SSM2306CPZ-R2 [ADI]

2 W, Filterless, Class-D Stereo Audio Amplifier; 2 W ,无滤波器D类立体声音频放大器
SSM2306CPZ-R2
型号: SSM2306CPZ-R2
厂家: ADI    ADI
描述:

2 W, Filterless, Class-D Stereo Audio Amplifier
2 W ,无滤波器D类立体声音频放大器

消费电路 商用集成电路 音频放大器 视频放大器
文件: 总16页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 W, Filterless, Class-D  
Stereo Audio Amplifier  
SSM2306  
The SSM2306 features ultralow idle current, high efficiency, and  
a low noise modulation scheme. It operates with >87% efficiency  
at 1.4 W into 8 Ω from a 5.0 V supply and has a signal-to-noise  
ratio (SNR) that is better than 96 dB. PDM modulation offers lower  
EMI radiated emissions compared to other Class-D architectures.  
FEATURES  
Filterless Class-D amplifier with built-in output stage  
2 W into 4 Ω and 1.4 W into 8 Ω at 5.0 V supply  
Ultralow idle current with load resistance  
>87% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
Better than 96 dB SNR (signal-to-noise ratio)  
Available in 16-lead, 3 mm × 3 mm LFCSP  
Single-supply operation from 2.5 V to 5.0 V  
20 nA ultralow shutdown current  
The SSM2306 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying a  
SD  
logic low to the  
pin.  
Short-circuit and thermal protection  
Pop-and-click suppression  
Built-in resistors reduce board component count  
Default fixed 18 dB gain and user-adjustable  
The architecture of the device allows it to achieve a very low level  
of pop and click to minimize voltage glitches at the output  
during turn-on and turn-off, thereby reducing audible noise on  
activation and deactivation. The fully differential input of the  
SSM2306 provides excellent rejection of common-mode noise  
on the input. Input coupling capacitors can be omitted if the dc  
input common-mode voltage is approximately VDD/2.  
APPLICATIONS  
Mobile phones  
MP3 players  
Portable gaming  
Portable electronics  
Educational toys  
Notebook computers  
The SSM2306 also has excellent rejection of power supply noise,  
including noise caused by GSM transmission bursts and RF  
rectification.  
The SSM2306 has a preset gain of 18 dB that can be reduced by  
using external resistors.  
GENERAL DESCRIPTION  
The SSM2306 is a fully integrated, high efficiency, Class-D stereo  
audio amplifier designed to maximize performance for portable  
applications. The application circuit requires minimum external  
components and operates from a single 2.5 V to 5.0 V supply. It  
is capable of delivering 2 W of continuous output power with less  
than 10% THD + N driving a 4 Ω load from a 5.0 V supply.  
The SSM2306 is specified over the commercial temperature range  
(−40°C to +85°C). It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 16-lead, 3 mm × 3 mm  
lead frame chip scale package (LFCSP).  
FUNCTIONAL BLOCK DIAGRAM  
VBATT  
2.5V TO 5.0V  
10µF  
0.1µF  
VDD  
SSM2306  
344k  
VDD  
1
1
22nF  
22nF  
R
R
EXT  
EXT  
43kΩ  
OUTR+  
RIGHT IN+  
RIGHT IN–  
FET  
DRIVER  
INR+  
INR–  
MODULATOR  
OUTR–  
43kΩ  
344kΩ  
BIAS  
INTERNAL  
OSCILLATOR  
SHUTDOWN  
SD  
344kΩ  
1
1
22nF  
22nF  
R
R
EXT  
EXT  
43kΩ  
43kΩ  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
FET  
INL+  
INL–  
MODULATOR  
GND  
DRIVER  
GND  
344kΩ  
GAIN = 344k/(43k+ R  
)
EXT  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
SSM2306  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Application Circuits ......................................................... 11  
Application Notes........................................................................... 12  
Overview ..................................................................................... 12  
Gain Selection............................................................................. 12  
Pop-and-Click Suppression ...................................................... 12  
EMI Noise.................................................................................... 12  
Layout .......................................................................................... 13  
Input Capacitor Selection.......................................................... 13  
Proper Power Supply Decoupling ............................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
4/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
SSM2306  
SPECIFICATIONS  
VDD = 5.0 V; TA = 25oC; RL = 4 Ω, 8 Ω; gain = 6 dB, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 2.5V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 2.5V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 2.5V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 2.5V  
POUT = 2 W, 4 Ω, VDD = 5.0 V  
1.8  
1.4  
0.9  
W
W
W
W
W
W
W
W
W
W
W
W
%
%
%
%
V
0.615  
0.35  
0.275  
2.4  
1.53  
1.1  
0.77  
0.45  
0.35  
75  
Efficiency  
η
POUT = 1.4 W, 8 Ω, VDD = 5.0 V  
PO = 2 W into 4 Ω each channel, f = 1 kHz, VDD = 5.0 V  
PO = 1 W into 8 Ω each channel, f = 1 kHz, VDD = 5.0V  
85  
0.4  
0.02  
Total Harmonic Distortion + Noise  
THD + N  
VCM  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
1.0  
VDD − 1  
CMRRGSM VCM = 2.5 V 100 mV at 217 Hz, G = 18 dB, input  
referred  
70  
dB  
Channel Separation  
XTALK  
fSW  
VOOS  
PO = 100 mW , f = 1 kHz  
78  
420  
2.0  
dB  
kHz  
mV  
Average Switching Frequency  
Differential Output Offset Voltage  
POWER SUPPLY  
Supply Voltage Range  
Power Supply Rejection Ratio  
VDD  
PSRR  
PSRRGSM  
Guaranteed from PSRR test  
VDD = 2.5 V to 5.0 V  
VRIPPLE = 100 mV rms at 217 Hz, inputs ac GND,  
CIN = 0.1 μF, input referred  
2.5  
70  
5.0  
V
dB  
dB  
85  
75  
Supply Current  
ISY  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
6.5  
5.7  
5.1  
20  
mA  
mA  
mA  
nA  
Shutdown Current  
ISD  
SD  
= GND  
GAIN  
Closed-Loop Gain  
Differential Input Impedance  
Av  
ZIN  
REXT = 0  
SD  
18  
43  
dB  
kΩ  
= VDD  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
VIH  
VIL  
tWU  
tSD  
ISY ≥ 1 mA  
ISY ≤ 300 nA  
1.2  
0.5  
30  
V
V
ms  
μs  
kΩ  
SD  
SD  
SD  
rising edge from GND to VDD  
falling edge from VDD to GND  
= GND  
Turn-Off Time  
5
Output Impedance  
OUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are  
ac-grounded, AV = 18 dB, RL = 4 Ω, A weighting  
POUT = 2.0 W, RL = 4 Ω  
44  
96  
μV  
dB  
Signal-to-Noise Ratio  
SNR  
Rev. 0 | Page 3 of 16  
 
