SSM2135SZ [ADI]

Dual Single-Supply Audio Operational Amplifier; 双路单电源音频运算放大器
SSM2135SZ
型号: SSM2135SZ
厂家: ADI    ADI
描述:

Dual Single-Supply Audio Operational Amplifier
双路单电源音频运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总16页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Single-Supply  
Audio Operational Amplifier  
SSM2135  
PIN CONNECTIONS  
FEATURES  
Excellent sonic characteristics  
High output drive capability  
5.2 nV/√Hz equivalent input noise @ 1 kHz  
0.003% THD + N (VOUT = 1 V p-p @ 1 kHz)  
3.5 MHz gain bandwidth  
Unity-gain stable  
OUT A  
–IN A  
1
2
3
4
8
7
6
5
V+  
SSM2135  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
+IN A  
V–/GND  
Figure 1. 8-Lead Narrow Body SOIC (R Suffix)  
Low cost  
APPLICATIONS  
Multimedia audio systems  
Microphone preamplifiers  
Headphone drivers  
Differential line receivers  
Balanced line drivers  
Audio ADC input buffers  
Audio DAC l-V converters and filters  
Pseudoground generators  
GENERAL DESCRIPTION  
The SSM2135 dual audio operational amplifier permits excel-  
lent performance in portable or low power audio systems, with  
an operating supply range of 4 V to 36 V or 2 V to 1ꢀ V.  
The unity-gain stable device has very low voltage noise of  
5.2 nV/√Hz, and total harmonic distortion plus noise below  
0.01% over normal signal levels and loads. Such characteristics  
are enhanced by wide output swing and load drive capability.  
A unique output stage permits output swing approaching the  
rail under moderate load conditions. Under severe loading,  
the SSM2135 still maintains a wide output swing with ultralow  
distortion. Particularly well suited for computer audio systems  
and portable digital audio units, the SSM2135 can perform  
preamplification, headphone and speaker driving, and balanced  
line driving and receiving. Additionally, the device is ideal for  
input signal conditioning in single-supply, Σ-Δ, analog-to-  
digital converter subsystems such as the AD1ꢀ77. The SSM2135  
makes an ideal single-supply stereo output amplifier for audio  
digital-to-analog converters (DACs) because of its low noise  
and distortion.  
The SSM2135 is available in an ꢀ-lead plastic SOIC package  
and is guaranteed for operation over the extended industrial  
temperature range of −40°C to +ꢀ5°C.  
FUNCTIONAL BLOCK DIAGRAM  
V+  
OUTx  
+INx  
9V 9V  
–INx  
V–/GND  
Figure 2.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2011 Analog Devices, Inc. All rights reserved.  
 
SSM2135  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................4  
ESD Caution...................................................................................4  
Typical Performance Characteristics ..............................................5  
Applications Information.............................................................. 10  
Application Circuits................................................................... 10  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Pin Connections ............................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
REVISION HISTORY  
4/11—Rev. F to Rev. G  
Changes to Figure 36...................................................................... 12  
Changes to Applications Information Section, Low Noise Stereo  
Headphone Driver Amplifier Section, Figure 31, and Figure 32  
........................................................................................................... 10  
Changes to Low Noise Microphone Preamplifier Section,  
2/09—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Features Section, General Description Section, and  
Figure 1 Caption ............................................................................... 1  
Changes to Specifications Section Conditions ............................. 3  
Changed AVO Symbol to AV ............................................................. 3  
Changes to Supply Current Parameter, Table 1............................ 3  
Deleted ESD Ratings Table.............................................................. 3  
Changes to Figure 4 and Figure 5................................................... 5  
Changes to Figure 9.......................................................................... 6  
Changes to Figure 15, Figure 13, and Figure 18 ........................... 7  
Changes to Figure 21, Figure 24 Caption, and Figure 25............ 8  
Changes to Figure 27 and Figure 28............................................... 9  
Deleted Figure 5; Renumbered Sequentially............................... 10  
Deleted 18-Bit Stereo CD-DAC Output Amplifier Section...... 10  
Figure 33, and Figure 34 ................................................................ 11  
Changes to Figure 37...................................................................... 12  
Deleted Spice Macromodel Section ............................................. 12  
Changes to Digital Volume Control Circuit Section, Figure 38,  
and Figure 39................................................................................... 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 14  
2/03—Rev. D to Rev. E  
Removed 8-Lead Plastic DIP Package .............................Universal  
Edits to Thermal Characteristics.....................................................4  
Edits to Outline Dimensions......................................................... 14  
Updated Ordering Guide .............................................................. 14  
Rev. G | Page 2 of 16  
 
