SSM2537ACBZ-RL [ADI]

PDM Digital Input, Mono 2.5 W Class D Audio Amplifier;
SSM2537ACBZ-RL
型号: SSM2537ACBZ-RL
厂家: ADI    ADI
描述:

PDM Digital Input, Mono 2.5 W Class D Audio Amplifier

放大器 光电二极管 商用集成电路
文件: 总16页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PDM Digital Input, Mono  
2.7 W Class-D Audio Amplifier  
SSM2537  
architecture enables extremely low real-world power consumption  
from digital audio sources with excellent audio performance. Using  
the SSM2537, audio can be transmitted digitally to the audio  
amplifier, significantly reducing the effect of noise sources such  
as GSM interference or other digital signals on the transmitted  
audio. The SSM2537 is capable of delivering 2.7 W of continu-  
ous output power with <1% THD + N driving a 4 Ω load from a  
5.0 V supply.  
Data Sheet  
FEATURES  
Filterless digital Class-D amplifier  
Pulse density modulation (PDM) digital input interface  
2.7 W into 4 Ω load and 1.4 W into 8 Ω load at 5.0 V supply  
with <1% total harmonic distortion plus noise (THD + N)  
Available in 9-ball, 1.2 mm × 1.2 mm, 0.4 mm pitch WLCSP  
93% efficiency into 8 Ω at full scale  
Output noise: 25 µV rms at 3.6 V, A-weighted  
THD + N: 0.005% at 1 kHz, 100 mW output power  
PSRR: 80 dB at 217 Hz, with dither input  
The SSM2537 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. The closed-loop,  
three-level modulator design retains the benefits of an all-digital  
amplifier, yet enables very good PSRR and audio performance. The  
modulation continues to provide high efficiency even at low output  
power and has an SNR of 102 dB PDM input. Spread-spectrum  
pulse density modulation is used to provide lower EMI-radiated  
emissions compared with other Class-D architectures.  
Quiescent power consumption: 5.1 mW  
(VDD = 1.8 V, PVDD = 3.6 V, 8 Ω + 33 µH load)  
Pop-and-click suppression  
Configurable with PDM pattern inputs  
Short-circuit and thermal protection with autorecovery  
Smart power-down when PDM stop condition or no clock  
input detected  
64 × fS or 128 × fS operation supporting 3 MHz and 6 MHz clocks  
DC blocking high-pass filter and static input dc protection  
User-selectable ultralow EMI emissions and low latency modes  
Power-on reset (POR)  
The SSM2537 has a four-state gain and sample frequency selection  
pin that can select two different gain settings, optimized for 3.6 V  
and 5 V operation. This same pin controls the internal digital fil-  
tering and clocking, which can be set for a 64 × fS or 128 × fS input  
sample rate to support both 3 MHz and 6 MHz PDM clock rates.  
Minimal external passive components  
The SSM2537 has a micropower shutdown mode with a typical  
shutdown current of 1.6 µA for both power supplies. Shutdown is  
enabled automatically by gating input clock and data signals. A  
standby mode can be entered by applying a designated PDM stop  
condition sequence. The device also includes pop-and-click sup-  
pression circuitry. This suppression circuitry minimizes voltage  
glitches at the output when entering or leaving the low power  
state, reducing audible noises on activation and deactivation.  
APPLICATIONS  
Mobile handsets  
GENERAL DESCRIPTION  
The SSM2537 is a PDM digital input Class-D power amplifier  
that offers higher performance than existing DAC plus Class-D  
solutions. The SSM2537 is ideal for power sensitive applications  
where system noise can corrupt the small analog signal sent to  
the amplifier, such as mobile phones and portable media players.  
The SSM2537 is specified over the industrial temperature range  
of −40°C to +85°C. It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 9-ball, 1.2 mm ×  
1.2 mm wafer level chip scale package (WLCSP).  
The SSM2537 combines an audio digital-to-analog converter  
(DAC), a power amplifier, and a PDM digital interface on a single  
chip. The integrated DAC plus analog sigma-delta (Σ-Δ) modulator  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
PVDD  
PGND  
SSM2537  
POWER-ON  
RESET  
CLOCKING POWER  
CONTROL  
PDAT  
PCLK  
OUT+  
OUT–  
Σ-Δ  
INPUT  
INTERFACE  
FILTERING/  
DAC  
FULL-BRIDGE  
POWER STAGE  
CLASS-D  
MODULATOR  
GAIN_FS  
LRSEL  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
SSM2537  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Master Clock............................................................................... 13  
Power Supplies............................................................................ 13  
Power Control............................................................................. 13  
Power-On Reset/Voltage Supervisor ....................................... 13  
System Gain/Input Frequency.................................................. 13  
PDM Pattern Control ................................................................ 14  
EMI Noise.................................................................................... 14  
PDM Channel Selection............................................................ 14  
Output Modulation Description .............................................. 14  
Applications Information .............................................................. 15  
Layout .......................................................................................... 15  
Power Supply Decoupling ......................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Digital Input/Output Specifications........................................... 4  
PDM Interface Digital Timing Specifications .......................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
10/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
SSM2537  
SPECIFICATIONS  
PVDD = 5.0 V, VDD = 1.8 V, fS = 128×, TA = 25°C, RL = 8 Ω + 33 µH, unless otherwise noted. When fS = 128×, PDM clock = 6.144 MHz;  
when fS = 64×, PDM clock = 3.072 MHz.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
f = 1 kHz, BW = 20 kHz  
RL = 4 Ω, THD = 1%, PVDD = 5.0 V  
RL = 8 Ω, THD = 1%, PVDD = 5.0 V  
RL = 4 Ω, THD = 1%, PVDD = 3.6 V  
RL = 8 Ω, THD = 1%, PVDD = 3.6 V  
RL = 4 Ω, THD = 1%, PVDD = 2.5 V  
RL = 8 Ω, THD = 1%, PVDD = 2.5 V  
RL = 4 Ω, THD = 10%, PVDD = 5.0 V  
RL = 8 Ω, THD = 10%, PVDD = 5.0 V  
RL = 4 Ω, THD = 10%, PVDD = 3.6 V  
RL = 8 Ω, THD = 10%, PVDD = 3.6 V  
RL = 4 Ω, THD = 10%, PVDD = 2.5 V  
RL = 8 Ω, THD = 10%, PVDD = 2.5 V  
2.7  
1.4  
W
W
W
W
W
W
W
W
W
W
W
W
1.35  
0.75  
0.62  
0.35  
3.38  
1.8  
1.7  
0.93  
0.78  
0.44  
Total Harmonic Distortion Plus Noise  
Efficiency  
THD + N f = 1 kHz  
PO = 100 mW into 8 Ω, PVDD = 3.6 V  
0.005  
0.015  
0.02  
88  
93  
290  
%
%
%
%
%
kHz  
PO = 500 mW into 8 Ω, PVDD = 3.6 V  
PO = 1 W into 8 Ω, PVDD = 5.0 V  
PO = 2 W into 4 Ω, PVDD = 5.0 V  
PO = 1.4 W into 8 Ω, PVDD = 5.0 V  
No input  
η
Average Switching Frequency  
Closed-Loop Gain  
fSW  
Gain  
−6 dBFS PDM input, BTL output, f = 1 kHz  
Gain = 3.6 V  
3.5  
VP  
Gain = 5.0 V  
Gain = 3.6 V  
4.78  
0.5  
VP  
Differential Output Offset Voltage  
Low Power Mode Wake Time  
Input Sampling Frequency  
VOOS  
tWAKE  
fS  
mV  
ms  
MHz  
MHz  
µs  
0.5  
3.23  
6.46  
fS = 64×  
fS = 128×  
1.84  
3.68  
3.072  
6.144  
35  
Propagation Delay  
tPD  
fS = 6.144 MHz, normal operation  
fS = 6.144 MHz, low latency operation  
15  
µs  
POWER SUPPLY  
Supply Voltage Range  
Amplifier Power Supply  
Digital Power Supply  
Power Supply Rejection Ratio  
PVDD  
VDD  
PSRR  
2.5  
1.65  
3.6  
1.8  
80  
80  
75  
5.5  
1.95  
V
V
dB  
dB  
dB  
VRIPPLE = 100 mV at 100 Hz  
VRIPPLE = 100 mV at 1 kHz  
VRIPPLE = 100 mV at 10 kHz  
Dither input, 8 Ω + 33 µH load  
PVDD = 5.0 V, fS = 64×  
PVDD = 5.0 V, fS = 128×  
PVDD = 3.6 V, fS = 64×  
PVDD = 3.6 V, fS = 128×  
PVDD = 2.5 V, fS = 64×  
PVDD = 2.5 V, fS = 128×  
PVDD = 5.0 V  
Supply Current, H-Bridge  
IPVDD  
1.4  
1.4  
1.1  
1.2  
1.0  
1.1  
2.5  
100  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Standby Current  
Power-Down Current  
nA  
Rev. 0 | Page 3 of 16  
 
SSM2537  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Dither input, 8 Ω + 33 µH load  
VDD = 1.8 V, fS = 64×  
VDD = 1.8 V, fS = 128×  
VDD = 1.8 V, fS = 64×  
VDD = 1.8 V, fS = 128×  
VDD = 1.8 V  
Min  
Typ  
Max  
Unit  
Supply Current, Modulator  
IVDD  
0.3  
0.6  
37  
68  
1.6  
mA  
mA  
µA  
µA  
µA  
Standby Current  
Shutdown Current  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
Dither input, A-weighted  
PVDD = 3.6 V, fS = 64×  
PVDD = 3.6 V, fS = 128×  
PVDD = 5.0 V, fS = 64×  
PVDD = 5.0 V, fS = 128×  
25  
27  
33  
30  
µV  
µV  
µV  
µV  
Signal-to-Noise Ratio  
SNR  
PO = 1.4 W, PVDD = 5.0 V, RL = 8 Ω,  
A-weighted  
fS = 64×  
fS = 128×  
102  
102  
dB  
dB  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
INPUT SPECIFICATIONS  
Input Voltage High  
PCLK, PDAT, LRSEL Pins  
Input Voltage Low  
PCLK, PDAT, LRSEL Pins  
Input Leakage Current High  
PDAT, LRSEL Pins  
VIH  
VIL  
IIH  
0.7 × VDD  
−0.3  
3.6  
V
V
V
0.3 × VDD  
1
3
µA  
µA  
PCLK Pin  
Input Leakage Current Low  
PDAT, LRSEL Pins  
PCLK Pin  
IIL  
1
3
5
µA  
µA  
pF  
Input Capacitance  
Rev. 0 | Page 4 of 16  
 
Data Sheet  
SSM2537  
PDM INTERFACE DIGITAL TIMING SPECIFICATIONS  
Table 3.  
Limit  
Parameter  
tMIN  
tMAX  
10  
10  
Unit  
ns  
ns  
ns  
ns  
Description  
tCF  
tCR  
tDS  
tDH  
Clock fall time  
Clock rise time  
Data setup time  
Data hold time  
10  
7
7
Timing Diagram  
PCLK  
tDS  
tDH  
LEFT  
DATA  
RIGHT  
DATA  
LEFT  
DATA  
RIGHT  
DATA  
PDAT  
Figure 2. PDM Interface Timing  
Rev. 0 | Page 5 of 16  
 
SSM2537  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
Junction-to-air thermal resistance (θJA) is specified for the worst-  
case conditions, that is, a device soldered in a printed circuit board  
(PCB) for surface-mount packages. θJA is determined according to  
JEDEC JESD51-9 on a 4-layer PCB with natural convection  
cooling.  
Table 4.  
Parameter  
PVDD Supply Voltage  
VDD Supply Voltage  
Input Voltage (Signal Source)  
ESD Susceptibility  
Rating  
−0.3 V to +6 V  
−0.3 V to +2 V  
−0.3 V to +2 V  
4 kV  
Table 5. Thermal Resistance  
Package Type  
PCB  
θJA  
Unit  
OUT− and OUT+ Pins  
8 kV  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
9-Ball, 1.2 mm × 1.2 mm WLCSP  
2S0P  
88  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 16  
 
 
 
Data Sheet  
SSM2537  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
CORNER  
1
2
3
PDAT  
LRSEL  
OUT–  
A
B
C
VDD  
PVDD  
PGND  
OUT+  
PCLK  
GAIN_FS  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Function  
Description  
A1  
PDAT  
Input  
PDM Data Signal.  
A2  
A3  
B1  
B2  
B3  
C1  
C2  
C3  
LRSEL  
OUT−  
VDD  
PVDD  
PGND  
PCLK  
Input  
Left/Right Channel Select. Tie to ground for left channel; pull up to VDD for right channel.  
Inverting Output.  
Digital Power, 1.8 V.  
Amplifier Power, 2.5 V to 5.5 V.  
Amplifier Ground.  
PDM Interface Master Clock.  
Gain and Sample Rate Selection Pin. (Connect to PVDD for typical operation.)  
Noninverting Output.  
Output  
Supply  
Supply  
Ground  
Input  
GAIN_FS  
OUT+  
Input  
Output  
Rev. 0 | Page 7 of 16  
 
SSM2537  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
10  
100  
R
= 4Ω + 15µH  
R
= 8Ω + 33µH  
fSL= 128×  
fSL= 64×  
10  
1
PVDD = 2.5V  
1
PVDD = 2.5V  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
PVDD = 5V  
PVDD = 5V  
PVDD = 3.6V  
PVDD = 3.6V  
1
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 8 Ω, Gain = 5 V, fS = 64×  
Figure 7. THD + N vs. Output Power into 4 Ω, Gain = 5 V, fS = 128×  
100  
100  
R
= 8Ω + 33µH  
R
= 8Ω + 33µH  
L
fSL= 128×  
PVDD = 5V  
fS = 64×  
10  
1
10  
1
PVDD = 2.5V  
0.1  
0.1  
1W  
0.25W  
0.5W  
0.01  
0.01  
PVDD = 5V  
PVDD = 3.6V  
1
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.001  
0.01  
0.1  
10  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 8 Ω, Gain = 5 V, fS = 128×  
Figure 8. THD + N vs. Frequency, PVDD = 5 V, RL = 8 Ω, fS = 64×  
100  
100  
10  
R
= 4Ω + 15µH  
R
= 8Ω + 33µH  
fSL= 64×  
L
PVDD = 3.6V  
fS = 64×  
10  
1
1
PVDD = 2.5V  
0.1  
0.1  
0.5W  
0.25W  
0.01  
0.01  
PVDD = 5V  
PVDD = 3.6V  
0.125W  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
Figure 6. THD + N vs. Output Power into 4 Ω, Gain = 5 V, fS = 64×  
Figure 9. THD + N vs. Frequency, PVDD = 3.6 V, RL = 8 Ω, fS = 64×  
Rev. 0 | Page 8 of 16  
 
Data Sheet  
SSM2537  
100  
100  
10  
R
= 8Ω + 33µH  
R = 4Ω + 15µH  
L
PVDD = 2.5V  
fS = 64×  
L
PVDD = 2.5V  
fS = 64×  
10  
1
1
0.1  
0.1  
0.5W  
0.25W  
0.0625W  
0.125W  
0.01  
0.01  
0.25W  
0.125W  
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. THD + N vs. Frequency, PVDD = 2.5 V, RL = 8 Ω, fS = 64×  
Figure 13. THD + N vs. Frequency, PVDD = 2.5 V, RL = 4 Ω, fS = 64×  
100  
100  
R
= 4Ω + 15µH  
R = 8Ω + 33µH  
L
L
PVDD = 5V  
PVDD = 5V  
fS = 64×  
fS = 128×  
10  
1
10  
1
0.1  
0.1  
2W  
0.5W  
1W  
1W  
0.25W  
0.01  
0.01  
0.5W  
1k  
0.001  
0.001  
10  
100  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 11. THD + N vs. Frequency, PVDD = 5 V, RL = 4 Ω, fS = 64×  
Figure 14. THD + N vs. Frequency, PVDD = 5 V, RL = 8 Ω, fS = 128×  
100  
100  
R
= 8Ω + 33µH  
R
= 4Ω + 15µH  
L
L
PVDD = 3.6V  
PVDD = 3.6V  
fS = 128×  
fS = 64×  
10  
1
10  
1
0.1  
0.1  
1W  
0.25W  
0.5W  
0.25W  
0.01  
0.001  
0.01  
0.5W  
0.125W  
1k  
FREQUENCY (Hz)  
0.001  
10  
100  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 15. THD + N vs. Frequency, PVDD = 3.6 V, RL = 8 Ω, fS = 128×  
Figure 12. THD + N vs. Frequency, PVDD = 3.6 V, RL = 4 Ω, fS = 64×  
Rev. 0 | Page 9 of 16  
SSM2537  
Data Sheet  
100  
10  
100  
R
= 4Ω + 15µH  
R
= 8Ω + 33µH  
L
L
PVDD = 2.5V  
fS = 128×  
PVDD = 2.5V  
fS = 128×  
10  
1
1
0.1  
0.1  
0.5W  
0.25W  
0.01  
0.01  
0.0625W  
100  
0.125W  
0.125W  
10k  
0.25W  
1k  
FREQUENCY (Hz)  
0.001  
0.001  
10  
100  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 16. THD + N vs. Frequency, PVDD = 2.5 V, RL = 8 Ω, fS = 128×  
Figure 19. THD + N vs. Frequency, PVDD = 2.5 V, RL = 4 Ω, fS = 128×  
100  
2.0  
R
= 4Ω + 15µH  
L
fS = 64×  
PVDD = 5V  
fS = 128×  
1.9  
1.8  
1.7  
1.6  
10  
1
8Ω + 33µH  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.1  
2W  
4Ω + 15µH  
NO LOAD  
0.01  
0.001  
0.5W  
100  
1W  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE (V)  
Figure 17. THD + N vs. Frequency, PVDD = 5 V, RL = 4 Ω, fS = 128×  
Figure 20. Quiescent Current vs. Supply Voltage, fS = 64×  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
100  
fS = 128×  
R
= 4Ω + 15µH  
L
PVDD = 3.6V  
fS = 128×  
10  
1
8Ω + 33µH  
NO LOAD  
4Ω + 15µH  
0.1  
1W  
0.01  
0.25W  
100  
0.5W  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
Figure 21. Quiescent Current vs. Supply Voltage, fS = 128×  
Figure 18. THD + N vs. Frequency, PVDD = 3.6 V, RL = 4 Ω, fS = 128×  
Rev. 0 | Page 10 of 16  
Data Sheet  
SSM2537  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
R
= 4Ω + 15µH  
R
= 8Ω + 33µH  
fSL= 128×  
fSL= 64×  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
THD = 10%  
THD = 10%  
THD = 1%  
THD = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 22. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, fS = 64×  
Figure 25. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, fS = 128×  
2.0  
100  
90  
R
= 8Ω + 33µH  
fSL= 128×  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
PVDD = 3.6V  
PVDD = 2.5V  
PVDD = 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
THD = 10%  
THD = 1%  
R
= 8Ω + 33µΗ  
fSL= 64×  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 23. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, fS = 128×  
Figure 26. Efficiency vs. Output Power into 8 Ω, fS = 64×  
100  
4.0  
R
= 4Ω + 15µH  
fSL= 64×  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PVDD = 3.6V  
PVDD = 5V  
PVDD = 2.5V  
THD = 10%  
THD = 1%  
R
= 8Ω + 33µΗ  
fSL= 128×  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 24. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, fS = 64×  
Figure 27. Efficiency vs. Output Power into 8 Ω, fS = 128×  
Rev. 0 | Page 11 of 16  
SSM2537  
Data Sheet  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PVDD = 5V  
80  
PVDD = 3.6V  
PVDD = 2.5V  
70  
60  
50  
40  
30  
20  
10  
0
R
= 4Ω + 15µΗ  
fSL= 64×  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
OUTPUT POWER (W)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 28. Efficiency vs. Output Power into 4 Ω, fS = 64×  
Figure 31. Power Supply Rejection Ratio (PSRR) vs. Frequency  
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PCLK  
2
1
0
PVDD = 5V  
PVDD = 3.6V  
OUTPUT  
–1  
PVDD = 2.5V  
–2  
–3  
–4  
–5  
R
= 4Ω + 15µΗ  
fSL= 128×  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
OUTPUT POWER (W)  
–0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
TIME (ms)  
Figure 29. Efficiency vs. Output Power into 4 Ω, fS = 128×  
Figure 32. Turn-On Response  
0
–20  
R
= 8Ω + 33µH  
L
PVDD = 5V  
fS = 128×  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 30. Output Spectrum vs. Frequency  
Rev. 0 | Page 12 of 16  
Data Sheet  
SSM2537  
THEORY OF OPERATION  
MASTER CLOCK  
POWER-ON RESET/VOLTAGE SUPERVISOR  
The SSM2537 requires a clock present at the PCLK input pin to  
operate. This clock must be fully synchronous with the incoming  
digital audio on the serial interface. Clock frequencies must fall  
into one of these ranges: 1.84 MHz to 3.23 MHz or 3.68 MHz to  
6.46 MHz.  
The SSM2537 includes an internal power-on reset and voltage  
supervisor circuit. This circuit provides an internal reset to  
BMM circuitry when PVDD or VDD is substantially below the  
nominal operating threshold. This simplifies supply sequencing  
during initial power-on.  
The circuit also monitors the power supplies to the IC. If the  
supply voltages fall below the nominal operating threshold, this  
circuit stops the output and issues a reset. This is done to ensure  
that no damage occurs due to low voltage operation and that no  
pops can occur under nearly any power removal condition.  
POWER SUPPLIES  
The SSM2537 requires two power supplies: PVDD and VDD.  
PVDD  
PVDD supplies power to the full-bridge power stage of the  
MOSFET and its associated drive, control, and protection  
circuitry. It also supplies power to the digital-to-analog  
converter (DAC) and to the Class-D PDM modulator. PVDD  
can operate from 2.5 V to 5.5 V and must be present to obtain  
audio output. Lowering the supply voltage of PVDD results in  
lower maximum output power and, therefore, lower power  
consumption.  
SYSTEM GAIN/INPUT FREQUENCY  
The GAIN_FS pin is used to set the internal gain and filtering  
configuration for different sample rates of the SSM2537. This  
pin can be set to one of four states by connecting the pin either  
to PVDD or to PGND with or without a 47 kΩ resistor (see  
Table 7). The internal gain and filtering can also be set via PDM  
pattern control, allowing these settings to be modified during  
operation (see the PDM Pattern Control section).  
VDD  
VDD provides power to the digital logic circuitry. VDD can  
operate from 1.65 V to 1.95 V and must be present to obtain  
audio output. Lowering the supply voltage of VDD results in  
lower power consumption but does not affect audio performance.  
The SSM2537 has an internal analog gain control such that  
when GAIN_FS is tied to PGND or PVDD via a 47 kΩ resistor  
(5 V gain setting), a −6.02 dBFS PDM input signal results in  
an amplifier output voltage of 5 V peak. This setting should  
produce optimal noise performance when PVDD is 5 V.  
POWER CONTROL  
On device power-up, PVDD must first be applied to the device,  
which latches in the designated GAIN_FS pin functionality.  
When the GAIN_FS pin is tied to PVDD or pulled directly to  
PGND, the gain is adjusted so that a −6.02 dBFS PDM input  
signal results in an amplifier output voltage of 3.6 V peak. This  
setting should produce optimal noise performance when PVDD  
is 3.6 V.  
The SSM2537 contains a smart power-down feature. When  
enabled, the smart power-down feature looks at the incoming  
digital audio and, if it receives the PDM stop condition of at  
least 129 repeated 0xAC bytes (1024 clock cycles), it places  
the SSM2537 in standby mode. In standby mode, PCLK can  
be removed, resulting in a full power-down state. This state  
is the lowest power condition possible. When PCLK is turned  
on again and a single non-stop condition input is received, the  
SSM2537 leaves the full power-down state and resumes normal  
operation under the default setting as indicated by the  
GAIN_FS pin state.  
The SSM2537 can handle input sample rates of 64 × fS (~3 MHz)  
and 128 × fS (~6 MHz). Different internal digital filtering is used  
in each of these cases. Selection of the sample rate is also set via  
the GAIN_FS pin (see Table 7).  
Because the 64 × fS mode provides better performance with  
lower power consumption, its use is recommended. The 128  
× fS mode should be used only when overall system noise  
performance is limited by the source modulator.  
Table 7. GAIN_FS Function Descriptions  
Device Setting  
GAIN_FS Pin Configuration  
fS = 128 × PCLK, Gain = 5 V  
Pull up to PVDD with a 47 kΩ  
resistor  
fS = 64 × PCLK, Gain = 5 V  
Pull down to PGND with a 47 kΩ  
resistor  
fS = 128 × PCLK, Gain = 3.6 V  
fS = 64 × PCLK, Gain = 3.6 V  
Pull up to PVDD  
Pull down to PGND  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
 
SSM2537  
Data Sheet  
PDM PATTERN CONTROL  
OUTPUT MODULATION DESCRIPTION  
The SSM2537 has a simple control mechanism that can set  
the part for low power states and control functionality. This is  
accomplished by sending a repeating 8-bit pattern to the device.  
Different patterns set different functionality (see Table 8).  
The SSM2537 uses three-level, Σ-Δ output modulation. Each  
output can swing from PGND to PVDD and vice versa. Ideally,  
when no input signal is present, the output differential voltage is  
0 V because there is no need to generate a pulse. In a real-world  
situation, there are always noise sources present.  
Any pattern must be repeated a minimum of 129 times. The  
part is automatically muted when a pattern is detected so that  
a pattern can be set while the part is operational without a  
pop/click due to pattern transition.  
Due to this constant presence of noise, a differential pulse  
is generated, when required, in response to this stimulus. A  
small amount of current flows into the inductive load when  
the differential pulse is generated.  
All functionality set via patterns returns to its default values  
after a clock-loss power-down.  
Most of the time, however, the output differential voltage is 0 V,  
due to the Analog Devices, Inc., three-level, Σ-Δ output  
modulation. This feature ensures that the current flowing  
through the inductive load is small.  
Table 8. PDM Watermarking Pattern Control Descriptions  
Pattern Control Description  
0xD2  
0xD4  
0xD8  
0xE1  
0xE2  
0xE4  
0xAA  
0x66  
0xAC  
Gain optimized for PVDD = 3.6 V operation.  
Gain optimized for PVDD = 2.5 V operation.  
Gain optimized for PVDD = 5 V operation.  
Ultralow EMI mode.  
Low latency mode with pattern delay (~15 μs latency).  
fS set to opposite value determined by GAIN_FS pin.  
Device reset: Place device into default configuration.  
Mute.  
When the user wants to send an input signal, an output pulse  
(OUT+ and OUT−) is generated to follow the input voltage.  
The differential pulse density (VOUT) is increased by raising  
the input signal level. Figure 33 depicts three-level, Σ-Δ output  
modulation with and without input stimulus.  
OUTPUT = 0V  
+5V  
OUT+  
0V  
+5V  
Power-down: All blocks off except for PDM interface.  
Normal start-up time.  
OUT–  
0V  
+5V  
VOUT  
0V  
EMI NOISE  
–5V  
OUTPUT > 0V  
The SSM2537 uses a proprietary modulation and spread-  
spectrum technology to minimize EMI emissions from the  
device. For applications that have difficulty passing FCC  
Class B emission tests, the SSM2537 includes a modulation  
select mode (ultralow EMI emissions mode) that significantly  
reduces the radiated emissions at the Class-D outputs, particu-  
larly above 100 MHz. This mode is enabled by activating PDM  
Watermarking Pattern 0xE1 (see Table 8).  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
+5V  
0V  
OUTPUT < 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
PDM CHANNEL SELECTION  
0V  
0V  
The SSM2537 includes a left/right input select pin, LRSEL  
(see Table 9), that determines which of the time-multiplexed  
input streams is routed to the amplifier. To select the left input  
channel, connect LRSEL to PGND. To select the right channel,  
connect LRSEL to VDD. At any point during amplifier  
operation, the logic level applied to LRSEL may be changed  
and the output will switch the input streams without audible  
artifacts. No muting, watermarking pattern or synchronizing  
are necessary to achieve a click/pop free LRSEL transition.  
–5V  
Figure 33. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Table 9. LRSEL Pin Function Descriptions  
Device Setting  
LRSEL Pin Configuration  
Right Channel Select  
Left Channel Select  
VDD  
PGND  
Rev. 0 | Page 14 of 16  
 
 
 
 
 
 
 
Data Sheet  
SSM2537  
APPLICATIONS INFORMATION  
Properly designed multilayer PCBs can reduce EMI emissions  
and increase immunity to the RF field by a factor of 10 or more,  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
LAYOUT  
As output power increases, take care to lay out PCB traces and  
wires properly among the amplifier, load, and power supply.  
A good practice is to use short, wide PCB tracks to decrease  
voltage drops and minimize inductance. Avoid ground loops  
where possible to minimize common-mode current associated  
with separate paths to ground. Ensure that track widths are  
at least 200 mil per inch of track length for the lowest DCR,  
and use 1 oz or 2 oz copper PCB traces to further reduce IR  
drops and inductance. A poor layout increases voltage drops,  
consequently affecting efficiency. Use large traces for the power  
supply inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short-duration  
voltage spikes. These spikes can contain frequency components  
that extend into the hundreds of megahertz.  
The power supply input must be decoupled with a good quality,  
low ESL, low ESR capacitor, with a minimum value of 4.7 µF.  
This capacitor bypasses low frequency noises to the ground  
plane. For high frequency transient noises, use a 0.1 µF capac-  
itor as close as possible to the PVDD and VDD pins of the  
device. Placing the decoupling capacitors as close as possible  
to the SSM2537 helps to maintain efficient performance.  
Proper grounding helps to improve audio performance,  
minimize crosstalk between channels, and prevent switching  
noise from coupling into the audio signal. To maintain high  
output swing and high peak output power, the PCB traces that  
connect the output pins to the load, as well as the PCB traces  
to the supply pins, should be as wide as possible to maintain  
the minimum trace resistances. It is also recommended that  
a large ground plane be used for minimum impedances.  
In addition, good PCB layout isolates critical analog paths from  
sources of high interference. Separate high frequency circuits  
(analog and digital) from low frequency circuits.  
Rev. 0 | Page 15 of 16  
 
 
 
SSM2537  
Data Sheet  
OUTLINE DIMENSIONS  
1.240  
1.200 SQ  
1.160  
3
2
1
A
B
C
BALL A1  
IDENTIFIER  
0.80  
REF  
0.40  
REF  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.80  
REF  
0.560  
END VIEW  
0.500  
0.440  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.230  
0.200  
0.170  
0.300  
0.260  
0.220  
Figure 34. 9-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-9-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
SSM2537ACBZ-R7  
SSM2537ACBZ-RL  
EVAL-SSM2537Z  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-9-5  
CB-9-5  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10981-0-10/12(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

SSM25G45EM

N-CHANNEL INSULATED-GATE BIPOLAR TRANSISTOR
SSC

SSM25PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM25T03GH

N-channel Enhancement-mode Power MOSFET
SSC

SSM25T03GJ

N-channel Enhancement-mode Power MOSFET
SSC

SSM2602

Low Power Audio Codec
ADI

SSM2602-EVALZ

Low Power Audio Codec
ADI

SSM2602-EVALZ1

Low Power Audio Codec
ADI

SSM2602CPZ-R2

Low Power Audio Codec
ADI

SSM2602CPZ-R21

Low Power Audio Codec
ADI

SSM2602CPZ-REEL

Low Power Audio Codec
ADI

SSM2602CPZ-REEL1

Low Power Audio Codec
ADI

SSM2602CPZ-REEL7

Low Power Audio Codec
ADI