SSM2306  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Common-Mode Input Voltage  
ESD Susceptibility  
6 V  
VDD  
VDD  
4 kV  
Table 3. Thermal Resistance  
Package Type  
16-Lead, 3 mm × 3 mm LFCSP  
θJA  
θJC  
Unit  
44  
31.5  
°C/W  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
SSM2306  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 OUTR+  
11 OUTR–  
10 NC  
OUTL+  
OUTL–  
SD  
1
2
3
4
SSM2306  
TOP VIEW  
(Not to Scale)  
INL+  
9 INR+  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTL+  
OUTL−  
SD  
Description  
1
2
3
Inverting Output for Left Channel.  
Noninverting Output for Left Channel.  
Shutdown Input. Active low digital input.  
Noninverting Input for Left Channel.  
Inverting Input for Left Channel.  
No Connect.  
4
5
6
INL+  
INL−  
NC  
7
NC  
No Connect.  
8
9
INR−  
INR+  
NC  
OUTR−  
OUTR+  
GND  
VDD  
VDD  
GND  
Inverting Input for Right Channel.  
Noninverting Input for Right Channel.  
No Connect.  
Noninverting Output for Right Channel.  
Inverting Output for Right Channel.  
Ground for Output Amplifiers.  
Power Supply for Output Amplifiers.  
Power Supply for Output Amplifiers.  
Ground for Output Amplifiers.  
10  
11  
12  
13  
14  
15  
16  
Rev. 0 | Page 5 of 16  
 
SSM2306  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
10  
R
A
= 4, 33µH  
R
A
= 8, 33µH  
= 6dB  
L
V
L
V
= 18dB  
V
= 2.5V  
V
= 2.5V  
DD  
DD  
10  
1
1
V
= 3.6V  
V
= 3.6V  
DD  
DD  
0.1  
0.1  
V
= 5V  
DD  
V
= 5V  
DD  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 3. THD + N vs. Output Power into 4 Ω, AV = 18 dB  
Figure 6. THD + N vs. Output Power into 8 Ω, AV = 6 dB  
100  
10  
100  
10  
V
R
A
= 5V  
= 8, 33µH  
= 18dB  
DD  
R
A
= 8, 33µH  
= 18dB  
L
V
L
V
V
= 2.5V  
DD  
1
1
V
= 3.6V  
DD  
0.1  
0.1  
1W  
0.25W  
0.01  
0.001  
0.01  
0.001  
V
= 5V  
DD  
0.5W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 8 Ω, AV = 18 dB  
Figure 7. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, AV = 18 dB  
100  
10  
100  
V
A
R
= 5V  
= 18dB  
= 4, 33µH  
R
A
= 4, 33µH  
= 6dB  
DD  
L
V
V
L
V
= 2.5V  
DD  
10  
1
2W  
1
V
= 3.6V  
DD  
V
= 5V  
DD  
0.1  
0.1  
1W  
0.5W  
0.01  
0.001  
0.01  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
Figure 8. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω, AV = 18 dB  
Figure 5. THD + N vs. Output Power into 4 Ω, AV = 6 dB  
Rev. 0 | Page 6 of 16  
 
SSM2306  
100  
10  
100  
10  
V
A
R
= 2.5V  
= 18dB  
= 4, 33µH  
V
A
R
= 3.6V  
= 18dB  
= 8, 33µH  
DD  
DD  
V
L
V
L
0.5W  
1
1
0.1  
0.1  
0.25W  
0.5W  
0.125W  
0.01  
0.001  
0.01  
0.125W  
100k  
0.25W  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 12. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, AV = 18 dB  
Figure 9. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, AV = 18 dB  
7.5  
100  
V
= 3.6V  
I
FOR BOTH CHANNELS  
SY  
DD  
A
R
= 18dB  
= 4, 33µH  
V
L
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
10  
1
R
= 8, 33µH  
L
R
= 4, 33µH  
L
1W  
NO LOAD  
0.1  
0.5W  
0.25W  
0.01  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
Figure 10. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, AV = 18 dB  
Figure 13. Supply Current vs. Supply Voltage, No Load  
100  
12  
10  
8
V
A
R
= 2.5V  
= 18dB  
= 8, 33µH  
DD  
V
L
10  
1
VDD = 5V  
6
VDD = 3.6V  
VDD = 2.5V  
0.1  
0.25W  
0.075W  
4
0.125W  
2
0.01  
0.001  
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
SHUTDOWN VOLTAGE (V)  
Figure 11. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, AV = 18 dB  
Figure 14. Supply Current vs. Shutdown Voltage  
Rev. 0 | Page 7 of 16  
SSM2306  
3.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
f = 1kHz  
f = 1kHz  
A
= 18dB  
= 4, 33µH  
A
R
= 6dB  
= 8, 33µH  
V
L
V
L
R
2.5  
2.0  
1.5  
1.0  
0.5  
0
10%  
10%  
1%  
1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 15. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 18 dB  
Figure 18. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 6 dB  
3.0  
100  
f = 1kHz  
R
= 4, 33µH  
L
A
= 6dB  
= 4, 33µH  
V
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
10%  
1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 16.Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 6 dB  
Figure 19. Efficiency vs. Output Power into 4 Ω  
1.8  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 1kHz  
R
= 8, 33µH  
L
A
= 18dB  
= 8, 33µH  
V
L
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
10%  
1%  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 20. Efficiency vs. Output Power into 8 Ω  
Figure 17. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 18 dB  
Rev. 0 | Page 8 of 16  
SSM2306  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
R
= 3.6V  
= 4, 33µH  
V
= 5V  
DD  
DD  
R = 8, 33µH  
FOR BOTH CHANNELS  
L
L
FOR BOTH CHANNELS  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6  
OUTPUT POWER (W)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
OUTPUT POWER (W)  
Figure 24. Power Dissipation vs. Output Power at VDD = 3.6 V, RL = 4 Ω  
Figure 21. Power Dissipation vs. Output Power at VDD = 5 V, RL = 8 Ω  
900  
1.0  
R
= 8, 33µH  
IS FOR BOTH CHANNELS  
L
V
R
= 3.6V  
= 8, 33µH  
DD  
I
SY  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
L
FOR BOTH CHANNELS  
V
= 3.6V  
DD  
V
= 5V  
DD  
V
= 2.5V  
DD  
0
0.2  
0.4  
0.6  
0.8  
(W)  
1.0  
1.2  
1.4  
1.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
P
OUTPUT POWER (W)  
O
Figure 22. Power Dissipation vs. Output Power at VDD = 3.6 V, RL = 8 Ω  
Figure 25. Supply Current vs. Output Power into 8 Ω  
2.8  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 5V  
R
= 4, 33µH  
IS FOR BOTH CHANNELS  
V
R
= 5V  
= 4, 33µH  
DD  
L
DD  
2.6  
I
SY  
L
2.4 FOR BOTH CHANNELS  
V
= 3.6V  
DD  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 2.5V  
DD  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
OUTPUT POWER (W)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
(W)  
P
O
Figure 23. Power Dissipation vs. Output Power at VDD = 5 V, RL = 4 Ω  
Figure 26. Supply Current vs. Output Power into 4 Ω  
Rev. 0 | Page 9 of 16  
SSM2306  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
7
6
5
4
3
SD INPUT  
2
1
OUTPUT  
0
–1  
–2  
–100  
10  
100  
1k  
10k  
100k  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (Hz)  
TIME (ms)  
Figure 27. PSRR vs. Frequency  
Figure 30. Turn-On Response  
7
6
0
R
= 8, 33µH  
OUTPUT  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
SD INPUT  
5
4
3
2
1
0
–1  
–2  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
10  
100  
1k  
10k  
100k  
TIME (ms)  
FREQUENCY (Hz)  
Figure 31. Turn-Off Response  
Figure 28. CMRR vs. Frequency  
0
–20  
V
V
R
= 3.6V  
DD  
= 1V rms  
RIPPLE  
= 8, 33µH  
L
–40  
–60  
–80  
–100  
–120  
–140  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 29. Crosstalk vs. Frequency  
Rev. 0 | Page 10 of 16  
SSM2306  
TYPICAL APPLICATION CIRCUITS  
0.1µF  
10µF  
VBATT  
2.5V TO 5.0V  
VDD  
VDD  
SSM2306  
1
1
22nF  
22nF  
R
R
EXT  
EXT  
INR+  
INR–  
OUTR+  
RIGHT IN+  
RIGHT IN–  
FET  
DRIVER  
MODULATOR  
OUTR–  
SD  
INTERNAL  
OSCILLATOR  
SHUTDOWN  
BIAS  
1
1
22nF  
22nF  
R
R
EXT  
EXT  
INL+  
INL–  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
FET  
MODULATOR  
GND  
DRIVER  
GND  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 32. Stereo Differential Input Configuration  
0.1µF  
10µF  
VBATT  
2.5V TO 5.0V  
VDD  
VDD  
SSM2306  
22nF  
22nF  
R
R
EXT  
INR+  
OUTR+  
OUTR–  
RIGHT IN  
FET  
DRIVER  
MODULATOR  
INR–  
EXT  
SD  
INTERNAL  
SHUTDOWN  
LEFT IN  
BIAS  
OSCILLATOR  
22nF  
22nF  
R
R
EXT  
INL+  
INL–  
OUTL+  
OUTL–  
FET  
DRIVER  
MODULATOR  
GND  
EXT  
GND  
Figure 33. Stereo Single-Ended Input Configuration  
Rev. 0 | Page 11 of 16  
 
 
 
SSM2306  
APPLICATION NOTES  
OVERVIEW  
EMI NOISE  
The SSM2306 stereo, Class-D, audio amplifier features a filterless  
modulation scheme that greatly reduces the external compo-  
nents count, conserving board space and, thus, reducing systems  
cost. The SSM2306 does not require an output filter; instead, it  
relies on the inherent inductance of the speaker coil and the  
natural filtering capacity of the speaker and human ear to fully  
recover the audio component of the square wave output.  
The SSM2306 uses a proprietary modulation and spread-  
spectrum technology to minimize EMI emissions from the  
device. Figure 34 shows SSM2306 EMI emission starting from  
100 kHz to 30 MHz. Figure 35 shows SSM2306 EMI emission  
from 30 kHz to 2 GHz. These figures clearly depict the SSM2306  
EMI behavior as being well below the FCC regulation values,  
starting from 100 kHz and passing beyond 1 GHz of frequency.  
Although the overall EMI noise floor is slightly higher, frequency  
spurs from the SSM2306 are greatly reduced.  
Although most Class-D amplifiers use some variation of pulse-  
width modulation (PWM), the SSM2306 uses sigma-delta (Σ-Δ)  
modulation to determine the switching pattern of the output  
devices. This provides a number of important benefits. Σ-Δ  
modulators do not produce a sharp peak with many harmonics  
in the AM frequency band, as pulse-width modulators often do.  
Σ-Δ modulation provides the benefits of reducing the amplitude  
of spectral components at high frequencies; that is, reducing EMI  
emission that might otherwise radiate by the use of speakers  
and long cable traces. The SSM2306 also offers protection  
circuits for overcurrent and overtemperature protection.  
70  
= HORIZONTAL  
= VERTICAL  
= REGULATION VALUE  
60  
50  
40  
30  
20  
GAIN SELECTION  
10  
0
The SSM2306 has a pair of internal resistors that set an 18 dB  
default gain for the amplifier. It is possible to adjust the SSM2306  
gain by using external resistors at the input. To set a gain lower  
than 18 dB, refer to Figure 32 for the differential input configu-  
ration and Figure 33 for the single-ended configuration. Calculate  
the external gain configuration as  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 34. EMI Emissions from SSM2306  
70  
= HORIZONTAL  
= VERTICAL  
= REGULATION VALUE  
60  
50  
40  
30  
20  
External Gain Settings = 344 kΩ/(43 kΩ + REXT  
)
POP-AND-CLICK SUPPRESSION  
Voltage transients at the output of audio amplifiers can occur with  
the activation or deactivation of shutdown. Furthermore, voltage  
transients as low as 10 mV are audible as an audio pop in the  
speaker. Likewise, clicks and pops are classified as undesirable  
audible transients generated by the amplifier system, and as  
such, as not coming from the system input signal. These types  
of transients generate when the amplifier system changes its  
operating mode. For example, the following can be sources of  
audible transients:  
10  
0
10  
100  
1k  
10k  
FREQUENCY (MHz)  
Figure 35. EMI Emissions from SSM2306  
System power-up/power-down  
Mute/unmute  
Input source change  
Sample rate change  
The measurements for Figure 34 and Figure 35 were taken with  
a 1 kHz input signal, producing 0.5 W output power into an 8 Ω  
load from a 3.6 V supply. Cable length was approximately 5 cm.  
To detect EMI, a magnetic probe was used touching the 2-inch  
output trace to the load.  
The SSM2306 has a pop-and-click suppression architecture that  
reduces these output transients, resulting in noiseless activation and  
deactivation.  
Rev. 0 | Page 12 of 16  
 
 
 
SSM2306  
INPUT CAPACITOR SELECTION  
LAYOUT  
The SSM2306 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors  
are required if the input signal is not biased within this recom-  
mended input dc common-mode voltage range, if high-pass  
filtering is needed (see Figure 32), or if using a single-ended  
source (see Figure 33). If high-pass filtering is needed at the  
input, the input capacitor together with the input resistor of the  
SSM2306 form a high-pass filter whose corner frequency is  
determined by the following equation:  
As output power continues to increase, careful layout is needed  
for proper placement of PCB traces and wires between the ampli-  
fier, load, and power supply. A good practice is to use short, wide  
PCB tracks to decrease voltage drops and minimize inductance.  
Make track widths at least 200 mil for every inch of track length  
for lowest DCR, and use 1 oz. or 2 oz. of copper PCB traces to  
further reduce IR drops and inductance. Poor layout increases  
voltage drops, consequently affecting efficiency. Use large traces  
for the power supply inputs and amplifier outputs to minimize  
losses due to parasitic trace resistance. Proper grounding guide-  
lines help to improve audio performance, minimize crosstalk  
between channels, and prevent switching noise from coupling  
into the audio signal.  
fC = 1/(2π × RIN × CIN)  
Input capacitors can have very important effects on the circuit  
performance. Not using input capacitors degrades the output  
offset of the amplifier as well as the PSRR performance.  
To maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins should be as wide as possible to maintain the minimum  
trace resistances. It is also recommended to use a large area  
ground plane for minimum impedances.  
PROPER POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short duration  
voltage spikes. Although the actual switching frequency can  
range from 10 kHz to 100 kHz, these spikes can contain fre-  
quency components that extend into the hundreds of megahertz.  
The power supply input needs to be decoupled with a good  
quality, low ESL and low ESR capacitor, usually around 4.7 μF.  
This capacitor bypasses low frequency noises to the ground  
plane. For high frequency transients noises, use a 0.1 μF capacitor  
as close as possible to the VDD pin of the device. Placing the  
decoupling capacitor as close as possible to the SSM2306 helps  
maintain efficiency performance.  
Good PCB layouts isolate critical analog paths from sources of  
high interference; furthermore, separate high frequency circuits  
(analog and digital) from low frequency ones. Properly designed  
multilayer printed circuit boards can reduce EMI emission and  
increase immunity to RF field by a factor of 10 or more compared  
with double-sided boards. A multilayer board allows a complete  
layer to be used for the ground plane, whereas the ground plane  
side of a double-sided board is often disrupted with signal cross-  
over. If the system has separate analog and digital ground and  
power planes, the analog ground plane should be underneath  
the analog power plane, and, similarly, the digital ground plane  
should be underneath the digital power plane. There should be  
no overlap between analog and digital ground planes or analog  
and digital power planes.  
Rev. 0 | Page 13 of 16  
 
SSM2306  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
1
0.45  
1.50 SQ  
1.35  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 36. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
SSM2306CPZ-R21  
SSM2306CPZ-REEL1  
SSM2306CPZ-REEL71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
Branding  
A1R  
A1R  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CP-16-3  
A1R  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 14 of 16  
 
 
SSM2306  
NOTES  
Rev. 0 | Page 15 of 16  
SSM2306  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06542-0-4/07(0)  
Rev. 0 | Page 16 of 16  

相关型号:

SSM2306CPZ-REEL

2 W, Filterless, Class-D Stereo Audio Amplifier
ADI

SSM2306CPZ-REEL7

2 W, Filterless, Class-D Stereo Audio Amplifier
ADI

SSM2306N

N-CHANNEL ENHANCEMENT-MODE POWER MOSFET
SSC

SSM2307GN

P-CHANNEL ENHANCEMENT MODE POWER MOSFET
SSC

SSM2307N

P-CHANNEL ENHANCEMENT MODE POWER MOSFET
SSC

SSM2308

N-Channel Enhancement Mode Power Mos.FET
SECOS

SSM2309GN

P-channel Enhancement-mode Power MOSFET
SSC

SSM2310

N-Channel Enhancement Mode Power Mos.FET
SECOS

SSM2310GN

N-channel Enhancement-mode Power MOSFET
SSC

SSM2311

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2311-EVALZ

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2311-MINI-EVALZ

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI