)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
10.65 (0.4193)  
10.00 (0.3937)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
BSC  
45ꢄ  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.30 (0.0118)  
0.10 (0.0039)  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
8ꢄ  
0ꢄ  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Standard Small Outline Package [SOIC]*  
Narrow Body  
(RN-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢄ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢄ  
0.51 (0.0201)  
0.33 (0.0130)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
*Consult factory for availability.  
–8–  
REV. 0  

相关型号:

SSM2019BN

Self-Contained Audio Preamplifier
ADI

SSM2019BNZ

Self-Contained Audio Preamplifier
ADI

SSM2019BRN

Self-Contained Audio Preamplifier
ADI

SSM2019BRNRL

Self-Contained Audio Preamplifier
ADI

SSM2019BRNZ

Self-Contained Audio Preamplifier
ADI

SSM2019BRNZRL

Self-Contained Audio Preamplifier
ADI

SSM2019BRW

Self-Contained Audio Preamplifier
ADI

SSM2019BRWRL

Self-Contained Audio Preamplifier
ADI

SSM2019BRWZ

Self-Contained Audio Preamplifier
ADI

SSM2019BRWZRL

Self-Contained Audio Preamplifier
ADI

SSM2020

DUAL LINEAR ANTILOG VOLTAGE CONTROLLED AMPLIFIER
ETC

SSM2022

DUAL LINEAR ANTILOG VOLTAGE CONTROLLED AMPLIFIER
ETC