SSM2315CBZ-R21 [ADI]

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier; 无滤波器,高效率,单声道3瓦D类音频放大器
SSM2315CBZ-R21
型号: SSM2315CBZ-R21
厂家: ADI    ADI
描述:

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
无滤波器,高效率,单声道3瓦D类音频放大器

音频放大器
文件: 总16页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Filterless, High Efficiency,  
Mono 3 W Class-D Audio Amplifier  
SSM2315  
The SSM2315 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. The modulation  
continues to provide high efficiency even at low output power.  
It operates with 93% efficiency at 1.4 W into 8 Ω or 85% efficiency  
at 3 W into 3 Ω from a 5.0 V supply and has an SNR of >103 dB.  
Spread-spectrum pulse density modulation is used to provide  
lower EMI-radiated emissions compared with other Class-D  
architectures.  
FEATURES  
Filterless Class-D amplifier with Σ-Δ modulation  
No sync necessary when using multiple Class-D amplifiers  
from Analog Devices, Inc.  
3 W into 3 Ω load and 1.4 W into 8 Ω load at 5.0 V supply  
with <1% total harmonic distortion (THD + N)  
93% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
>103 dB signal-to-noise ratio (SNR)  
Single-supply operation from 2.5 V to 5.5 V  
20 nA ultralow shutdown current  
Short-circuit and thermal protection  
Available in 9-ball, 1.5 mm × 1.5 mm WLCSP  
Pop-and-click suppression  
Built-in resistors reduce board component count  
Default fixed 6 dB or user adjustable gain setting  
The SSM2315 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying  
SD  
a logic low to the  
pin.  
The device also includes pop-and-click suppression circuitry.  
This suppression circuitry minimizes voltage glitches at the  
output during turn-on and turn-off, reducing audible noise  
on activation and deactivation.  
APPLICATIONS  
Mobile phones  
MP3 players  
Portable gaming  
Portable electronics  
Educational toys  
The fully differential input of the SSM2315 provides excellent  
rejection of common-mode noise on the input. Input coupling  
capacitors can be omitted if the dc input common-mode voltage  
is approximately VDD/2.  
The default gain of the SSM2315 is 6 dB, but users can reduce the  
gain by using a pair of external resistors (see the Gain section).  
GENERAL DESCRIPTION  
The SSM2315 is a fully integrated, high efficiency, Class-D audio  
amplifier. It is designed to maximize performance for mobile  
phone applications. The application circuit requires a minimum  
of external components and operates from a single 2.5 V to 5.5 V  
supply. It is capable of delivering 3 W of continuous output power  
with <1% THD + N driving a 3 Ω load from a 5.0 V supply.  
The SSM2315 is specified over the industrial temperature range of  
−40°C to +85°C. It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 9-ball, 1.5 mm × 1.5 mm  
wafer level chip scale package (WLCSP).  
FUNCTIONAL BLOCK DIAGRAM  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2315  
160k  
47nF*  
80kΩ  
80kΩ  
IN+  
IN–  
OUT+  
OUT–  
AUDIO IN+  
AUDIO IN–  
MODULATOR  
FET  
DRIVER  
(Σ-Δ)  
47nF*  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP/CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
*INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
SSM2315  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Application Circuits ......................................................... 11  
Theory of Operation ...................................................................... 12  
