SSM2404P [ADI]

Quad Audio Switch; 四路音频开关
SSM2404P
型号: SSM2404P
厂家: ADI    ADI
描述:

Quad Audio Switch
四路音频开关

复用器 开关 复用器或开关 信号电路 光电二极管 输出元件
文件: 总8页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Quad Audio Switch  
SSM2404  
BLO CK D IAGRAM O F O NE SWITCH CH ANNEL  
FEATURES  
CIickless” Bilateral Audio Sw itching  
Four SPST Sw itches in a 20-Pin Package  
Ultralow THD+N: 0.0008% @ 1 kHz (2 V rm s,  
RL = 100 k)  
Low Charge Injection: 35 pC typ  
High OFF Isolation: 100 dB typ (RL = 10 k@ 1 kHz)  
Low Crosstalk: –94 dB typ (RL = 10 k@ 1 kHz)  
Low ON Resistance: 28 typ  
V–  
LOGIC INTERFACE  
CONTROL  
SW1 A  
SW1 B  
RAMP  
GENERATOR  
AND  
BREAK-BEFORE-MAKE  
CONTROL  
DIGITAL  
CONTROL  
Low Supply Current: 900 A typ  
Single or Dual Supply Operation: +11 V to +24 V or  
؎5.5 V to ؎12 V  
V+  
Guaranteed Break-Before-Make  
TTL and CMOS Com patible Logic Inputs  
Low Cost-Per-Sw itch  
P IN CO NNECTIO NS  
Epoxy Mini-D IP (P Suffix)  
and SO IC (S Suffix)  
1
2
3
4
5
6
20  
SW4 A  
SW1 A  
AGND  
GENERAL D ESCRIP TIO N  
SW1  
SW4  
19 AGND  
T he SSM2404 integrates four SPST analog switches in a single  
20-pin package. Developed specifically for high performance  
audio applications, distortion and noise are negligible over the  
full operating range of 20 Hz to 20 kHz. With very low charge  
injection of 35 pC, “clickless” audio switching is possible, even  
under the most demanding conditions.  
18  
SW1 B  
DGND  
SW4 B  
17 V+  
SSM2404
SW1 CONTROL  
SW2 CONTROL  
16 SW4 CONTROL  
15 SW3 CONTROL  
Switch control is realized by conventional T T L or CMOS  
logic. Guaranteed “break-before-make” operation assures that  
all switches in a large system will open before any switch  
reaches the ON state.  
NC  
SW2 B  
AGND  
*
7
8
9
14  
13 SW3 B  
SW3 12 AGND  
11  
V–  
SW2  
Single or dual supply operation is possible. Additional features  
include –100 dB OFF isolation, –94 dB crosstalk and 28 ON  
resistance. Optional current-mode switching permits an  
extended signal-handling range. Although optimized for large  
load impedances, the SSM2404 maintains good audio  
performance even under low load impedance conditions.  
SW2 A 10  
SW3 A  
NC = NO CONNECT  
*
CONNECT TO ANALOG GROUND  
FOR BEST NOISE ISOLATION  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
(V = ؎12 V, T = +25؇C, unless otherwise noted.  
S
A
SSM2404–SPECIFICATIONS  
Typical specifications apply at T = +25؇C.)  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ Max  
Units  
AUDIO PERFORMANCE  
T otal Harmonic Distortion Plus Noise  
T HD+N  
@ 1 kHz, with 80 kHz Filter,  
RL = 100 k, VIN = 2 V rms  
20 Hz to 20 kHz  
0.0008  
0.8  
0.6  
%
Spectral Noise Density  
Wideband Noise Density  
en  
en p-p  
nV/Hz  
µV p-p  
20 Hz to 20 kHz  
ANALOG SIGNAL SECT ION  
Analog Voltage Range  
Analog Current Range  
ON Resistance  
VA  
IA  
RON  
RON Match  
IS(ON)  
IS(OFF)  
Q
VINH = 2.4 V, IA = ±2 mA  
VINH = 2.4 V, VA = 0 V  
IA = ±10 mA, VA = ±10 V dc  
IA = ±10 mA, VA = 0 V  
VA = ±10 V  
±12  
±10  
28  
V
mA  
45  
RON Matching  
1
%
ON Leakage Current  
OFF Leakage Current  
Charge Injection  
ON-State Input Capacitance  
OFF-State Input Capacitance  
OFF Isolation  
–20  
–20  
0.1  
0.1  
35  
31  
17  
+20  
+20  
nA  
nA  
pC  
pF  
pF  
dB  
dB  
VA = ±10 V  
CON  
VA = 5 V rms  
VA = 5 V rms  
VA = 50 mV rms, f = 1 kHz, RL = 10 kΩ  
VA = 50 mV rms, f = 1 kHz, RL = 10 kΩ  
COFF  
ISO(OFF)  
CT  
–100  
–94  
Channel-to-Channel Crosstalk  
CONT ROL SECT ION  
Digital Input High  
Digital Input Low  
T urn-On T ime1  
VINH  
VINL  
tON  
tOFF  
tON-tOFF  
DGND = 0 V  
DGND = 0 V  
See T est Circuit  
See T est Circuit  
2.4  
0
VS  
0.8  
50  
30  
20  
V
V
ms  
ms  
ms  
8
5
3
T urn-Off T ime2  
Break-Before-Make T ime Delay  
Logic Input Current  
Logic HI  
VINH = 2.4 V  
VINL = 0.8 V  
–1000 1.3  
–1000 1.0  
+1000 nA  
+1000 nA  
Logic LO  
POWER SUPPLY  
Supply Voltage Range  
VS  
Single Supply  
Dual Supply  
All Channels On  
All Channels On  
All Channels On  
+11  
±5.5  
0.9  
+24  
±12  
5
V
V
mA  
mA  
mA  
Positive Supply Current  
Negative Supply Current  
Ground Current  
ISY+  
ISY–  
–1.5  
–2.0  
–0.6  
–0.3  
NOT ES  
1T urn-on time is measured from the time the logic input reaches the 50% point to the time the output reaches 50% of the final value.  
2T urn-off time is measured from the time the logic input reaches the 50% point to the time the output reaches 50% of the initial value.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS  
Supply Voltage  
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +27 V  
Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±13.5 V  
Analog Input Voltage (VA) . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
O RD ERING GUID E  
O perating  
Tem perature  
Range  
P ackage  
O ption*  
Model  
P ackage  
Logic Input Voltage (VINL/INH  
)
. . . . . . . . . . . . . . . . . . . . . . VS  
SSM2404P –40°C to +85°C 20-Pin Plastic DIP N-20  
Maximum Current T hrough Any Switch . . . . . . . . . . . 20 mA  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction T emperature (TJ) . . . . . . . . . . . . . . . . . . . . +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . +300°C  
T hermal Resistance1  
SSM2404S –40°C to +85°C 20-Pin SOIC  
R-20  
*N = Plastic DIP, R = SOIC.  
20-Pin Plastic DIP (P): θJA = 74, θJC = 32 . . . . . . . . . °C/W  
20-Pin SOIC (S): θJA = 90, θJC = 27 . . . . . . . . . . . . . . °C/W  
NOT E  
1θJA is specified for worst case mounting conditions, i.e., θJA is specified for device  
in socket for P-DIP package.  
–2–  
REV. B  
SSM2404  
V
= 50mV  
RMS  
A (IN)  
f = 20Hz TO 100kHz  
V
A (OUT)  
R
= 10kAND 100kΩ  
L
V
50Ω  
A (IN)  
V
A (OUT)  
OFF ISOLATION = 20 LOG  
V
A (IN)  
OFF Isolation Test Circuit  
HIGH  
LOGIC  
INPUT  
tr 100ns  
tf 100ns  
1.4V  
1.4V  
LOW  
LOW  
Figure 2. Headroom (VS = ±12 V, f = 1 kHz, with  
80 kHz Filter)  
DC VOLTAGE  
CLOSED  
50%  
V
A (IN)  
50%  
OPEN  
OPEN  
V
A (OUT)  
1.0  
0.1  
tON  
tOFF  
tON/tOFF Tim ing Diagram  
+12V  
0.01  
0.001  
V+  
V
A (IN)  
V
A (OUT)  
SWITCH  
CONROL  
GND  
V–  
0.0001  
100  
1k  
10k  
100k  
–12V  
LOAD RESISTANCE –  
Figure 3. THD+N vs. Load (VS = ±12 V, VA = 2 V rm s,  
f = 1 kHz, with 80 kHz Filter)  
Test Circuit for tON/tOFF Tim ing Specification, tON/tOFF  
Switching Response, and ON/OFF Transition Photos  
0.01  
0.001  
0.0001  
0
±4  
±8  
±12  
SUPPLY VOLTAGE – V  
Figure 1. THD+N vs. Frequency (VS = ±12 V,  
VA = 2 V rm s, with 80 kHz Filter)  
Figure 4. THD+N vs. Supply Voltage (VA = 2 V rm s,  
f = 1 kHz, RL = 100 k, with 80 kHz Filter)  
REV. B  
–3–  
SSM2404  
9.5  
9.0  
8.5  
8.0  
T
= 25°C  
= ±12V  
A
V
S
f = 20kHz  
7.5  
7.0  
6.5  
6.0  
100  
1k  
10k  
100k  
LOAD RESISTANCE – Ω  
