SSM2163S [ADI]

Digitally Controlled 8 x 2 Audio Mixer; 数字控制的8× 2音频混合器
SSM2163S
型号: SSM2163S
厂家: ADI    ADI
描述:

Digitally Controlled 8 x 2 Audio Mixer
数字控制的8× 2音频混合器

模拟IC 信号电路 光电二极管
文件: 总16页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digitally Controlled  
8 
؋
 2 Audio Mixer  
a
SSM2163  
FEATURES  
SIMP LIFIED BLO CK D IAGRAM  
Each of 8 Inputs Can Be Assigned to Either or Both  
Outputs  
Voltage Inputs and Outputs – No Need For External  
Am plifiers  
Each Input Provides 63 dB of Attenuation in 1 dB Steps,  
Plus Mute  
–82 dBu Signal-to-Noise Ratio (0 dBu = 0.775 V rm s)  
+10 dBu of Headroom  
0.007% THD+N (Unity Gain, @ 1 kHz, 0 dBu)  
Pow er-Up/ System Mute Feature  
Industry-Standard 3-Wire Serial Interface  
Data Out Term inal Perm its Daisy Chaining of Multiple  
SSM2163s  
DCA  
DCA  
DCA  
DCA  
DCA  
DCA  
DCA  
DCA  
V
V
V
V
V
V
V
V
IN1  
IN2  
IN3  
IN4  
IN5  
SSM2163  
V
CC  
VOLTAGE  
REFERENCE  
GENERATOR  
V
EE  
ACOM  
AGND  
V
OUTL  
Single or Dual Supply Operation  
28-Pin Plastic DIP and SOIC Package  
OUTPUT  
SWITCHING  
NETWORK  
V
OUTR  
APPLICATIONS  
Multim edia System Mixing  
Audio Mixing Consoles  
Broadcast Equipm ent  
Intercom / Paging System s  
Musical Instrum ents  
SYSTEM MUTE  
DATA OUT  
6
IN  
IN  
CLK  
DATA  
LD  
SHIFT  
REGISTER  
AND  
ADDRESS  
DECODER  
7
WRITE  
DGND  
V
DD  
IN8  
V
SS  
GENERAL D ESCRIP TIO N  
T he SSM2163 provides eight audio inputs, each of which can  
be mixed under digital control to a stereo output. Each input  
channel can be attenuated up to 63 dB in 1 dB intervals, plus  
fully muted. Additionally, any input can be assigned to either or  
both outputs. A standard 3-wire serial interface is employed,  
plus a Data Out terminal to facilitate daisy chaining of multiple  
mixer ICs. No external components are required for normal  
operation.  
DCA: DIGITALLY CONTROLLED ATTENUATOR  
T he SSM2163 can be operated from single (+5 V to +14 V) or  
dual (±4 V to ±7 V) supplies, and is housed in 28-pin plastic  
DIP and SOIC packages.  
Excellent audio performance is attained. T he SSM2163 has a  
signal-to-noise ratio of –82 dBu (0 dBu = 0.775 V rms), with  
10 dBu of headroom resulting in total dynamic range of 92 dBu.  
T otal harmonic distortion plus noise is 0.007% at 1 kHz with all  
levels set at unity gain.  
T he SSM2163 is an ideal companion product to the Analog  
Devices family of stereo codecs in high performance multi-  
media systems requiring mixing of multiple signals.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
SSM2163–SPECIFICATIONS  
AUDIO = 1 kHz, fCLK = 250 kHz, R = 100 k,  
ELECTRICAL SPECIFICATIONS (V = ؎5 V, A = 0 dB, V = 0 dBu = 0.775 V rms, f  
–40؇C < T < +85؇C, unless otherwise noted. Typical specifications apply at T = +25؇C.)  
S
V
IN  
L
A
A
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
AUDIO PERFORMANCE  
Noise  
Headroom  
VIN = GND, 20 kHz Bandwidth  
Clip Point = 1% T HD+N  
–82  
+10  
dBu  
dBu  
T otal Harmonic Distortion Plus Noise  
2nd and 3rd Harmonics Only  
A
A
V = 0 dB  
V = –20 dB  
0.007  
0.02  
0.035  
0.03  
15  
%
%
%
AV = 0 dB, VS = +5 V, Single Supply  
ANALOG INPUT  
Input Impedance  
7
10  
kΩ  
VOLUME CONT ROL  
Step Size  
1.0  
dB  
Gain Error  
Relative to Same Channel  
0 dB Attenuation  
0.1  
0.1  
1.0  
dB  
dB  
–20 dB Attenuation  
–40 dB Attenuation  
Channel-to-Channel; Same Level Setting  
0 dB Attenuation  
–20 dB Attenuation  
–40 dB  
0.25  
Gain Match Error  
0.01  
0.05  
0.4  
dB  
dB  
dB  
dB  
Mute Attenuation  
64  
ANALOG OUT PUT  
Output Impedance  
Output Current  
Minimum Resistive Load  
Maximum Capacitive Drive  
Offset Voltage  
15  
500  
4
5000  
50  
µA  
kΩ  
pF  
mV  
T HD = 1%  
Channel Muted  
CONT ROL SECT ION  
Logic Input LO  
Logic Input HI  
Logic Input Current  
Logic Out LO  
Logic Out HI  
0.8  
0.4  
V
V
µA  
V
V
2.0  
2.4  
Logic LO or HI  
IOUT = 0.2 mA  
IOUT = 0.2 mA  
1
T iming Characteristics  
See T iming Diagram  
REFERENCE (ACOM)  
Output Voltage  
Output Impedance  
Load Regulation  
VS = +10 V (Single Supply)  
4.7  
5.0  
10  
0.2  
5.3  
V
%
–0.5 mA IL +0.5 mA (Single Supply)  
POWER SUPPLIES  
Supply Voltage Range  
Dual Supply  
±4  
±7  
V
Single Supply  
VS = +10 V (Single Supply)  
Delta Gain  
+5  
+14  
15  
V
mA  
dB/V  
Supply Current  
Power Supply Rejection Ratio  
8
0.005  
Specifications subject to change without notice.  
REV. 0  
–2–  
SSM2163  
Tim ing D escr iption  
Tim ing  
Sym bol  
D escription  
Min  
Typ  
Max Units  
tCL  
tCH  
tDS  
tDH  
tCW  
tWC  
tLW  
tWL  
tL  
Input Clock Pulse Width  
Input Clock Pulse Width  
Data Setup T ime  
50  
50  
25  
35  
25  
35  
20  
20  
250  
250  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold T ime  
Positive CLK Edge to End of Write  
Write to Clock Setup T ime  
End of Load Pulse to Next Write  
End of Write to Start of Load  
Load Pulse Width  
tW3  
tPD  
Load Pulse Width (3-Wire Mode)  
Propagation Delay from Rising  
Clock to SDO T ransition  
80  
160  
ns  
(RL = 220 k, CL = 20 pF)  
NOT ES  
1. An idle HI (CLK-HI) or idle LO (CLK-LO) clock may be used. Data is latched on the positive  
edge.  
2. For SPI or microwire three-wire bus operation, tie LD to WRITE and use WRITE pulse to drive  
both pins. (T his generates an automatic internal LD signal.)  
3. If an idle HI clock is used, tCW and tWL are measured from the final negative transition to the idle  
state.  
4. T he first data byte selects an address (MSB HI), and subsequent MSB LO states set gain levels. Re-  
fer to the Address/Data Decoding T ruth T able.  
5. Data must be sent MSB first.  
1
CLK  
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA  
WRITE & LOAD  
0
tCL  
tCH  
1
0
CLK  
tDH  
tDS  
1
0
DATA  
tCW  
tW3  
tWC  
1
0
WRITE & LOAD  
tPD  
1
0
SDO  
Figure 1. Three-Wire Mode Tim ing Diagram  
REV. 0  
–3–  
SSM2163  
1
0
CLK  
1
0
1
DATA  
WRITE  
LD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
tCL  
tCH  
1
CLK  
0
tDH  
tDS  
1
DATA  
0
tCW  
tWC  
1
WRITE  
0
tWL  
tLW  
tL  
1
LOAD  
0
tPD  
1
SDO  
0
Figure 2. Four-Wire Mode Tim ing Diagram  
REV. 0  
–4–  
SSM2163  
P IN CO NFIGURATIO NS  
ABSO LUTE MAXIMUM RATINGS1  
Epoxy P lastic D IP (P -Suffix)  
and SO IC (S-Suffix)  
Supply Voltage  
Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±8 V  
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +16 V  
Analog Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Logic Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Junction T emperature (TJ) . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . . +300°C  
SYSTEM MUTE  
DATA IN  
DGND  
1
2
28  
27  
V
SS  
3
26 CLK  
25  
DATA OUT  
V
4
WRITE  
DD  
V
5
24 LD  
IN1  
SSM2163  
TOP VIEW  
6
NC (SHIELD)  
23 NC (SHIELD)  
(Not to Scale)  
V
7
V
22  
IN3  
IN2  
8
NC (SHIELD)  
21 NC (SHIELD)  
V
9
20  
V
TH ERMAL CH ARACTERISTICS  
IN5  
IN4  
T hermal Resistance2  
V
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
NC (SHIELD)  
CC  
V
V
28-Pin Plastic DIP (SSM2163P)  
IN7  
IN6  
V
θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48°C/W  
θJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22°C/W  
28-Pin SOIC (SSM2163S)  
AGND  
EE  
ACOM  
V
IN8  
V
V
OUTL  
OUTR  
θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68°C/W  
θJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20°C/W  
TRANSISTO R CO UNT  
Number of T ransistors . . . . . . . . . . . . . . . . . . 1711 MOSFET s  
447 BJT s  
ESD RATINGS  
883 (Human Body) Model . . . . . . . . . . . . . . . . . . . . . . 1000 V  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operation section of this specification is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may affect device reliability.  
2θJA is specified for worst-case conditions, i.e., θJA is specified for device in socket  
for P-DIP and device soldered in circuit board for SOIC package.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
SSM2163P  
SSM2163S  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
SOIC  
N-28  
R-28  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the SSM2163 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
SSM2163  
P IN D ESCRIP TIO N  
P in #  
Mnem onic  
Function  
1
2
3
DGND  
VSS  
Digital Ground.  
Digital Negative Supply.  
DAT A OUT  
Serial data output clocked on positive clock edge. Connect DAT A OUT to DAT A IN pin to  
daisy-chain multiple SSM2163s. Output levels are VDD to DGND.  
4
VDD  
Digital Positive Supply.  
5
VIN1  
Audio Signal Input 1.  
6
NC (Shield)  
VIN3  
Shield Pin. Should be tied to AGND to minimize crosstalk.  
Audio Signal Input 3.  
7
8
NC (Shield)  
VIN5  
Shield Pin. Should be tied to AGND to minimize crosstalk.  
Audio Signal Input 5.  
9
10  
11  
12  
13  
VCC  
Analog Positive Supply.  
VIN7  
Audio Signal Input 7.  
VEE  
Analog Negative Supply.  
ACOM  
Analog Common Voltage. Provides a buffered voltage output halfway between VCC and VEE for use  
as a pseudo ground in single supply applications.  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VOUT L  
Left Audio Output.  
VOUT R  
Right Audio Output.  
VIN8  
Audio Signal Input 8.  
AGND  
VIN6  
Analog Ground.  
Audio Signal Input 6.  
NC (Shield)  
VIN4  
Shield Pin. Should be tied to AGND to minimize crosstalk.  
Audio Signal Input 4.  
NC (Shield)  
VIN2  
Shield Pin. Should be tied to AGND to minimize crosstalk.  
Audio Signal Input 2.  
NC (Shield)  
LD  
Shield Pin. Should be tied to AGND to minimize crosstalk.  
Load Data.  
WRITE  
CLK  
Write Data.  
Clock.  
Data In  
SYST EM MUT E  
Serial Data Input. Clocked on positive clock edge.  
Mutes all eight input channels thus left and right audio output are muted. System mute does not  
change the state of internal latches. All digital data remains intact after system mute is applied.  
Logic One: Mutes Output  
Logic Zero: Normal Operation  
MSB  
LSB MSB  
LSB  
ADDRESS MODE  
DATA MODE  
DATA  
DATA  
ATTENUATION  
0dB  
SELECTION  
ADDRESS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
INPUT CHANNEL 1  
INPUT CHANNEL 2  
INPUT CHANNEL 3  
INPUT CHANNEL 4  
INPUT CHANNEL 5  
INPUT CHANNEL 6  
INPUT CHANNEL 7  
INPUT CHANNEL 8  
X
X
X
X
X
X
X
X
–1dB  
0
R
L
E
F
T
0
0
1
1
1
1
–2dB  
I
G
H
T
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
–61dB  
–62dB  
–63dB  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
OUTPUT SELECT  
1 = SELECTED, 0 = NOT SELECTED  
INPUT SELECT  
X = “DON’T CARE," SHADED AREA IS DATA  
Figure 3. Address and Data Decoding Truth Table  
REV. 0  
–6–  
SSM2163  
20.000  
1400  
1050  
700  
350  
0
V
T
= ±5V  
= +25°C  
10.000  
0.0  
S
A
A
= 0dB  
V
–10.00  
–20.00  
–30.00  
A
= –20dB  
= –40dB  
V
–40.00  
–50.00  
–60.00  
A
V
V
= ±5V  
S
LPF = 22kHz  
R
= 100kΩ  
L
T
= +25°C  
A
–70.00  
–80.00  
0.0  
0.002  
0.004  
0.006  
0.008  
0.010  
0.012  
100  
20  
10k  
1k  
FREQUENCY – Hz  
20k  
THD – %  
Figure 4. Frequency Response  
Figure 6. THD Distribution  
1
0
A
= 0dB  
V
–10  
FREQ = 1kHz  
LPF = 22kHz  
V
V
= ±5V  
S
–20  
–30  
= 0dBu  
= 0dB  
IN  
A
R
T
= 100k  
= +25°C  
L
V
–40  
Notch F = 1kHz  
0.1  
A
R
= 100kΩ  
L
–50  
T
= +25°C  
A
–60  
–70  
V
= ±5V  
S
–80  
–90  
0.010  
0.001  
V
= ±7V  
S
–100  
–110  
–120  
–130  
–140  
0.1  
1
AMPLITUDE – V rms  
5
0
2
4
6
8
10 12  
14 16  
18 20  
22 24  
FREQUENCY – kHz  
Figure 7. (THD+N) = 1 kHz Tone at 0 dBu (4k-Point FFT)  
Figure 5. THD+N vs. Am plitude  
REV. 0  
–7–  
SSM2163  
1
1
A
= 0dB  
V
V
V
= ±5V  
S
FREQ = 1kHz  
LPF = 22kHz  
= 0dBu  
= 0dB  
IN  
A
V
R
= 100k  
L
LPF = 22kHz  
R
T
= +25°C  
A
= 100kΩ  
0.1  
L
0.1  
V
= 4.5V  
S
T
= +25°C  
A
V
= 5V  
S
V
= 5.5V  
S
0.010  
0.010  
0.001  
0.001  
20  
100  
1k  
10k  
20k  
1
0.1  
5
AMPLITUDE – V rms  
FREQUENCY – Hz  
Figure 11. THD+N vs. Am plitude – Single Supply  
Figure 8. THD+N vs. Frequency  
1
V
= 0dBu  
= 0dB  
IN  
A
V
LPF = 22kHz  
V
= 4.5V  
S
R
= 100k  
V
= 5V  
L
S
V
= ±5V  
S
T
= +25°C  
A
A
= 1  
100  
V
0.1  
90 NO LOAD  
V
= 7V  
S
T
= +25°C  
A
V
= 10V  
= 12V  
S
0.010  
V
S
10  
0%  
0.001  
0.005  
50mV  
10µS  
100  
1k  
FREQUENCY – Hz  
10k  
20k  
20  
Figure 9. THD+N vs. Frequency – Single Supply  
Figure 12. Sm all Signal Transient Response  
1
A
= 0dB  
V
FREQ = 1kHz  
LPF = 22kHz  
V = ±5V  
S
R
= 100k  
L
V
= 5V  
S
A
C
= 1  
V
L
T
= +25°C  
A
100  
90  
= 10,000pF  
= +25°C  
0.1  
T
A
V
= 14V  
S
0.010  
0.001  
10  
0%  
50mV  
10µS  
0.1  
1
AMPLITUDE – V rms  
5
Figure 10. THD+N vs. Am plitude – Single Supply  
Figure 13. Sm all Signal Transient Response  
REV. 0  
–8–  
SSM2163  
V
T
A
V
= ±5V  
50mS  
S
= +25°C  
= 100  
V
= ±5V  
A
S
100  
90  
NO LOAD  
= +25°C  
100  
90  
T
A
10  
10  
0%  
0%  
1V  
20mV  
1µS  
Figure 14. Large Signal Transient Response  
Figure 17. Broadband Noise  
0.0  
V
V
= ±5V  
S
–10.00  
–20.00  
–30.00  
–40.00  
–50.00  
= CHANNEL 1 0dBu  
= 0dB  
IN  
A
V
100  
90  
LPF = 22kHz  
R
T
= 100kΩ  
= +25°C  
L
V
= ±5V  
S
A
NO LOAD  
T
= +25°C  
A
RIGHT OUTPUT WITH V STEERED FULL LEFT  
IN  
10  
–60.00  
–70.00  
–80.00  
LEFT OUTPUT WITH V STEERED FULL RIGHT  
IN  
0%  
1V  
1µS  
100  
1k  
20  
10k  
20k  
FREQUENCY – Hz  
Figure 15. Large Signal Transient Response  
Figure 18. Output Channel Separation vs. Frequency  
0.0  
30  
25  
V
= ±5V  
S
–10.00  
–20.00  
–30.00  
–40.00  
–50.00  
–60.00  
–70.00  
–80.00  
–90.00  
–100.00  
LPF = 22kHz  
R
= 100kΩ  
L
T
= +25°C  
= 100kΩ  
A
T
= +25°C  
A
R
L
20  
15  
10  
5
ISY+  
ISY–  
0
4
4.5  
5
5.5  
6
6.5  
7
100  
20  
10k  
1k  
20k  
SUPPLY VOLTAGE – ±V  
FREQUENCY – Hz  
Figure 16. Noise Am plitude vs. Frequency  
Figure 19. Supply Current vs. Supply Voltage  
REV. 0  
–9–  
SSM2163  
TH EO RY O F O P ERATIO N  
TO ATTENUATOR  
SWITCHES  
TO MIXER  
SWITCHES  
T he SSM2163 is an eight-input, two-output audio mixer and  
attenuator. T he device provides eight analog inputs, each of  
which can be individually attenuated by 0 dB to 63 dB in 1 dB  
steps (see the SSM2163 simplified block diagram). T he eight  
signals can then be mixed into one or both of two analog  
outputs. T he channel attenuation level and mixer functions  
are controlled by digital registers, which are loaded via a  
serial interface. A hardware mute input is included to  
asynchronously force all inputs into the muted state.  
ATTENUATOR  
LEVEL  
DATA  
LATCHES  
LEFT/RIGHT  
CHANNEL  
CONTROL  
LATCHES  
(2 BITS)  
(6 BITS)  
CLK  
MUTE  
INPUT  
RESET  
CLK  
LOAD  
Analog Section  
T he analog signal path is shown in Figure 20. Each analog input  
has a nominal impedance of 10 k. Each input therefore  
appears as a digitally programmable 10 kpotentiometer. T he  
SSM2163 input impedance remains constant as the attenuation  
level changes. T herefore, the sources which drive the SSM2163  
do not have to drive complex and variable impedances.  
DATA IN  
CLK  
DATA  
INPUT SHIFT REGISTER  
SERIAL DATA  
OUTPUT  
CLOCK  
WRITE  
T he attenuated analog input is applied to the left and right  
channel inputs of the mixer. Each mixer channel consists of an  
analog switch and a buffer amplifier. If the channel is selected  
(via the appropriate bit in the mixer control register), the analog  
switch is turned on. T he buffer amplifier is included after the  
analog switch so that the gain of each channel will not be  
affected by the potentiometer setting or by the on-resistance  
(RDS(ON)) of the switch.  
Figure 21. SSM2163 Serial Data Interface Block Diagram  
T o access the SSM2163, the host controller (typically a micro-  
computer) writes a value to the serial shift register which selects  
the appropriate input channel register for subsequent attenuator-  
load operations. T his write operation also controls the left and  
right mixer switches. T he next write operation then loads the  
6-bit attenuator level into the appropriate register. If a series of  
values are going to be written to the same address, for instance  
when fading a channel, then only one write operation to the  
address register is required.  
Each mixer channel which is ON is then summed into its  
respective (Left or Right) mixer summing amplifier. (If both of  
the mixer channels are ON, then the attenuated analog input  
will be applied to both the Left and Right summing amplifiers.)  
T he buffered output of the summing amplifier will supply  
±500 µA to an external load.  
Ser ial D ata Contr ol Inputs  
T he SSM2163 provides a simple 3- or 4-wire serial interface  
(Figures 22 and 23). Data is input on the DAT A IN pin, while  
CLK is the serial clock. Data can be shifted into the SSM2163  
clock rates up to 1 MHz.  
MIXER  
BUFFER AMP  
OUTPUT  
BUFFER  
SUMMING  
AMPLIFIER  
T he shift register clock, CLK, is enabled when the WRIT E  
input is low. T he WRIT E pin can therefore be used as a chip  
select input. However, the shift register contents are not  
transferred to the register banks until the rising edge of LOAD.  
In most cases, WRIT E and LOAD will be tied together, forming  
a traditional 3-wire serial interface. See the Microcomputer  
Interfaces section of this data sheet for more information.  
ATTENUATOR  
MIXER  
V
IN1  
SWITCH  
V
OUTL  
K = 1  
R1  
R2  
AGND  
CH1L  
SELECT  
V
K = 1  
T o enable a data transfer, the WRIT E and LOAD inputs are  
driven low. T he 8-bit serial data, formatted MSB first, is input  
on the DAT A IN input and clocked into the shift register on the  
rising edge of CLK. T he data is latched on the rising edge of  
WRIT E and LOAD. If the data is an address, then the mixer  
control is updated. If the data is an attenuator value the rising  
edge of WRIT E and LOAD will update the appropriate  
attenuator value.  
OUTR  
TO INPUTS  
AGND  
V
– V  
IN8  
IN2  
CH1R  
SELECT  
R63  
1 OF 63  
DECODER  
AGND  
ATTENTION VALUE  
FROM DATA REGISTER  
MUTE Input  
T he MUT E pin provides a hardware input to force all the  
SSM2163 channels into the muted state. T he MUT E input is  
active HIGH. Most µC I/O pins are in a high impedance state or  
configured as inputs at power-up, so the SSM2163 will  
automatically be muted at power-up. A 10 kresistor to +5 V is  
recommended, to ensure that MUT E is pulled high reliably.  
T he MUT E input can also be driven from a µCs RESET signal  
to force a power-on mute.  
NOTE: ONLY ONE OF EIGHT CHANNELS  
SHOWN FOR CLARITY  
Figure 20. SSM2163 Analog Signal Path  
D igital Inter face  
T he digital interface consists of two banks of 8 data registers  
with a serial interface (Figure 21). One register bank holds the  
left/right mixer control bits, while the other register bank holds  
the 6-bit attenuator value.  
In addition to power-on, the MUT E input can be used to  
asynchronously mute all channels at any time. T he mute  
function of the SSM2163 does not affect the attenuator values  
REV. 0  
–10–  
SSM2163  
SSM2163 power supply connections  
4
4
4
V
V
DD  
V
VDD  
DD  
10  
10  
10  
V
CC  
V+  
VCC  
V+  
0.1µF  
V+  
CC  
+
10µF  
+
0.1µF  
10µF  
+
0.1µF  
10µF  
17  
17  
17  
AGND  
ACOM  
AGND  
AGND  
ACOM  
EXTERNAL  
REFERENCE  
(NC)  
2
(NC)  
2
13  
2
VREF  
OUT  
ACOM  
VSS  
V
V
SS  
SS  
+
0.1µF  
10µF  
12  
1
12  
12  
V
V
VEE  
V–  
EE  
EE  
10µF  
0.1µF  
+
1
1
DGND  
DGND  
DGND  
Figure 22c. Single Supply Using External  
Reference  
Figure 22a. Dual Supply  
Figure 22b. Single Supply  
stored in the attenuator control registers. T o re-enable the  
system after a mute, use the address byte to turn on the desired  
mixer channel. T he selected channel will then operate with the  
previously set attenuator value.  
P ower Supplies and D ecoupling  
T he SSM2163 operates from either single or dual (split) power  
supplies. In either case, proper supply decoupling is important  
to maximize audio performance.  
Ser ial D ata Input For m at  
T o reduce noise, separate pins are provided for the digital and  
analog power supply connections. T hese pins should be  
connected together (VDD to VCC and VEE to VSS) as close to the  
SSM2163 package as possible (Figures 22a, 22b, 22c, power  
supply connections).  
As previously mentioned, data is written to the SSM2163 in two  
8-bit bytes. The serial data format is shown in the Address and  
Data Decoding Truth Table, Figure 3. The first byte sent contains  
the channel address and the Left/Right output mixer control bits.  
The address byte is identified by the MSB being high.  
Single Supply O per ation  
T he second byte contains the data (i.e., the attenuator value).  
T he six LSBs of this byte set the attenuation level, from 0 dB to  
–63 dB. T he MSB of the data byte must be a logic zero.  
T he SSM2163 will operate with a single power supply of +5 V  
to +14 V. Single supply operation simplifies design and reduces  
system cost in multimedia applications, battery powered  
systems, and similar designs. T he SSM2163 provides about  
2 dB of headroom (to 1% T HD+N) when operating from a  
single +5 V supply.  
T he standard format for data sent to the SSM2163 is an address  
byte followed by a data (attenuator level) byte. In some cases,  
however, only one byte needs to be sent. For example,  
attenuation levels are not affected by the MUT E input. T o turn  
a muted channel on, simply send an address byte with the Left  
or Right mixer bit set. T he addressed channel will immediately  
be enabled, using the previously-set attenuation level.  
Furthermore, once a channel is addressed the attenuation level  
can be varied by sending additional data bytes. For example,  
fading a channel can be accomplished by simply incrementing  
the data value sent to the SSM2163.  
T he key to operating from a single supply is to reference all  
analog common connections to a voltage midway between the  
supply and ground. T o simplify single supply operation, the  
SSM2163 provides a buffered pseudo-ground reference (ACOM)  
on Pin 13. T his reference, shown in Figure 23, provides a low  
impedance output at approximately one half of the supply  
voltage. Connect Analog Ground (Pin 17) to the ACOM output  
(Pin 13) for single supply operation. T o minimize noise caused  
by modulation of the pseudo-ground, Pin 13 should be bypassed to  
power supply ground with 0.1 µF and 10 µF capacitors.  
Ser ial D ata O utput  
T he MSB of the shift register is available on the serial DAT A  
OUT PUT pin. T his output can be connected to the input of  
another SSM2163 to permit “daisy-chain” operation. See  
Figure 26 for a typical application. T he DAT A OUT PUT pin  
swings between the digital power supply rails (i.e., from VDD to  
VSS).  
Logic Levels  
All of the SSM2163 logic inputs have T T L and CMOS  
compatible thresholds. However, the allowable voltage range  
for these inputs extends from VDD to VSS  
.
REV. 0  
–11–  
SSM2163  
MIXER  
MIXER SUMMING  
BUFFER AMP  
ATTENUATOR  
AMPLIFIER  
V
V
V
DD  
AGND  
ACOM  
CC  
V
MIXER  
SWITCH  
IN  
+
OUT  
V
Σ
+5V  
10µF  
0.1µF  
SSM2163  
V
OUT  
V
+
SS  
EE  
DGND  
10µF  
+5V  
POWER  
SUPPLY  
0.1µF  
CHANNEL  
SELECT  
AGND  
ACOM  
V
CC  
TTL/CMOS  
LOGIC  
GND  
R1  
CIRCUITS  
10µF  
0.1µF  
R2  
R1=R2  
V
EE  
V
EE  
Figure 24. Use Separate Traces to Reduce Power Supply  
Noise  
Figure 23. Single-Supply Pseudo-Ground Reference  
(ACOM) Generator  
Even if the system includes separate analog and digital power  
supplies, both the analog and digital power pins of the  
SSM2163 should be connected to the analog supply. While this  
connection will inject a small amount of digital noise into the  
analog ground, the effect is small due to the SSM2163’s low  
digital logic input currents and capacitances. If, on the other  
hand, the SSM2163s digital supply pins are connected to a  
digital power supply, then noise from the digital supply will be  
coupled into the SSM2163 and degrade performance.  
For single supply operation, the inputs can either be ac-coupled,  
as shown in Figure 25, or referenced to the pseudo-ground out-  
put. AC coupling eliminates dc offset and offset drift  
differentials between the input source and the SSM2163. In  
addition, ac coupling reduces the risk of “clicks” when switching  
between multiple dc-coupled inputs which have different  
reference levels.  
Since the input coupling capacitors are in series with the 10 kΩ  
input of the attenuator, the impedance of these capacitors will  
influence low frequency gain. T he inexpensive 10 µF aluminum  
electrolytic capacitors shown will limit the gain error to 0.66 dB  
at 20 Hz.  
AP P LICATIO NS  
An 8-Input, 2-O utput Mixer  
A single-chip, 8-input, 2-output mixer using the SSM2163 is  
shown in Figure 25. With this circuit, any of the eight channels  
can be attenuated by 0 dB to –63 dB and mixed into the right,  
left, or both outputs under software control.  
If the entire system is operating from a single supply, then  
typically the input voltage is already referenced to the midpoint  
of the supply. In this case, the SSM2163 can be referenced to  
the same midpoint reference source, as shown in Figure 22c.  
T his connection will eliminate dc offset errors caused by having  
the input signal common and the SSM2163 analog common  
referenced to different voltages. DC offset errors can also be  
eliminated, of course, by using the ac coupling technique  
discussed above.  
+5V  
4
10  
+
0.1µF  
10µF  
V
V
10µF  
+
10µF  
5
DD  
CC  
V
V
V
V
V
V
INPUT 1 LEFT  
INPUT 2 LEFT  
INPUT 3 LEFT  
INPUT 4 LEFT  
INPUT 1 RIGHT  
INPUT 2 RIGHT  
INPUT 3 RIGHT  
INPUT 4 RIGHT  
IN1  
22  
7
14  
LEFT CHANNEL  
OUTPUT  
IN2  
+
V
OUTL  
10µF  
+
10µF  
+
10µF  
+
10µF  
+
10µF  
+
10µF  
N3  
I
RIGHT CHANNEL  
OUTPUT  
15  
3
V
OUTR  
20  
9
D ual-Supply O per ation  
IN4  
IN5  
T he SSM2163 will also operate from dual supplies, ranging  
from ±4 V to ±7 V. (See Figure 22a.) In this case, input signals  
can be referenced to power supply ground. T he ACOM output  
(Pin 13) is left open (no connection) for dual supply operation.  
DATA OUT  
NC  
18  
11  
16  
IN6  
IN7  
IN8  
SSM2163  
6
V
V
SHIELD  
SHIELD  
SHIELD  
SHIELD  
SHIELD  
8
19  
21  
+
Supply D ecoupling  
Optimizing the performance of the SSM2163, or any low noise  
device, requires careful attention to power supply decoupling.  
Since the SSM2163 can operate from a single +5 V supply, it  
seems convenient to simply tap into the digital logic power  
supply. Unfortunately, the logic supply is often a switch-mode  
design, which generates noise in the 20 kHz to 1 MHz range. In  
addition, fast logic gates can generate glitches hundred of millivolts  
in amplitude due to wiring resistances and inductances.  
27  
26  
25  
24  
28  
DATA IN  
CLK  
DATA IN  
CLOCK  
23  
17  
13  
AGND  
CHIP SELECT  
WRITE  
LD  
ACOM  
DGND  
SYSMUTE  
V
SYSTEM MUTE  
V
SS  
EE  
+
10µF  
0.1µF  
2
12  
1
If a separate analog power supply is not available, the SSM2163  
can be powered directly from the system power supply. Separate  
power and ground traces should be provided for the analog  
section, if possible. T his arrangement, shown in Figure 24, will  
isolate the analog section from the logic switching transients.  
Even if a separate power supply trace is not available, however,  
generous supply bypassing will reduce supply line induced  
noise. Local supply bypassing, consisting of a 10 µF tantalum  
electrolytic in parallel with a 0.1 µF ceramic capacitor, is  
recommended in all applications. (See the SSM2163 Power  
Supply Connections figures.)  
Figure 25. An 8-Input, 2-Output Mixer  
T his circuit demonstrates ac coupling of the inputs. As  
previously mentioned, this eliminates level shifting concerns  
from previous stages.  
T he circuit of Figure 25 also demonstrates single +5 V supply  
operation. T he output of the ACOM supply-splitter, Pin 13,  
provides the pseudo-ground reference which is required when  
operating from a single supply.  
REV. 0  
–12–  
SSM2163  
Mixing Additional Channels  
T he circuit of Figure 26 illustrates dc coupling of the inputs.  
DC coupling is practical with dual supplies and ground-  
referenced inputs, because the dc offsets associated with single-  
supply operation are reduced. However, ac coupling could also  
be used, and employing both ac- and dc-coupled signals in one  
mixer is also possible. In addition, this circuit illustrates the  
connections for ±5 V power supplies. Note that the negative  
supply, as well as the positive supply, should be bypassed to  
ground.  
Some mixing applications require more than four inputs for  
each stereo channel. T o meet the requirements of these systems,  
two or more SSM2163s can be paralleled to provide additional  
channels. A typical circuit is shown in Figure 26, which combines  
two SSM2163s to form a 16-input, 2-output mixer. An SSM2135  
dual audio op amp sums the outputs of each of the SSM2163s.  
With this system, any of the 16 inputs can be mixed into either  
or both of the output channels.  
Im plem enting a Softwar e-Contr olled P an-P ot  
+5V  
Pan and fade effects are important attributes of modern multi-  
media presentations and similar applications. One way to  
achieve these effects is to apply the input signal to two input  
channels of the SSM2163, as shown in Figure 27. Since any  
input channel can be mixed into either or both outputs,  
sophisticated pan and fade effects are easily accomplished in  
software. For example, Input 1 can be connected to the left  
channel with 0 dB attenuation, while Input 2 is applied to the  
right channel with –10 dB of attenuation. T his configuration  
will produce the effect of having the audio source “located” to  
the left of center line of the speakers. Another possible option  
would be to attenuate the left channel while boosting the right,  
which would produce an effect of movement of the audio source.  
Since any input can be connected to either output, very flexible  
and sophisticated effects can be produced without hardware  
changes.  
4
+
10  
0.1µF  
10µF  
20k  
V
V
5
DD  
CC  
V
V
V
V
V
V
V
V
V
V
V
V
V
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
+5V  
IN1  
IN2  
IN3  
IN4  
22  
7
20k  
20k  
0.1µF  
0.1µF  
14  
V
OUTL  
V
OUTL  
15  
3
V
OUTR  
20  
9
DATA OUT  
ACOM  
–5V  
IN5  
13  
1/2 SSM2135  
NC  
18  
11  
16  
V
IN6  
IN7  
SSM2163  
#1  
V
V
IN8  
6
SHIELD  
8
27  
26  
25  
24  
28  
SHIELD  
SHIELD  
SHIELD  
SHIELD  
DATA IN  
CLK  
DATA IN  
CLOCK  
19  
21  
WRITE  
LD  
CHIP SELECT  
23  
17  
AGND  
DGND  
SYSMUTE  
SYSTEM MUTE  
V
V
SS  
EE  
12  
1
2
–5V  
0.1µF  
10µF  
+
+5V  
4
V
IN1  
V
IN  
10  
+
0.1µF  
10µF  
V
V
5
V
DD  
CC  
Σ
OUTL  
V
V
V
V
V
V
V
V
V
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
IN1  
22  
7
20k  
20k  
14  
15  
V
20k  
IN2  
V
OUTL  
V
IN3  
V
R
OUT  
20  
9
V
IN4  
V
OUTR  
3
V
DATA OUT  
ACOM  
NC  
NC  
IN5  
1/2 SSM2135  
18  
11  
13  
V
V
IN6  
IN2  
V
IN7  
SSM2163  
#2  
16  
V
IN8  
V
6
8
Σ
OUTR  
SHIELD  
SHIELD  
SHIELD  
SHIELD  
SHIELD  
27  
26  
25  
DATA IN  
CLK  
19  
21  
WRITE  
LD  
23  
17  
24  
28  
AGND  
TO INPUTS  
SYSMUTE  
V
– V  
V
V
DGND  
1
EE  
12  
IN3  
IN8  
SS  
SSM2163  
2
–5V  
0.1µF  
10µF  
+
Figure 27. Connecting the SSM2163 for Pan-Pot  
Operation  
Figure 26. A 16-Input, 2-Output Mixer  
T his circuit utilizes the DAT A OUT feature of the SSM2163 to  
transfer data from the first SSM2163 to the second. In the  
daisy-chain mode, the DAT A OUT pin of the first SSM2163 is  
connected to the DAT A IN pin of the second device. T he  
advantage of this “daisy chain” connection is that it allows a  
3-wire serial interface, as was used in the previous 8-input  
mixer, to control two or more SSM2163s.  
D r iving H eadphones  
A high speed, high output current amplifier, such as the OP279,  
can be added to drive headphones directly. A typical connection  
is shown in Figure 28. Single +5 V operation is maintained,  
since the OP279 offers rail-to-rail inputs and outputs. T he  
OP279s high current output stage can drive a 48 load to  
4 V p-p while maintaining less than 1% T HD.  
T he serial data format for the daisy chain circuit is similar to the  
8-channel application, except that the SSM2163s are loaded in  
tandem. After setting WRITE and LOAD low, two bytes (16 bits)  
are clocked into the first SSM2163. When WRIT E and  
LOAD return high, data will be latched into both SSM2163s  
simultaneously.  
REV. 0  
–13–  
SSM2163  
+V +5V  
DATA IN  
(P3.0) RxD  
(P3.1) TxD  
P1.4  
220µF  
+
16  
1/2  
OP279  
CLK  
WRITE  
LD  
LEFT  
HEADPHONE  
14  
V
OUTL  
50k  
SSM2163  
P1.2  
+5V  
10k  
SSM2163  
80C51 µC  
220µF  
+
16Ω  
1/2  
OP279  
RIGHT  
HEADPHONE  
P1.3  
SYSMUTE  
15  
V
OUTR  
50k  
NOTE: ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 30. Interfacing the 80C51 µC to an SSM2163 in  
4-Wire Mode  
Figure 28. A Single-Supply Stereo Headphone Driver  
T he op amps input offset voltage is only 4 mV maximum, so  
the SSM2163 output can be dc coupled. T he headphone output  
is ac coupled through a 220 µF capacitor. T he large coupling  
capacitor is required because of the low impedance of the  
headphones, which can range from 32 to 600 . An additional  
16 resistor is used in series with the output capacitor to protect  
the op amps output stage by limiting capacitor discharge current.  
An 80C51 C Inter face  
A typical interface between the SSM2163 and an 80C51 µC is  
shown in Figure 30. T his interface uses the 80C51’s internal  
serial port. T he serial port is programmed for Mode 0 operation,  
which functions as a simple 8-bit shift register. The 80C51s Port  
3.0 pin functions as the serial data output, while Port 3.1 serves  
as the serial clock.  
Micr ocom puter Inter faces  
When data is written to the serial buffer register (SBUF, at  
Special Function Register location 99H), the data is  
automatically converted to serial format and clocked out via  
Port 3.0 and Port 3.1. After 8 bits have been transmitted, the  
T ransmit Interrupt flag (SCON.1) is set and the next 8 bits  
can be transmitted.  
T he SSM2163 serial data input provides an easy interface to a  
variety of single chip microcomputers (µCs). Many µCs have a  
built-in serial data capability which can be used for  
communicating with the SSM2163. In cases where no serial  
port is provided, or it is being used for some other purpose  
(such as an RS-232 communications interface), the SSM2163  
can easily be addressed in software.  
T he 80C51 transmits serial data in Least Significant Bit (LSB)-  
first format. T he SSM2163, on the other hand, requires data in  
MSB format. A BYT ESWAP routine swaps the order of the bits  
before transmission.  
T he SSM2163 can operate in either a 3-wire or 4-wire mode.  
In most cases, the 3-wire mode is more practical, due to  
reduced PC board traces and compatibility with µC serial  
interface protocols. A typical interface, using the 80C51 µC, is  
shown in Figure 29, while the interface waveforms are shown in  
the T iming Diagram, 3-Wire Mode, Figure 1.  
T he SSM2163 requires the Chip Select to go low at the begin-  
ning of the serial data transfer. After each 8 bits (either address  
or attenuation value) are transmitted, Chip Select must go high  
to latch data into the appropriate register. Chip Select is controlled  
by the 80C51s port 1.4 pin.  
DATA IN  
(P3.0) RxD  
(P3.1) TxD  
P1.4  
Softwar e for the 80C51 Inter face  
CLK  
WRITE  
LD  
A software routine for the SSM2163 to 80C51 interface is  
shown in Listing 1. The routine transfers the 6-bit attenuation  
level stored at data memory location LEVEL_VALUE to the  
SSM2163 input addressed by the contents of location  
INPUT _ADDR, and turns the Left and/or Right mixer channels  
on/off based on bits 3 and 4 of INPUT _ADDR.  
SSM2163  
+5V  
10k  
80C51 µC  
P1.3  
SYSMUTE  
NOTE: ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 29. Interfacing the 80C51 µC to an SSM2163 in  
3-Wire Mode  
P or t in 4-Wir e Mode  
In some cases, it may be desirable to synchronize the outputs of  
several SSM2163s. T he 4-wire mode, shown in Figure 30,  
provides this capability. As shown in Figure 2, the T iming  
Diagram, 4-Wire Mode, the input shift register is loaded with  
data while the WRITE input is low. However, the data will not  
be latched into the SSM2163’s internal registers until the  
rising edge of the LOAD input. In this manner, any number  
of SSM2163s can be loaded with data, while the amplitude and  
mixer changes will not occur until the separate LOAD pulse  
occurs.  
REV. 0  
–14–  
SSM2163  
Listing 1. Softwar e for the 80C51-SSM2163 Ser ial P or t Inter face  
; This subroutine loads an SSM2163 mixer channel with a 6-bit  
; attenuator value, and turns the Left or Right mixer switch ON or OFF.  
; The attenuator value is stored at location ATTEN_VALUE  
; The mixer channel address is stored at location INPUT_ADDR  
;
PORT1  
ATTEN_VALUE DATA  
DATA  
90H  
40H  
;SFR register for port 1  
;Attenuation level (0=0dB)  
;ATTEN-VALUE: B7=0, B5–B0=Attenuation Value  
DATA 41H ;Mixer Channel Address  
;INPUT_ADDR: B7=1, B4=L chnl, B3=R chnl, B2-B0=address  
INPUT_ADDR  
LOOPCOUNT  
SHIFTREG  
SENDBYTE  
DATA  
DATA  
DATA  
;
42H  
43H  
44H  
;Count loops for byte swap  
;Shift reg. for byte swap  
;Destination reg. for byte swap  
ORG  
CLR  
CLR  
CLR  
CLR  
CLR  
SETB  
MOV  
ACALL  
MOV  
ACALL  
RET  
;
100H  
SCON.7  
SCON.6  
SCON.5  
SCON.1  
PORT1.3  
PORT1.4  
SHIFTREG,INPUT_ADDR  
SEND_IT  
;arbitrary starting address  
;set serial  
; data mode 0  
LD_2163:  
;Clr SM2 for mode 0  
;clr the transmit flag  
;Mute function off  
;WRITE and LOAD High  
;Get mixer channel address  
; send to SSM2163  
;Get the attenuation level  
; send it to the SSM2163  
;Done  
SEND_VAL:  
SHIFTREG,ATTEN_VALUE  
SEND_IT  
;Convert the byte to LSB-first format and send  
; it to the SSM2163  
SEND_IT:  
BYTESWAP:  
MOV  
MOV  
RLC  
MOV  
MOV  
RRC  
MOV  
DJNZ  
CLR  
MOV  
JNB  
CLR  
SETB  
RET  
END  
LOOPCOUNT,#8  
A,SHIFTREG  
A
SHIFTREG,A  
A,SENDBYTE  
A
SENDBYTE,A  
LOOPCOUNT,BYTESWAP  
PORT1.4  
SBUF,SENDBYTE  
SCON.1,SEND_WAIT  
SCON.1  
;Shift 8 bits  
;Get source byte  
;rotate MSB to carry  
;Save new source byte  
;get destination byte  
;Move carry into MSB  
;Save  
;Done?  
;Set WRITE and LOAD low  
;Send the byte  
SEND_WAIT:  
;Wait until 8 bits are send  
;Clear the serial flag  
;Set WRITE and LOAD high to latch  
PORT1.4  
;
data into the SSM2163  
T he subroutine begins by setting appropriate bits in the Serial  
Control register to configure the serial port for Mode 0  
operation. Next the SSM2163’s Chip Select input is set low to  
enable the SSM2163. T he input channel address is obtained  
from memory location INPUT _ADDR, adjusted to compensate  
for the 80C51s serial data format, and moved to the serial  
buffer register. At this point, serial data transmission begins  
automatically. When all 8 bits have been sent, the T ransmit  
Interrupt bit is set, and the Chip Select output is set high to  
latch the channel address into the SSM2163. T he subroutine  
then sets Chip Select low again and proceeds to send the  
attenuation value stored at location LEVEL_VALUE. When  
the Chip Select input is returned high, the appropriate  
SSM2163 input channel will be updated with the new  
attenuation value and the subroutine ends.  
T he 80C51 sends data out of its shift register LSB first, while  
the SSM2163 requires data MSB first. T he subroutine therefore  
includes a BYT ESWAP subroutine to reformat the data. T his  
routine transfers the MSB-first byte at location SHIFT REG to  
an LSB-first byte at location SENDBYT E. T he routine rotates  
the MSB of the first byte into the carry with a Rotate Left  
Carry instruction, then rotates the carry into the MSB of the  
second byte with a Rotate Right Carry instruction. After 8  
loops, SENDBYT E contains the data in the proper format.  
T he BYT ESWAP routine in Listing 1 is convenient because the  
attenuator data can be calculated in normal LSB form. For  
example, fading a channel on the SSM2163 is simply a matter  
of repeatedly incrementing the LEVEL_VALUE location and  
calling the SEND_VAL subroutine. (Remember, the 6-bit  
REV. 0  
–15–  
SSM2163  
number stored in LEVEL_VALUE is the attenuation value,  
expressed in –dB, so larger values will decrease volume. Also,  
the register must not be allowed to increment beyond 7FH  
because the MSB will be set and the SSM2163 will interpret  
the value as an address. T herefore, the two highest bits of  
LEVEL_VALUE should be cleared by ANDing the register  
with 3FH.)  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-P in P lastic D IP  
(N-28)  
1.565 (39.70)  
1.380 (35.10)  
If the µCs hardware serial port is being user for other purposes,  
the SSM2163 can be loaded by using the parallel port. A typical  
parallel interface is shown in Figure 31. T he serial data is  
transmitted to the SSM2163 via the 80C51’s Port 1.6 output,  
while Port 1.5 acts as the serial clock.  
28  
15  
0.580 (14.73)  
0.485 (12.32)  
14  
1
0.060 (1.52)  
0.195 (4.95)  
0.125 (3.18)  
0.625 (15.87)  
0.600 (15.24)  
PIN 1  
0.015 (0.38)  
0.250  
(6.35)  
MAX  
0.150  
(3.81)  
MIN  
DATA IN  
P1.6  
P1.5  
P1.4  
0.015 (0.381)  
0.008 (0.204)  
CLK  
WRITE  
LD  
0.200 (5.05)  
0.125 (3.18)  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
0.070  
(1.77)  
MAX  
SEATING  
PLANE  
SSM2163  
+5V  
10k  
80C51 µC  
P1.3  
28-P in SO IC  
(R-28)  
SYSMUTE  
NOTE: ADDITIONAL PINS OMITTED FOR CLARITY  
0.7125 (18.10)  
0.6969 (17.70)  
Figure 31. An SSM2163 to 80C51 µC Interface Using  
Parallel Port 1  
29  
15  
Software for the interface of Figure 31 is straightforward.  
T ypically, the µC will repeatedly shift the value to be sent, for  
example from register LEVEL_VALUE, into the carry bit. Port  
P1.6 is then set or reset based on the carry bit, and Port P1.5 is  
strobed low and then high to create a clock pulse. After eight  
loops, the value will have been sent to the SSM2163. Note that  
all eight bits should be sent, even though only six bits are  
significant. If only six bits are shifted in, the two low order bits  
of the previous value will remain in the MSBs of the shift  
register. If this action results in the MSB being a one, the  
SSM2163 will interpret this as an address and unpredictable  
results will occur.  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
REV. 0  
–16–  

相关型号:

SSM2163S-REEL

暂无描述
ADI

SSM2164

Low Cost Quad Voltage Controlled Amplifier
ADI

SSM2164P

Low Cost Quad Voltage Controlled Amplifier
ADI

SSM2164S

Low Cost Quad Voltage Controlled Amplifier
ADI

SSM2164S-REEL

IC 4 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO16, SOIC-16, Audio Control IC
ADI

SSM2164SZ

Low Cost Quad Voltage Controlled Amplifier
ADI

SSM2164SZ-REEL7

Low Cost Quad Voltage Controlled Amplifier
ADI

SSM2165

Microphone Preamplifier with Variable Compression and Noise Gating
ADI

SSM2165-1

Microphone Preamplifier with Variable Compression and Noise Gating
ADI

SSM2165-1P

Microphone Preamplifier with Variable Compression and Noise Gating
ADI

SSM2165-1S

Microphone Preamplifier with Variable Compression and Noise Gating
ADI

SSM2165-1S-REEL7

1 CHANNEL, AUDIO PREAMPLIFIER, PDSO8, SOIC-8
ADI