Overview ..................................................................................... 12  
Gain.............................................................................................. 12  
Pop-and-Click Suppression ...................................................... 12  
Output Modulation Description .............................................. 12  
Layout .......................................................................................... 13  
Input Capacitor Selection.......................................................... 13  
Proper Power Supply Decoupling............................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
8/08—Rev. 0 to Rev. A  
Changes to Efficiency and Total Harmonic  
Distortion + Noise Parameters ....................................................... 3  
Changes to Ordering Guide .......................................................... 14  
2/08—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
SSM2315  
SPECIFICATIONS  
VDD = 5.0 V, TA = 25oC, RL = 8 Ω + 33 μH, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions1  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
RL = 3 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 3 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
RL = 3 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 3 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6 V  
PO = 1.4 W, RL = 8 Ω + 33 μH, VDD = 5.0 V  
1.48  
0.75  
1.84  
0.94  
2.72  
1.38  
3.402  
1.72  
3.43  
1.72  
4.282  
2.14  
93  
W
W
W
W
W
W
W
W
W
W
W
W
%
Efficiency  
η
Total Harmonic Distortion + Noise  
THD + N  
PO = 1 W, RL = 8 Ω + 33 μH, f = 1 kHz, VDD = 5.0 V  
PO = 0.5 W, RL = 8 Ω + 33 μH, f = 1 kHz, VDD = 3.6 V  
0.004  
0.004  
%
%
Input Common-Mode Voltage Range VCM  
1.0  
VDD − 1.0  
V
Common-Mode Rejection Ratio  
Average Switching Frequency  
Differential Output Offset Voltage  
POWER SUPPLY  
CMRRGSM  
fSW  
VOOS  
VCM = 2.5 V 100 mV at 217 Hz, output referred  
Gain = 6 dB  
55  
280  
2.0  
dB  
kHz  
mV  
Supply Voltage Range  
Power Supply Rejection Ratio  
VDD  
Guaranteed from PSRR test  
2.5  
70  
5.5  
V
dB  
dB  
mA  
mA  
mA  
mA  
mA  
mA  
nA  
PSRR  
PSRRGSM  
ISY  
VDD = 2.5 V to 5.0 V, dc input floating  
VRIPPLE = 100 mV at 217 Hz, inputs ac GND, CIN = 0.1 μF  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
85  
60  
Supply Current  
3.2  
2.8  
2.4  
3.3  
2.9  
2.4  
20  
VIN = 0 V, load = 8 + 33 μH, VDD = 5.0 V  
VIN = 0 V, load = 8 + 33 μH, VDD = 3.6 V  
VIN = 0 V, load = 8 + 33 μH, VDD = 2.5 V  
Shutdown Current  
ISD  
SD  
= GND  
GAIN CONTROL  
Closed-Loop Gain  
Differential Input Impedance  
Gain  
ZIN  
6
80  
dB  
kΩ  
SD  
= VDD  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
VIH  
VIL  
tWU  
tSD  
ISY ≥ 1 mA  
ISY ≤ 300 nA  
1.2  
0.5  
7
V
V
ms  
μs  
kΩ  
SD  
SD  
SD  
rising edge from GND to VDD  
falling edge from VDD to GND  
= GND  
Turn-Off Time  
5
Output Impedance  
ZOUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are ac-grounded,  
gain = 6 dB, A-weighted  
PO = 1.4 W, RL = 8 Ω  
21  
μV rms  
dB  
Signal-to-Noise Ratio  
SNR  
103  
1 Note that although the SSM2315 has good audio quality above 3 W, continuous output power beyond 3 W must be avoided due to device packaging limitations.  
2 This value represents measured performance; packaging limitations must not be exceeded.  
Rev. A | Page 3 of 16  
 