Figure 8. Output Voltage Swing vs. Load Resistance  
Figure 5. Frequency Response (VS = ±12 V,  
VA = 1 V rm s, RL = 100 k)  
10  
9
8
CH A: 8.00µV FS  
MKR: 0.11µV/ Hz  
1.00µV/DIV  
7
T
R
= 25°C  
= 100kΩ  
A
6
5
4
3
2
1
L
f = 20kHz  
0.1% THD + N  
0Hz  
25kHz  
MKR: 20 000Hz  
BW: 150Hz  
0
±4  
±6  
±8  
SUPPLY VOLTAGE – Volts  
±10  
±12  
Figure 9. Output Voltage Swing vs. Supply Voltage  
Figure 6. SSM2404 Spectral Noise Density e  
[5 Devices (20 Switches) Chained Together]  
n
–20  
T
= 25°C  
= ±12V  
= 50mV  
A
–30  
–40  
–50  
–60  
–70  
V
S
V
A
RMS  
10V  
R
= 100k  
L
100  
90  
INPUT  
0V  
0V  
–80  
–90  
R
= 10k  
L
10  
OUTPUT  
–100  
–110  
–120  
0%  
5µs  
10V  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 7. Square Wave Response (TA = +25°C,  
VS = ±12 V, RL = 100 k, f = 20 kHz)  
Figure 10. OFF-Isolation vs. Frequency  
–4–  
REV. B  
SSM2404  
50  
40  
0
–15  
T
= 25°C  
= ±12V  
A
V
S
V
= 50mV  
A
RMS  
–30  
V
= ±12V  
S
V
= 0.8V  
30  
INL  
–45  
R
= ∞  
L
–60  
–40°C TO +85°C  
R
= 100k  
20  
L
–75  
10  
R
= 10k  
–90  
L
–105  
–120  
–135  
–150  
0
–10  
–20  
–10  
10  
100  
1k  
10k  
100k  
–5  
0
5
10  
FREQUENCY – Hz  
ANALOG INPUT VOLTAGE – Volts  
Figure 11. Channel-to-Channel Crosstalk vs. Frequency  
(Worst Case Conditions, as Measured Between  
Switches 1 and 4, or 2 and 3)  
Figure 14. Leakage Current vs. Analog Voltage  
50  
20  
V
= ±12V  
V
= ±12V  
= ±5V  
18  
16  
14  
12  
10  
8
S
S
V
R
I
= ∞  
= 10mA  
L
A
40  
30  
20  
10  
0
R
=
A
L
+85  
°
C
+25°  
C
T
ON  
–40°C  
6
T
OFF  
4
2
0
–40  
0
–10  
–5  
5
10  
–20  
0
20  
40  
60  
80  
100  
ANALOG INPUT VOLTAGE – Volts  
TEMPERATURE – °C  
Figure 12. ON Resistance vs. Analog Voltage  
Figure 15. Switching Tim e vs. Tem perature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.8  
T
= 25°C  
= ±12V  
A
I
V
SY+  
S
R
= ∞  
0.6  
L
V
= ±12V  
= GND  
= 2.4V  
S
0.4  
0.2  
V
A
V
INH  
0
V
= 0.8V  
IL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
I
I
SY–  
GND  
V
IH  
= 2.4V  
–10  
–20  
–40  
–20  
0
20  
40  
60  
80  
100  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE – °C  
ANALOG INPUT VOLTAGE – Volts  
Figure 16. Supply Current vs. Tem perature  
Figure 13. Overvoltage Characteristics  
REV. B  
–5–  
SSM2404  
SSM2404 can also be configured as a 4:1 multiplexer, or by  
using additional packages, as 8:1 or 16:1 and up. T he break-  
before-make feature is guaranteed from part to part allowing  
such multiple-package applications.  
10V  
ANALOG  
OUTPUT  
100  
90  
5V  
V
A (OUT)  
0
As Figure 20 shows, the SSM2404 is easy to use, and no ad-  
ditional devices are needed. The load resistors are recommended  
for improved OFF-isolation and charge injection. T he ON  
resistance of the switch is only 28 typically, which causes very  
little signal attenuation even with a load resistor.  
LOGIC  
INPUT  
10  
5V  
0%  
V
0
INL/INH  
5ms/div  
IN1  
1
2
3
4
5
6
20  
SW4 19  
18  
IN4  
Figure 17. tON/tOFF Switching Response  
SW1  
R
R
L
L
OUT1  
OUT4  
+12V  
17  
DGND  
SSM2404
16  
15  
14  
13  
12  
11  
SW1 CONTROL  
SW2 CONTROL  
SW4 CONTROL  
SW3 CONTROL  
–12V  
100  
90  
7
8
CLOSED  
(SWITCH ON)  
OUT2  
OUT3  
R
L
R
L
SW  
SWITCH  
9
SW2  
SW3  
OPEN  
CONTROL STATE  
10  
0%  
(SWITCH OFF)  
10  
IN2  
IN3  
OFF  
ON  
0
1
50mV  
50µs  
R
IS OPTIONAL  
L
Figure 18. Switch OFF-to-ON Transition (RL = 5 k)  
Figure 20. Basic Circuit Configuration  
O P TIMIZING P ERFO RMANCE  
As the performance curves show, the switch is optimized for  
high impedance loads. T he distortion performance is at its best  
when the switch has a load impedance of 100 kor greater as  
shown in Figure 1. However, even at lower values of load resis-  
tances, the 1 kHz distortion performance is still excellent,  
0.006% for a 10 kload. T he main trade-off with T HD is  
OFF-isolation and crosstalk. T his is shown in Figures 10 and  
11, again with two different load conditions. As these graphs  
show, the 10 kload yields approximately a 16 dB improve-  
ment in both characteristics.  
100  
90  
CLOSED  
(SWITCH ON)  
OPEN  
(SWITCH OFF)  
10  
0%  
50mV  
50µs  
T hus, the optimum operating point depends on the most criti-  
cal parameters. When T H D is critical then high load imped-  
ances should be used; however, when crosstalk and OFF-  
isolation are critical, lower impedances on the order of 10 kΩ  
should be used. An additional benefit of using the smaller  
load resistor is that any charge injected onto the output will be  
shunted to ground through the resistor. If improved OFF-  
isolation is needed, the SSM2404 dual audio switch should be  
considered with its excellent 120 dB OFF-isolation at 20 kHz.  
Figure 19. Switch ON-to-OFF Transition (RL = 5 k)  
AP P LICATIO NS INFO RMATIO N  
T he SSM2404 integrates four analog CMOS switches with  
guaranteed “break-before-make” operation to provide high  
quality audio switching. Each switch has complementary  
N-channel and P-channel MOSFET s to allow the analog input  
voltage range to include the positive and negative rails and  
improve linearity. In addition, the topology permits fully  
bilateral switching. When using the SSM2404 there is full  
flexibility in configuring the switches. For example, they can be  
used individually as shown in Figure 20, or as a double-pole,  
double-throw (DPDT ) switch, which is explained later. T he  
It is important that all of the AGND pins be connected to the  
system analog ground. T hese pins isolate the input and output  
of each switch. Without connecting these pins, the OFF-  
isolation will degrade significantly.  
–6–  
REV. B  
SSM2404  
voltages of N4 and P4 are changing, the ON resistance of each  
switch is ramping from its OFF state to 28 and vice versa.  
T he actual rise and fall times are shown in Figures 18 and 19  
for a 5 kload. T hese times are significantly slower than  
typical switches, minimizing the SSM2404s charge injection  
and giving it “clickless” performance.  
D ETAILED SWITCH O P ERATIO N  
A simplified circuit schematic with the functional sections is  
shown in Figure 21. T he T T L interface has an internally  
regulated 5 V to ensure T T L logic levels regardless of the supply  
voltage. T he logic threshold is with respect to the DGND pin,  
which can be offset. For example, if DGND is connected to the  
negative supply, then the SSM2404 will operate with negative  
rail logic. T he interface shifts the control logic down to the  
negative supply and inverts it to drive N1.  
D O UBLE-P O LE D O UBLE-TH RO W SWITCH  
T he SSM2404 is ideal as a one-chip solution for a stereo  
switch. T he schematic in Figure 22 shows the typical configura-  
tion. T his circuit will select one of two stereo sources, channel  
A or B. T he switch controls for the left and right input of each  
channel are tied together so that both will be turned on or off  
simultaneously. An inverter is inserted between the channel A  
and B controls so that only one logic signal is needed. T he out-  
puts can be configured many different ways, such as an invert-  
ing or noninverting amplifier stage, and the 10 kload resistors  
are added to improve the OFF-isolation. T he performance of  
this stereo switch is equivalent to each individual switch, yield-  
ing a high quality audio switch that is virtually transparent to  
the signal.  
V+  
100nA  
100nA  
P1  
SW1 A  
BIAS  
–1  
P2  
P3  
C1  
15pF  
N4  
P4  
C2  
SW  
15pF  
TTL  
CONTROL  
–1  
INTERFACE  
DGND  
V+  
17  
SW1 B  
N2  
N3  
N1  
V–  
SSM2404  
BREAK-BEFORE-MAKE  
RAMP GENERATOR  
10  
1
8
3
SW2  
L
L
INA  
INB  
Figure 21. Sim plified Schem atic  
N1 in combination with C1 and the 100 nA current source  
L
OUT  
SW1  
10kΩ  
provides the break-before-make operation of the switch. When  
the switch is on, N1 is off and C1 is charged up to the positive  
rail. However, when the SW CONT ROL is turned off, then the  
gate of N1 is pulled high. T his turns N1 on, providing a low  
impedance path to quickly discharge C1 to the negative rail,  
which quickly “breaks” the switch. On the other hand, when the  
SW CONT ROL goes high again, the gate of N1 is pulled low,  
turning it off. T his leaves C1 to be slowly charged up to the  
positive rail by the 100 nA current source. T he difference in the  
discharge and charging times ensures break-before-make  
operation, even from device to device.  
2
6
SW2 CONTROL  
AGND  
SWA/SWB  
9
15  
4
SW3 CONTROL  
DGND  
12  
19  
5
SW1 CONTROL  
SW4 CONTROL  
CHANNEL  
SWA/SWB SELECTED  
16  
0
1
B
A
11  
20  
13  
18  
SW3  
SW4  
R
R
INA  
INB  
R
OUT  
10kΩ  
14  
V–  
T he voltage on C1 is inverted by P1 to drive the ramp generator  
differential pair, consisting of P2, P3 and N2, N3. T his dif-  
ferential pair steers the 100 nA of tail current to either charge or  
discharge C2. As discussed above, when the switch is on, C1 is  
charged up to the positive rail. P1 inverts this, putting a low  
voltage equivalent to the negative supply on the gate of P2. T he  
BIAS voltage is approximately equal to the midpoint of the two  
supply voltages. T hus, when P2 is pulled down, it is turned on  
and P3 is off. All of the 100 nA flows through N2 and is mir-  
rored by N3. T hus, the 100 nA discharges C2 through N3.  
When C2 is pulled low, the inverter turns N4 on by pulling its  
gate high, and the second inverter turns P4 on. T o turn the  
switch off the gate of P2 is pulled above the BIAS so that all  
100 nA charges C2 through P3. T his is then inverted to turn off  
N4 and P4.  
Figure 22. Double-Pole, Double-Throw Stereo Switch  
VIRTUAL GRO UND SWITCH ING  
T he SSM2404 was built on a CMOS process with a 24 V  
operating limit for the total supply voltage across the part. T his  
leads to a corresponding limit on the analog voltage range. How-  
ever, to achieve larger signal swings, the SSM2404 should be  
configured in the virtual ground mode. As shown in Figure 23,  
the output of the SSM2404 is connected to the inverting input  
of an amplifier. Since the noninverting input is grounded, the  
SSM2404 will also be biased at ground, and large voltage  
swings on the circuit’s input will not significantly change the  
voltage on the switch. T he only limitation is that the current  
through the switch needs to be less than ±10 mA, and the voltage  
range is limited only by the op amp and its supply voltages.  
T he internal ramp has rise and fall times on the order of a few  
milliseconds which is sped up by the inverters. As the gate  
REV. B  
–7–  
SSM2404  
T he circuit was tested with an SSM2131 high slew rate audio  
amplifier and the results are shown in Figures 24 and 25. T his  
configuration yields excellent T HD performance that is  
primarily determined by the amplifier. Also, the headroom is  
now +24 dBu (0 dBu = 0.775 V rms), which is due to the  
amplifier’s output voltage swing. T hus, even though the  
SSM2404 has a ±12 V limitation on its supplies, it can be used  
in systems with much higher voltage ranges. For example, the  
double-pole double-throw switch from Figure 22 can be  
reconfigured in the virtual ground mode to allow higher voltage  
swings, as shown in Figure 26. T his application realizes the  
excellent performance of Figures 24 and 25 while providing a  
low cost switching solution.  
V+  
17  
SSM2404  
5k  
8
3
10  
1
L
L
INA  
INB  
5k  
SW2  
5k  
L
OUT  
SW1  
SSM2131  
6
SW2 CONTROL  
2
SWA/SWB  
AGND  
15  
4
9
SW3 CONTROL  
DGND  
12  
19  
5
16  
11  
SW1 CONTROL  
SW4 CONTROL  
+12V  
5k  
5k  
13  
18  
R2  
5kΩ  
R
INA  
SW3  
5k  
SSM2404  
SW1 A  
+18V  
SSM2131  
–18V  
R1  
5kΩ  
20  
1
3
R
AUDIO  
IN  
INB  
R
SW4  
OUT  
SW1 B  
AUDIO  
OUT  
14  
V–  
SSM2131  
1N914  
–12V  
Figure 26. Double-Pole, Double-Throw Stereo Switch  
Using Virtual Ground Operation  
Figure 23. Virtual Ground Switching  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Mini-D IP (P Suffix)  
11  
10  
20  
1
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
0.325 (8.25)  
0.300 (7.62)  
1.060 (26.90)  
0.925 (23.50)  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.015 (0.381)  
0.008 (0.204)  
0.125 (3.18)  
Figure 24. Virtual Ground Switch THD+N vs. Frequency  
(VS = ±12 V, VA = 2 V rm s, with 80 kHz Filter)  
0.022 (0.558)  
0.014 (0.356)  
0.100 (2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
SEATING  
PLANE  
SO IC (S Suffix)  
0.5118 (13.00)  
0.4961 (12.60)  
20  
11  
0.2992 (7.60)  
0.2914 (7.40)  
PIN 1  
0.4193 (10.65)  
0.3937 (10.00)  
1
10  
0.1043 (2.65)  
0.0926 (2.35)  
0.0500 (1.27)  
0.0291 (0.74)  
0.0098 (0.25)  
X
45  
°
BSC  
0
°- 8°  
0.0500 (1.27)  
0.0157 (0.40)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0125 (0.32)  
0.0091 (0.23)  
Figure 25. Virtual Ground Switch Headroom (VS = ±12 V  
for SSM2404; VS = ±18 V for Op Am p, f = 1 kHz, with  
80 kHz Filter)  
–8–  
REV. B  

相关型号:

SSM2404S

Quad Audio Switch
ADI

SSM2404S-REEL

暂无描述
ADI

SSM2404SZ

QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO20, SOIC-20
ADI

SSM240AF

Rectifier Diode,
SURGE

SSM2412

Dual Audio Analog Switches
ADI

SSM2412P

Dual Audio Analog Switches
ADI

SSM2412P

DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDIP14, PLASTIC, DIP-14
ROCHESTER

SSM2412S

Dual Audio Analog Switches
ADI

SSM2412S

DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDSO16, SOL-16
ROCHESTER

SSM2412S-REEL

IC DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDSO16, SOL-16, Multiplexer or Switch
ADI

SSM2412_15

Dual Audio Analog Switches
ADI

SSM2475

Rail-to-Rail Output Audio Amplifiers
ADI