SSM2135  
SPECIFICATIONS  
VS = 5 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted. Typical specifications apply at TA = 25°C.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min Typ  
Max Unit  
AUDIO PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Signal-To-Noise Ratio  
Headroom  
en  
in  
f = 1 kHz  
f = 1 kHz  
5.2  
0.5  
121  
5.3  
nV/√Hz  
pA/√Hz  
dBu  
SNR  
HR  
THD + N  
20 Hz to 20 kHz, 0 dBu = 0.775 V rms  
Clip point = 1% THD + N, f = 1 kHz, RL = 10 kΩ  
AV = +1, VOUT = 1 V p-p, f = 1 kHz, 80 kHz LPF  
RL = 10 kΩ  
dBu  
Total Harmonic Distortion Plus Noise  
0.003  
0.005  
%
%
RL = 32 Ω  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBW  
tS  
RL = 2 kΩ, TA = 25°C  
To 0.1%, 2 V Step  
0.6  
0
0.9  
3.5  
5.8  
V/μs  
MHz  
μs  
INPUT CHARACTERISTICS  
Input Voltage Range  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
Differential Input Impedance  
Common-Mode Rejection  
Large Signal Voltage Gain  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VCM  
VOS  
IB  
4.0  
2.0  
750  
50  
V
VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
0.2  
300  
mV  
nA  
nA  
MΩ  
dB  
IOS  
ZIN  
CMR  
AV  
4
112  
0 V ≤ VCM ≤ 4 V, f = dc  
0.01 V ≤ VOUT ≤ 3.9 V, RL = 600 Ω  
87  
2
V/μV  
VOH  
VOL  
ISC  
RL = 100 kΩ  
RL = 600 Ω  
RL = 100 kΩ  
RL = 600 Ω  
4.1  
3.9  
V
V
mV  
mV  
mA  
Output Voltage Swing Low  
3.5  
3.0  
Short-Circuit Current Limit  
POWER SUPPLY  
30  
Supply Voltage Range  
VS  
Single supply  
Dual supply  
4
36  
18  
V
V
2
Power Supply Rejection Ratio  
Supply Current  
PSRR  
ISY  
VS = 4 V to 6 V, f = dc  
VS = 5 V, VOUT = 2.0 V, no load  
VS = 18 V, VOUT = 0 V, no load  
90  
120  
2.8  
3.7  
dB  
mA  
mA  
6.0  
7.6  
Rev. G | Page 3 of 16  
 
SSM2135  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL RESISTANCE  
Rating  
Supply Voltage  
Single Supply  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
36 V  
Dual Supply  
Input Voltage  
18 V  
VS  
10 V  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Table 3.  
Package Type  
θJA  
θJC  
Unit  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range (TJ)  
Lead Temperature (Soldering, 60 sec)  
8-Lead SOIC (R-8)  
158  
43  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. G | Page 4 of 16  
 
SSM2135  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
1
V
A
= 5V  
= +1  
S
V
f = 1kHz  
V
= 1V p-p  
= 10k  
IN  
R
L
80kHz LOW-PASS FILTER  
0.1  
5V  
500µF  
0.01  
0.001  
R
L
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
2.5V DC  
Figure 6. THD + N vs. Load (See Figure 3)  
Figure 3. Test Circuit for Figure 4, Figure 5, and Figure 6  
1
1
A
= +1  
= 5V  
V = 5V  
S
f = 1kHz  
V
V
S
f = 1kHz  
80kHz LOW-PASS FILTER  
V = 2.5V p-p  
OUT  
= 100k  
NONINVERTING  
R
L
80kHz LOW-PASS FILTER  
R
= 32  
L
0.1  
0.1  
0.01  
R
= 10kΩ  
L
0.01  
INVERTING  
0.001  
0.0005  
0.001  
50m  
0.1  
1
5
0
10  
20  
30  
GAIN (dB)  
40  
50  
60  
INPUT VOLTAGE (V p-p)  
Figure 4. THD + N vs. Amplitude (See Figure 3)  
Figure 7. THD + N vs. Gain  
1
1
A
V
= +1  
= 5V  
= 1V p-p  
V
A
= 5V  
= +1  
V
S
S
V
V
f = 1kHz  
IN  
80kHz LOW-PASS FILTER  
V
= 1V p-p  
IN  
R
= 10kΩ  
L
80kHz LOW-PASS FILTER  
0.1  
0.1  
R
= 32Ω  
L
0.01  
0.01  
0.001  
R
= 10kΩ  
L
0.001  
0.0005  
0
5
10  
15  
20  
25  
30  
20  
100  
1k  
FREQUENCY (Hz)  
10k  
20k  
SUPPLY VOLTAGE (V)  
Figure 8. THD + N vs. Supply Voltage  
Figure 5. THD + N vs. Frequency (See Figure 3)  
Rev. G | Page 5 of 16  
 
 
 
 
 
SSM2135  
10  
5
4
3
2
1
0
V
A
= 5V  
= +1  
V
T
= 5V  
= 25°C  
S
S
V
A
f = 1kHz  
R
= 10kΩ  
L
1
0.1  
0.01  
0.001  
50m  
0.1  
1
5
1
10  
100  
FREQUENCY (Hz)  
1k  
AMPLITUDE (V p-p)  
Figure 9. SMPTE Intermodulation Distortion  
Figure 12. Current Noise Density vs. Frequency  
2.0  
A
= +1  
= 5V  
= 1V p-p  
= 10k  
V
S
V
V
1.5  
1.0  
IN  
1s  
R
L
100  
90  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
10  
0%  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. Input Voltage Noise (20 nV/Div)  
Figure 13. Frequency Response  
30  
V
T
= 5V  
= 25°C  
S
A
5µs  
5µs  
25  
20  
15  
10  
5
100  
90  
10  
0%  
0
20mV  
20mV  
1
10  
100  
FREQUENCY (Hz)  
1k  
Figure 11. Voltage Noise Density vs. Frequency  
Figure 14. Square Wave Response (VS = 5 V, AV = +1, RL = ∞)  
Rev. G | Page 6 of 16  
SSM2135  
60  
40  
50  
40  
V
T
R
= 5V  
= 25°C  
= 10kΩ  
V
T
= 5V  
= 25°C  
S
A
S
A
A
A
A
= +100  
= +10  
= +1  
V
V
V
L
20  
30  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
20  
10  
0
–10  
–20  
–105  
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Crosstalk vs. Frequency  
Figure 18. Closed-Loop Gain vs. Frequency  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
S
S
A
A
0
45  
GAIN  
90  
PHASE  
60  
135  
180  
225  
40  
20  
0
100  
–20  
1k  
1k  
10k  
100k  
1M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 16. Common-Mode Rejection vs. Frequency  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
140  
120  
100  
80  
50  
V
= 5V  
= +1  
= 25°C  
V
= 5V  
S
S
A
R = 2k  
V
A
45  
40  
35  
30  
25  
20  
15  
10  
5
L
T
V
= 100mV p-p  
= 25°C  
= +1  
IN  
A
T
A
V
+PSRR  
NEGATIVE EDGE  
60  
–PSRR  
40  
POSITIVE EDGE  
20  
0
–20  
10  
0
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
LOAD CAPACITANCE (pF)  
Figure 17. Power Supply Rejection Ratio vs. Frequency  
Figure 20. Small Signal Overshoot vs. Load Capacitance  
Rev. G | Page 7 of 16  
SSM2135  
50  
40  
35  
30  
25  
20  
15  
10  
5
V
A
R
= 5V  
= +1  
= 10kΩ  
V
T
= 5V  
= 25°C  
S
S
V
L
45  
40  
35  
30  
25  
20  
15  
10  
5
A
f = 1kHz  
THD + N = 1%  
T
= 25°C  
A
A
= +100  
V
A
= +10  
V
A
= +1  
V
0
0
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 21. Output Impedance vs. Frequency  
Figure 24. Output Voltage vs. Supply Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.0  
5
4
3
2
1
0
V
= 5V  
= 25°C  
= +1  
V
= 5V  
S
S
T
A
A
V
f = 1kHz  
THD + N = 1%  
1.5  
1.0  
0.5  
0
+SWING  
L
R
= 2kΩ  
+SWING  
R
= 600Ω  
–SWING  
= 2kΩ  
L
R
L
–SWING  
= 600Ω  
R
L
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
Figure 25. Output Swing vs. Temperature and Load  
Figure 22. Maximum Output Voltage vs. Load Resistance  
6
5
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0
V
R
= 5V  
S
V
= 5V  
S
= 2kΩ  
= 25°C  
= +1  
L
0.5V V  
4V  
OUT  
T
A
A
V
+SLEW RATE  
–SLEW RATE  
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 23. Maximum Output Swing vs. Frequency  
Figure 26. Slew Rate vs. Temperature  
Rev. G | Page 8 of 16  
SSM2135  
20  
18  
16  
14  
12  
10  
8
5
4
3
2
1
0
V
V
= 5V  
S
= 3.9V  
OUT  
R
= 2kΩ  
L
V
= ±18V  
S
V
= ±15V  
S
R
= 600Ω  
L
V
= +5V  
S
6
4
2
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Open-Loop Gain vs. Temperature  
Figure 29. Supply Current vs. Temperature  
70  
65  
60  
55  
50  
5
4
3
2
1
500  
400  
300  
200  
100  
0
V
= 5V  
S
V
= +5V  
S
GBW  
V
= ±15V  
S
Φ
m
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Gain Bandwidth Product and Phase Margin vs. Temperature  
Figure 30. Input Bias Current vs. Temperature  
Rev. G | Page 9 of 16  
SSM2135  
APPLICATIONS INFORMATION  
The SSM2135 is a low voltage audio amplifier that has exception-  
ally low noise and excellent sonic quality even when driving loads  
as small as 25 Ω. Designed for single supply use, the inputs and  
output can both swing very close to 0 V. Thus with a supply  
voltage at 5 V, both the input and output swing from 0 V to 4 V.  
Because of this, signal dynamic range can be optimized if the  
amplifier is biased to a 2 V reference rather than at half the  
supply voltage.  
10kΩ  
8.66kΩ  
40  
L_OUT  
2
3
35/36  
470µF  
5V  
0.1µF  
V
CC  
1
1/2  
SSM2135  
34/37  
32  
GNDA  
LEFT  
V+  
CHANNEL  
10µF  
V
REF  
0.1µF  
10µF  
RIGHT  
CHANNEL  
0.1µF  
7
8
4
5
6
AGND  
AD1845  
R_OUT  
1/2  
SSM2135  
470µF  
The SSM2135 is unity-gain stable, even when driving into a fair  
amount of capacitive load. Driving up to 500 pF does not cause  
any instability in the amplifier. However, overshoot in the  
frequency response increases slightly.  
41  
10kΩ  
8.66kΩ  
Figure 31. A Stereo Headphone Driver for Multimedia Sound Codec  
The SSM2135 makes an excellent output amplifier for 5 V only  
audio systems such as a multimedia workstation, a CD output  
amplifier, or an audio mixing system. The amplifier has large  
output swing even at this supply voltage because it is designed  
to swing to the negative rail. In addition, it easily drives load  
impedances as low as 25 Ω with low distortion.  
Figure 32 shows the total harmonic distortion characteristics vs.  
frequency driving into a 32 Ω load, which is a very typical  
impedance for a high quality stereo headphone. The SSM2135  
has excellent power supply rejection, and, as a result, is tolerant  
of poorly regulated supplies. However, for best sonic quality, the  
power supply should be well regulated and heavily bypassed to  
minimize supply modulation under heavy loads. A minimum of  
10 μF bypass is recommended.  
The SSM2135 is fully protected from phase reversal for inputs  
going to the negative supply rail. However, internal ESD protec-  
tion diodes turn on when either input is forced more than 0.5 V  
below the negative rail. Under this condition, input current in  
excess of 2 mA may cause erratic output behavior, in which case,  
a current limiting resistor should be included in the offending  
input if phase integrity is required with excessive input voltages.  
A 500 Ω or higher series input resistor prevents phase inversion  
even with the input pulled 1 V below the negative supply.  
1
V
= 5V  
S
80kHz LOW-PASS FILTER  
0.1  
0.01  
Hot plugging the input to a signal generally does not present a  
problem for the SSM2135, assuming that the signal does not  
have any voltage exceeding the supply voltage of the device.  
If so, it is advisable to add a series input resistor to limit the  
current, as well as a Zener diode to clamp the input to a voltage  
no higher than the supply.  
0.001  
0.005  
10  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
APPLICATION CIRCUITS  
Figure 32. Headphone Driver THD + N vs. Frequency into a 32 Ω Load  
Low Noise Stereo Headphone Driver Amplifier  
Figure 31 shows the SSM2135 used in a stereo headphone driver  
for multimedia applications with the AD1845, a 16-bit stereo  
codec. The SSM2135 is equally well suited for the serial-bused  
AD1849 stereo codec. The impedance of the headphone can be  
as low as 25 Ω, which covers most commercially available high  
fidelity headphones. Although the amplifier can operate at up to  
18 V supply, it is just as efficient powered by a single 5 V. At  
this voltage, the amplifier has sufficient output drive to deliver  
distortion-free sound to a low impedance headphone.  
Rev. G | Page 10 of 16  
 
 
 
SSM2135  
1
Low Noise Microphone Preamplifier  
V
A
= 5V  
= 40dB  
S
V
The 5.2 nV/√Hz input noise in conjunction with low distortion  
make the SSM2315 an ideal device for amplifying low level signals  
such as those produced by microphones. Figure 34 illustrates a  
stereo microphone input circuit feeding a multimedia sound  
codec. The gain is set at 100 (40 dB), although it can be set to  
other gains depending on the microphone output levels. Figure 33  
shows the harmonic distortion performance of the preamplifier  
with 1 V rms output, while operating from a single 5 V supply.  
V
= 1V rms  
OUT  
80kHz LOW-PASS FILTER  
0.1  
The SSM2135 is biased to 2.25 V by the VREF pin of the AD1845  
codec. The same voltage is buffered by the 2N4124 transistor to  
provide phantom power to the microphone. A typical electrets  
condenser microphone with an impedance range of 100 Ω to  
1 kΩ works well with the circuit. This power booster circuit can  
be omitted for dynamic microphone elements.  
0.01  
10  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
Figure 33. MIC Preamp THD + N Performance  
10k  
5V  
10µF  
100Ω  
LEFT CHANNEL  
MIC IN  
8
2
3
29  
L_MIC  
35/36  
1
10µF  
1/2  
SSM2135  
5V  
V
CC  
4
10kΩ  
5V  
2kΩ  
0.1µF  
34/37  
GNDA  
2N4124  
32  
V
REF  
10µF  
0.1µF  
7
10kΩ  
10µF  
RIGHT CHANNEL  
MIC IN  
AD1845  
2kΩ  
5
6
28  
R_MIC  
1/2  
SSM2135  
100Ω  
10kΩ  
Figure 34. Low Noise Microphone Preamp for Multimedia Sound Codec  
Rev. G | Page 11 of 16  
 
 
SSM2135  
Single Supply Differential Line Driver  
Pseudoreference Voltage Generator  
Signal distribution and routing is often required in audio systems,  
particularly portable digital audio equipment for professional  
applications. Figure 35 shows a single-supply line driver circuit  
that has differential output. The bottom amplifier provides a  
2 V dc bias for the differential amplifier to maximize the output  
swing range. The amplifier can output a maximum of 0.8 V rms  
signal with a 5 V supply. It is capable of driving into 600 Ω line  
termination at a reduced output amplitude.  
For single-supply circuits, a reference voltage source is often  
required for biasing purposes or signal offsetting purposes. The  
circuit in Figure 37 provides a supply splitter function with low  
output impedance. The 1 μF output capacitor serves as a charge  
reservoir to handle a sudden surge in demand by the load as  
well as providing a low ac impedance to it. The 0.1 μF feedback  
capacitor compensates the amplifier in the presence of a heavy  
capacitive load, maintaining stability.  
1kΩ  
The output can source or sink up to 12 mA of current with a  
5 V supply, limited only by the 100 Ω output resistor. Reducing  
the resistance increases the output current capability. Alternatively,  
increasing the supply voltage to 12 V also improves the output  
drive to more than 25 mA.  
5V  
10µF + 0.1µF  
1/2  
SSM2135  
100µF  
AUDIO IN  
DIFFERENTIAL  
AUDIO OUT  
V+ = 5V TO 12V  
1kΩ  
R3  
2.5k  
1kΩ  
10kΩ  
1/2  
SSM2135  
C1  
0.1µF  
R1  
5kΩ  
2V  
2.5kΩ  
R4  
100kΩ  
5V  
1/2  
SSM2135  
V+  
2
OUTPUT  
0.1µF  
5V  
C2  
1µF  
100Ω  
R2  
5kΩ  
1/2  
SSM2135  
7.5kΩ  
1µF  
5kΩ  
Figure 37. Pseudoreference Generator  
Figure 35. Single-Supply Differential Line Driver  
Single-Supply Differential Line Receiver  
Receiving a differential signal with minimum distortion is  
achieved using the circuit in Figure 36. Unlike a difference  
amplifier (a subtractor), the circuit has a true balanced input  
impedance regardless of input drive levels; that is, each input  
always presents a 20 kΩ impedance to the source. For best  
common-mode rejection performance, all resistors around the  
differential amplifier must be very well matched. Best results  
can be achieved using a 10 kΩ precision resistor network.  
20k  
5V  
10µF + 0.1µF  
20kΩ  
20kΩ  
1/2  
SSM2135  
20kΩ  
20kΩ  
DIFFERENTIAL  
AUDIO IN  
10µF  
10Ω  
1/2  
SSM2135  
2V  
AUDIO  
OUT  
5V  
1µF  
7.5kΩ  
5V  
100Ω  
1/2  
SSM2135  
5kΩ  
0.1µF  
2.5kΩ  
Figure 36. Single-Supply Balanced Differential Line Receiver  
Rev. G | Page 12 of 16  
 
 
 
SSM2135  
Digital Volume Control Circuit  
Logarithmic Volume Control Circuit  
Working in conjunction with the AD7528 dual 8-bit DAC,  
the SSM2135 makes an efficient audio attenuator, as shown in  
Figure 38. The circuit works off a single 5 V supply. The DACs  
are biased to a 2 V reference level, which is sufficient to keep  
the internal R-2R ladder switches of the DACs operating prop-  
erly. This voltage is also the optimal midpoint of the SSM2135  
common-mode and output swing range. With the circuit as  
shown in Figure 38, the maximum input and output swing is  
1.25 V rms. Total harmonic distortion measures a respectable  
0.01% at 1 kHz and 0.1% at 20 kHz. The frequency response at  
any attenuation level is flat to 20 kHz.  
Figure 39 shows a logarithmic version of the volume control  
function. Similar biasing is used. With an 8-bit bus, the AD7111  
provides an 88.5 dB attenuation range. Each bit resolves a 0.375 dB  
attenuation. Refer to the AD7111 data sheet for attenuation levels  
for each input code.  
5V  
0.1µF  
5V  
10µF + 0.1µF  
3
14  
16  
47µF  
10  
DGND  
V
R
FB  
DD  
1
2
LEFT AUDIO  
IN  
V
I
IN  
OUT  
1/2  
SSM2135  
LEFT AUDIO  
OUT  
AD7111  
47µF  
AGND  
D1  
5V  
0.1µF  
Each DAC can be controlled independently via the 8-bit parallel  
data bus. The attenuation level is linearly controlled by the  
binary weighting of the digital data input. Total attenuation  
ranges from 0 dB to 48 dB.  
3
14  
16  
47µF  
10  
DGND  
V
R
DD  
FB  
1
2
RIGHT AUDIO  
IN  
I
V
OUT  
IN  
1/2  
SSM2135  
RIGHT AUDIO  
OUT  
AD7111  
47µF  
AGND  
D1  
3
2k  
DATA IN  
AND  
CONTROL  
AD7528  
5V  
10µF + 0.1µF  
10  
5V  
5V  
R
A
0.1µF  
100Ω  
FB  
OUT A  
2
LEFT  
AUDIO IN  
V
A
REF  
1/2  
SSM2135  
7.5kΩ  
LEFT AUDIO  
OUT  
1/2  
SSM2135  
DAC A  
2V  
2V  
47µF  
1µF  
5kΩ  
DATA IN  
Figure 39. Single-Supply Logarithmic Volume Control  
6
DAC A/  
DAC B  
CONTROL  
SIGNAL  
15  
16  
CS  
19  
WR  
R
B
FB  
20  
1
RIGHT  
AUDIO IN  
18  
V
B
OUT B  
REF  
1/2  
SSM2135  
RIGHT AUDIO  
OUT  
DACB  
47µF  
2k  
V
DGND  
5
DD  
17  
5V  
5V  
0.1µF  
100Ω  
7.5kΩ  
1/2  
SSM2135  
0.1µF  
2V  
2V  
5V  
1µF  
5kΩ  
Figure 38. Digital Volume Control  
Rev. G | Page 13 of 16  
 
 
SSM2135  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
SSM2135S  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
SSM2135S-REEL  
SSM2135S-REEL7  
SSM2135SZ  
SSM2135SZ-REEL  
SSM2135SZ-REEL7  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
Rev. G | Page 14 of 16  
 
SSM2135  
NOTES  
Rev. G | Page 15 of 16  
SSM2135  
NOTES  
©2003–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00349-0-4/11(G)  
Rev. G | Page 16 of 16  
 

相关型号:

SSM2135SZ-REEL7

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2135SZ-REEL7

DUAL OP-AMP, 2000 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

SSM2135_03

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2139P

Voltage-Feedback Operational Amplifier
ETC

SSM2139S

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 30 MHz BAND WIDTH, PDSO16, SOL-16, Operational Amplifier
ADI

SSM2141

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141P

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141PZ

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141S

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141S-REEL

IC INSTRUMENTATION AMPLIFIER, 2500 uV OFFSET-MAX, 3 MHz BAND WIDTH, PDSO8, SO-8, Instrumentation Amplifier
ADI

SSM2141SZ

暂无描述
ADI

SSM2141SZ-REEL

High Common-Mode Rejection Differential Line Receiver
ADI