 
SSM2315  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
VDD  
VDD  
3 W  
Table 3. Thermal Resistance  
Package Type  
9-ball, 1.5 mm × 1.5 mm WLCSP  
PCB θJA  
1S0P 162 39  
2S0P 76 21  
θJB  
Unit  
°C/W  
°C/W  
Common-Mode Input Voltage  
Continuous Output Power  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 4 of 16  
 
SSM2315  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
CORNER  
1
2
3
A
B
C
SSM2315  
TOP VIEW  
BALL SIDE DOWN  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
2C  
SD  
Shutdown Input. Active low digital input.  
Ground.  
2A  
GND  
1A  
1C  
IN+  
IN−  
Noninverting Input.  
Inverting Input.  
3C  
1B  
OUT+  
VDD  
Noninverting Output.  
Power Supply.  
3B  
GND  
Ground.  
3A  
2B  
OUT−  
PVDD  
Inverting Output.  
Power Supply.  
Rev. A | Page 5 of 16  
 
SSM2315  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
10  
R
= 8+ 33µH  
V
= 5V  
L
DD  
GAIN = 6dB  
= 8+ 33µH  
V
= 3.6V  
DD  
GAIN = 6dB  
R
L
V
= 2.5V  
DD  
10  
1
1
0.1  
0.1  
0.25W  
0.5W  
1W  
0.01  
0.001  
0.0001  
V
= 5V  
DD  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 3. THD + N vs. Output Power, RL = 8 Ω + 33 μH, Gain = 6 dB  
Figure 6. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω + 33 μH, Gain = 6 dB  
100  
100  
R
= 4+ 33µH  
V
= 3.6V  
V
= 5V  
L
DD  
DD  
GAIN = 6dB  
= 4+ 33µH  
GAIN = 6dB  
R
L
V
= 2.5V  
10  
1
DD  
10  
1
0.1  
0.1  
0.5W  
0.01  
0.001  
0.0001  
1W  
2W  
0.01  
0.001  
V
= 5V  
DD  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 4. THD + N vs. Output Power, RL = 4 Ω + 33 μH, Gain = 6 dB  
Figure 7. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω + 33 μH, Gain = 6 dB  
100  
100  
V
= 5V  
R
= 3+ 33µH  
V
= 3.6V  
DD  
GAIN = 6dB  
= 3+ 33µH  
L
DD  
GAIN = 6dB  
R
L
10  
1
V
= 2.5V  
DD  
10  
1
3W  
0.1  
0.5W  
0.1  
0.01  
0.001  
0.0001  
0.75W  
0.01  
0.001  
V
= 5V  
DD  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
Figure 8. THD + N vs. Frequency, VDD = 5 V, RL = 3 Ω + 33 μH, Gain = 6 dB  
Figure 5. THD + N vs. Output Power, RL = 3 Ω + 33 μH, Gain = 6 dB  
Rev. A | Page 6 of 16  
 
SSM2315  
100  
10  
100  
10  
V
= 3.6V  
V
= 2.5V  
DD  
GAIN = 6dB  
= 8+ 33µH  
DD  
GAIN = 6dB  
R = 8+ 33µH  
L
R
L
1
1
0.1  
0.1  
0.25W  
0.125W  
10k  
0.01  
0.001  
0.01  
0.001  
0.25W  
0.63W  
100  
0.125W  
0.5W  
100  
10  
1k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 9. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω + 33 μH, Gain = 6 dB  
Figure 12. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω + 33 μH, Gain = 6 dB  
100  
100  
V
= 3.6V  
V
= 2.5V  
DD  
GAIN = 6dB  
= 4+ 33µH  
DD  
GAIN = 6dB  
R = 4+ 33µH  
L
R
L
10  
1
10  
1
0.5W  
0.1  
0.1  
0.5W  
0.25W  
0.01  
0.001  
0.01  
0.001  
1W  
0.125W  
0.25W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω + 33 μH, Gain = 6 dB  
Figure 13. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω + 33 μH, Gain = 6 dB  
100  
100  
V
= 3.6V  
V
= 2.5V  
DD  
GAIN = 6dB  
= 3+ 33µH  
DD  
GAIN = 6dB  
= 3+ 33µH  
R
R
L
L
10  
1
10  
1
0.75W  
1.5W  
0.1  
0.1  
0.375W  
0.188W  
0.75W  
0.01  
0.001  
0.01  
0.001  
0.38W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 11. THD + N vs. Frequency, VDD = 3.6 V, RL = 3 Ω + 33 μH, Gain = 6 dB  
Figure 14. THD + N vs. Frequency, VDD = 2.5 V, RL = 3 Ω + 33 μH, Gain = 6 dB  
Rev. A | Page 7 of 16  
SSM2315  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
FREQUENCY = 1kHz  
GAIN = 6dB  
R
= 3+ 33µH  
L
DO NOT EXCEED 3W  
CONTINUOUS OUTPUT POWER  
R
= 3+ 33µH  
L
10%  
R
= 4+ 33µH  
L
1%  
NO LOAD  
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 15. Supply Current vs. Supply Voltage  
Figure 18. Maximum Output Power vs. Supply Voltage,  
RL = 3 Ω + 33 μH, Gain = 6 dB  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
FREQUENCY = 1kHz  
GAIN = 6dB  
V
= 5V  
V = 3.6V  
DD  
DD  
V
= 2.5V  
DD  
R
= 8+ 33µH  
L
10%  
1%  
R
= 8+ 33µH  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 16. Maximum Output Power vs. Supply Voltage,  
RL = 8 Ω + 33 μH, Gain = 6 dB  
Figure 19. Efficiency vs. Output Power, RL = 8 Ω + 33 μH  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
FREQUENCY = 1kHz  
GAIN = 6dB  
R
= 4+ 33µH  
L
DO NOT EXCEED 3W CONTINUOUS OUTPUT POWER  
V
= 2.5V  
V
= 3.6V  
V = 5V  
DD  
DD  
DD  
10%  
1%  
R
= 4+ 33µH  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 17. Maximum Output Power vs. Supply Voltage,  
RL = 4 Ω + 33 μH, Gain = 6 dB  
Figure 20. Efficiency vs. Output Power, RL = 4 Ω + 33 μH  
Rev. A | Page 8 of 16  
SSM2315  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
R
= 5V  
= 8+ 33µH  
V
R
= 3.6V  
= 4+ 33µH  
DD  
DD  
L
L
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 21. Power Dissipation vs. Output Power, RL = 8 Ω + 33 μH at VDD = 5.0 V  
Figure 24. Power Dissipation vs. Output Power, RL = 4 Ω + 33 μH at VDD = 3.6 V  
0.40  
400  
V
= 5V  
DD  
R
= 8+ 33µH  
V
= 5V  
L
DD  
R
= 4+ 33µH  
L
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
350  
300  
250  
200  
150  
100  
50  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 25. Supply Current vs. Output Power, RL = 8 Ω + 33 μH  
Figure 22. Power Dissipation vs. Output Power, RL = 4 Ω + 33 μH at VDD = 5.0 V  
0.09  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
R
= 3.6V  
= 8+ 33µH  
DD  
R
= 4+ 33µH  
L
L
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 23. Power Dissipation vs. Output Power, RL = 8 Ω + 33 μH at VDD = 3.6 V  
Figure 26. Supply Current vs. Output Power, RL = 4 Ω + 33 μH  
Rev. A | Page 9 of 16  
SSM2315  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
8
7
6
SD INPUT  
OUTPUT  
5
4
3
2
1
0
–1  
–100  
10  
–2  
–2  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
TIME (ms)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 29. Turn-On Response  
0
8
7
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
5
4
3
OUTPUT  
2
1
0
–1  
SD INPUT  
30 50  
–2  
–90  
10  
100  
1k  
10k  
100k  
–70  
–50  
–30  
–10  
10  
70  
90  
FREQUENCY (Hz)  
TIME (µs)  
Figure 28. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 30. Turn-Off Response  
Rev. A | Page 10 of 16  
SSM2315  
TYPICAL APPLICATION CIRCUITS  
EXTERNAL GAIN SETTINGS = 160k/(80k+ R  
)
EXT  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2315  
160kΩ  
47nF*  
47nF*  
R
R
80kΩ  
EXT  
IN+  
OUT+  
OUT–  
AUDIO IN+  
AUDIO IN–  
MODULATOR  
FET  
DRIVER  
80kΩ  
(Σ-Δ)  
EXT  
IN–  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP/CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
*INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 31. Differential Input Configuration, User-Adjustable Gain  
EXTERNAL GAIN SETTINGS = 160k/(80k+ R  
)
EXT  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2315  
160kΩ  
47nF  
R
R
80kΩ  
80kΩ  
EXT  
IN+  
IN–  
OUT+  
OUT–  
AUDIO IN+  
MODULATOR  
FET  
DRIVER  
(Σ-Δ)  
EXT  
47nF  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP/CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
Figure 32. Single-Ended Input Configuration, User-Adjustable Gain  
Rev. A | Page 11 of 16  
 
SSM2315  
THEORY OF OPERATION  
OVERVIEW  
OUTPUT MODULATION DESCRIPTION  
The SSM2315 mono Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external component  
count, conserving board space and, thus, reducing systems cost.  
The SSM2315 does not require an output filter but, instead, relies  
on the inherent inductance of the speaker coil and the natural  
filtering of the speaker and human ear to fully recover the audio  
component of the square wave output. Most Class-D amplifiers  
use some variation of pulse-width modulation (PWM), but the  
SSM2315 uses a Σ-Δ modulation to determine the switching  
pattern of the output devices, resulting in a number of important  
benefits. Σ-Δ modulators do not produce a sharp peak with many  
harmonics in the AM frequency band, as pulse-width modulators  
often do. Σ-Δ modulation provides the benefits of reducing the  
amplitude of spectral components at high frequencies, that is,  
reducing EMI emission that may otherwise be radiated by  
speakers and long cable traces. The SSM2315 does not require  
external EMI filtering for twisted speaker cable lengths shorter  
than 10 cm. Due to the inherent spread spectrum nature of Σ-Δ  
modulation, the need for oscillator synchronization is eliminated  
for designs incorporating multiple SSM2315 amplifiers.  
The SSM2315 uses three-level, Σ-Δ output modulation. Each  
output can swing from GND to VDD and vice versa. Ideally,  
when no input signal is present, the output differential voltage  
is 0 V because there is no need to generate a pulse. In a real world  
situation, there are always noise sources present.  
Due to this constant presence of noise, a differential pulse is  
generated, when required, in response to this stimulus. A small  
amount of current flows into the inductive load when the differen-  
tial pulse is generated.  
However, most of the time, output differential voltage is 0 V,  
due to the Analog Devices patented, three-level, Σ-Δ output  
modulation. This feature ensures that the current flowing through  
the inductive load is small.  
When the user wants to send an input signal, an output pulse  
is generated to follow the input voltage. The differential pulse  
density is increased by raising the input signal level. Figure 33  
depicts three-level, Σ-Δ output modulation with and without  
input stimulus.  
OUTPUT = 0V  
The SSM2315 also offers protection circuits for overcurrent and  
temperature protection.  
+5V  
0V  
OUT+  
+5V  
OUT–  
GAIN  
0V  
+5V  
The SSM2315 has a default gain of 6 dB that can be reduced by  
using a pair of external resistors with a value calculated as follows:  
VOUT  
0V  
–5V  
OUTPUT > 0V  
+5V  
External Gain Settings = 160 kΩ/(80 kΩ + REXT  
)
OUT+  
OUT–  
VOUT  
0V  
+5V  
POP-AND-CLICK SUPPRESSION  
0V  
Voltage transients at the output of audio amplifiers may occur  
when shutdown is activated or deactivated. Voltage transients as  
low as 10 mV can be heard as an audio pop in the speaker. Clicks  
and pops can also be classified as undesirable audible transients  
generated by the amplifier system and, therefore, as not coming  
from the system input signal. Such transients may be generated  
when the amplifier system changes its operating mode. For example,  
the following may be sources of audible transients: system power-up  
and power-down, mute and unmute, input source change, and  
sample rate change. The SSM2315 has a pop-and-click suppression  
architecture that reduces these output transients, resulting in  
noiseless activation and deactivation.  
+5V  
0V  
OUTPUT < 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
0V  
–5V  
Figure 33. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Rev. A | Page 12 of 16  
 
 
 
SSM2315  
LAYOUT  
INPUT CAPACITOR SELECTION  
As output power continues to increase, care must be taken to lay  
out PCB traces and wires properly among the amplifier, load,  
and power supply. A good practice is to use short, wide PCB  
tracks to decrease voltage drops and to minimize inductance.  
Ensure that track widths are at least 200 mil for every inch of track  
length for lowest DCR, and use 1 oz or 2 oz of copper PCB traces  
to further reduce IR drops and inductance. A poor layout increases  
voltage drops, consequently affecting efficiency. Use large traces  
for the power supply inputs and amplifier outputs to minimize  
losses due to parasitic trace resistance.  
The SSM2315 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors are  
required if the input signal is not biased within this recommended  
input dc common-mode voltage range, if high-pass filtering is  
needed, or if a single-ended source is used. If high-pass filtering  
is needed at the input, the input capacitor and the input resistor  
of the SSM2315 form a high-pass filter whose corner frequency  
is determined by the following equation:  
fC = 1/(2π × RIN × CIN)  
The input capacitor can significantly affect the performance of  
the circuit. Not using input capacitors degrades both the output  
offset of the amplifier and the dc PSRR performance.  
Proper grounding guidelines help improve audio performance,  
minimize crosstalk between channels, and prevent switching noise  
from coupling into the audio signal. To maintain high output swing  
and high peak output power, the PCB traces that connect the  
output pins to the load and supply pins should be as wide as  
possible to maintain the minimum trace resistances. It is also  
recommended that a large ground plane be used for minimum  
impedances.  
PROPER POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short-duration  
voltage spikes. Although the actual switching frequency can range  
from 10 kHz to 100 kHz, these spikes can contain frequency  
components that extend into the hundreds of megahertz. The  
power supply input needs to be decoupled with a good quality,  
low ESL, low ESR capacitor, usually of around 4.7 μF. This capacitor  
bypasses low frequency noises to the ground plane. For high  
frequency transients noises, use a 0.1 μF capacitor as close as  
possible to the VDD pin of the device. Placing the decoupling  
capacitor as close as possible to the SSM2315 helps maintain  
efficient performance.  
In addition, good PCB layouts isolate critical analog paths from  
sources of high interference. High frequency circuits (analog  
and digital) should be separated from low frequency circuits.  
Properly designed multilayer printed circuit boards can reduce  
EMI emission and increase immunity to the RF field by a factor  
of 10 or more, compared with double-sided boards. A multilayer  
board allows a complete layer to be used for the ground plane,  
whereas the ground plane side of a double-sided board is often  
disrupted with signal crossover.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane should be underneath the analog  
power plane. Similarly, the digital ground plane should be  
underneath the digital power plane. There should be no overlap  
between analog and digital ground planes or analog and digital  
power planes.  
Rev. A | Page 13 of 16  
 
SSM2315  
OUTLINE DIMENSIONS  
0.655  
0.600  
0.545  
1.490  
1.460 SQ  
1.430  
A1 BALL  
CORNER  
SEATING  
PLANE  
3
2
1
A
B
C
0.350  
0.320  
0.290  
0.50  
BALL PITCH  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.385  
0.360  
0.335  
0.270  
0.240  
0.210  
Figure 34. 9-Ball Wafer Level Chip Scale Package [WLCSP]  
(CP-9-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
SSM2315CBZ-R21  
SSM2315CBZ-REEL1  
SSM2315CBZ-REEL71  
SSM2315-EVALZ1  
Temperature Range  
Package Description  
Package Option  
CB-9-2  
CB-9-2  
Branding  
Y0P  
Y0P  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-9-2  
Y0P  
1 Z = RoHS Compliant Part.  
Rev. A | Page 14 of 16  
 
 
SSM2315  
NOTES  
Rev. A | Page 15 of 16  
SSM2315  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06857-0-8/08(A)  
Rev. A | Page 16 of 16  

相关型号:

SSM2315CBZ-REEL

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL1

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL7

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL71

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2316GN

N-channel Enhancement-mode Power MOSFET
SSC

SSM2317

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2317-EVALZ

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2317-MINI-EVALZ

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2317CBZ-REEL

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2317CBZ-REEL7

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2318GEN

N-channel Enhancement-mode Power MOSFET
SSC

SSM2319

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI