SSM3525 [ADI]

30 W, Filterless, Class D, Output Sensing Audio Amplifier;
SSM3525
型号: SSM3525
厂家: ADI    ADI
描述:

30 W, Filterless, Class D, Output Sensing Audio Amplifier

文件: 总60页 (文件大小:934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30 W, Filterless, Class D, Output Sensing  
Audio Amplifier  
Data Sheet  
SSM3525  
FEATURES  
GENERAL DESCRIPTION  
Filterless digital input, mono Class D amplifier with Σ-Δ  
modulation  
Digitized output of output voltage, output current, and PVDD  
supply voltage  
Operates from 4.5 V to 17 V supply, such as a 2-cell or 3-cell  
battery  
Input/output supply operation from 1.1 V to 1.98 V  
30.2 W output power, 17 V supply and 4 Ω load at 1% THD + N  
37.5 μV rms noise, 107 dB A weighted signal-to-noise ratio  
I2C control with up to 4 pin-selectable addresses  
Multiple serial data formats  
TDM, I2S, or left justified slave  
PDM input/output operating from 2.048 MHz to  
6.144 MHz  
Support sample rates from 8 kHz to 192 kHz  
Flexible digital and analog gain adjustment  
AGC with battery voltage-based limiter  
74 dB SNR on output current sensing and 85 dB SNR on  
voltage sensing  
6.62 mA quiescent current at 12 V PVDD supply  
Temperature sensor with 1°C readout  
Short-circuit, thermal protection, and thermal warning  
23-ball, 2.26 mm × 2.38 mm, 0.4 mm pitch WLCSP  
Pop and click suppression  
The SSM3525 is a fully integrated, high efficiency, mono Class D  
audio amplifier with digital input and digitized output of output  
voltage, output current, and PVDD supply. The application  
circuit requires few external components and can operate from  
4.5 V to 17 V (PVDD) and 1.8 V (IOVDD) supplies. It is capable of  
delivering 8.3 W of continuous output power into an 8 Ω load (or  
15.3 W into 4 Ω) with <1% total harmonic distortion + noise (THD  
+ N) from a 12 V supply, or 30.2 W into an 4 Ω load from a 17 V  
power supply, all with <1% THD + N.  
The SSM3525 features a high efficiency, low noise modulation  
scheme that requires no external inductor/capacitor (LC) output  
filters. This scheme continues to provide high efficiency even at  
low output power. It operates with 92% efficiency at 9 W into an  
8 Ω load, 12V or 89% efficiency at 20 W into 4 Ω from a 17 V  
supply, and it has an signal-to-noise ratio (SNR) of 107 dB,  
A weighted.  
Spread spectrum pulse density modulation provides lower  
electromagnetic interference (EMI) radiated emissions compared  
with other Class D architectures, particularly above 100 MHz.  
The digital input eliminates the need of an external digital-to-  
analog converter (DAC). The SSM3525 has a micropower  
shutdown mode with a typical shutdown current of 90 nA at  
12 V PVDD supply. Individual sense blocks can be powered  
down to save power when sense is not needed.  
User-selectable ultralow EMI emissions mode  
Power-on reset  
The device also includes pop and click suppression circuitry  
that minimizes voltage glitches at the output during turn on and  
turn off.  
APPLICATIONS  
Mobile computing  
Portable electronics  
Current sensing is accomplished using an integrated analog-to-  
digital converter (ADC) and internal sense resistor. The  
digitized voltage and current information can be returned in  
various serial audio formats, including I2S, time division  
multiplexing (TDM) and pulse density modulation (PDM).  
The SSM3525 includes an integrated regulator to generate the  
required 5 V analog supply. Alternatively, if an external 5 V rail  
from a dc-to-dc converter is available, it can improve system  
efficiency.  
The SSM3525 is designed to operate with an I2C control interface  
and specified over the temperature range of −40°C to +85°C. It has  
built-in thermal shutdown and output short-circuit protection. It is  
available in a halide free, 23-ball, 2.26 mm × 2.38 mm wafer-level  
chip scale package (WLCSP).  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
SSM3525  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SSM3525 I2C Mode Register Map (SSM3525_I2C_Regmap)  
Register Summary .......................................................................... 36  
SSM3525 I2C Mode Register Map (SSM3525_I2C_REGMAP)  
Register Details ............................................................................... 37  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Theory of Operation ...................................................................... 23  
Overview...................................................................................... 23  
Power Supplies ............................................................................ 23  
Pin Setup and Control ............................................................... 23  
Power-Down Modes .................................................................. 24  
Output Current Sensing ............................................................ 24  
Output Voltage Sensing ............................................................. 24  
Temperature Sensor ................................................................... 24  
PCM Digital Audio Serial Interface......................................... 24  
Stereo (I2S/Left Justified) Operating Mode............................. 24  
TDM Operating Mode............................................................... 25  
Serial Data Placement................................................................ 25  
PDM Operating Mode............................................................... 26  
Analog and Digital Gain............................................................ 27  
PVDD (VBAT) Sensing............................................................. 27  
Faults and Limiter Status Reporting ........................................ 27  
Limiter and Battery Tracking Threshold Control.................. 27  
Pop and Click Suppression........................................................ 30  
High Frequency Clipper ............................................................ 30  
EMI Noise.................................................................................... 30  
Output Modulation Description .............................................. 30  
Bootstrap Capacitors.................................................................. 32  
Power Supply Decoupling ......................................................... 32  
Output EMI Filtering................................................................. 32  
PCB Component Placement ..................................................... 32  
Layout........................................................................................... 33  
I2C Control .................................................................................. 33  
Applications Information .............................................................. 35  
ADI Vendor ID Register............................................................ 37  
Device ID 1 Register .................................................................. 37  
Device ID 1 Register .................................................................. 37  
Revision ID Register .................................................................. 37  
Regulator Enable and IOVDD Selection Register ................. 38  
Amplifier Gain, Edge Control, and Sense Sample Rate  
Register ........................................................................................ 38  
DAC Control Register................................................................ 39  
DAC Volume Control Register................................................. 40  
Audio Limiter Control 1 Register ............................................ 41  
Audio Limiter Control 2 Register ............................................ 42  
Audio Limiter Control 3 Register ............................................ 43  
VBAT Limiter Control 1 Register ............................................ 43  
VBAT Limiter Control 2 Register ............................................ 44  
VBAT Limiter Control 3 Register ............................................ 44  
Limiter Link Control Register .................................................. 45  
DAC Clip Point Control Register............................................. 45  
Fault Control Register................................................................ 46  
Chip Status Register ................................................................... 47  
Temperature Sensor Value Register ......................................... 47  
VBAT/PVDD ADC Value Register.......................................... 48  
Master and Block Power Control Register.............................. 48  
PDM Control Register............................................................... 49  
Serial Interface Control 1 Register........................................... 49  
Serial Interface Control 2 Register........................................... 50  
Serial Interface Placement Control 1 Register........................ 51  
Serial Interface Placement Control 2 Register........................ 52  
Serial Interface Placement Control 3 Register........................ 52  
Serial Interface Placement Control 4 Register........................ 53  
Serial Interface Placement Control 5 Register........................ 54  
Serial Interface Placement Control 6 Register........................ 54  
AGC_GAIN1 Input Data Placement Register........................ 55  
AGC_GAIN2 Input Data Placement Register........................ 56  
AGC_GAIN3 Input Data Placement Register........................ 57  
AGC_GAIN4 Input Data Placement Register........................ 58  
Software Reset Register ............................................................. 59  
Ordering Guide .......................................................................... 60  
Rev. A | Page 2 of 60  
Data Sheet  
SSM3525  
REVISION HISTORY  
5/2018—Rev. 0 to Rev. A  
Changes to Figure 1...........................................................................4  
Changes to Figure 20 to Figure 23 ...............................................14  
Changes to Figure 24 to Figure 27 ................................................15  
Changes to Figure 62 and Figure 63 Caption ..............................21  
Changes to SNS_HPF_BP Description, Table 27........................38  
1/2018—Revision 0: Initial Version  
Rev. A |Page 3 of 60  
 
 
SSM3525  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
5V  
1.8V  
4.5V TO 17V  
VREG/AVDD  
IOVDD  
PVDD/VBAT  
ADDR  
PVDD (VBAT)  
ADC  
TEMPERATURE  
SENSOR  
SCL  
2
PVDD  
I C  
SDA  
OUTPUT  
VOLTAGE  
SENSE  
Σ-Δ  
ADC  
DIGITAL  
DECIMATION  
FILTERING  
OUTPUT  
CURRENT  
SENSE  
Σ-Δ  
ADC  
BST+  
DIGITAL  
SDATAO  
BCLK  
OUT+  
TDM  
Σ-Δ  
FILTERING  
FULL BRIDGE  
POWER  
STAGE  
2
I S  
DAC  
CLASS D  
PDM  
I/O  
FSYNC  
SDATAI  
MODULATOR  
VOLUME/  
GAIN  
OUT–  
BST–  
AGND  
PGND  
Figure 1. SSM3525 Block Diagram  
Rev. A | Page 4 of 60  
Data Sheet  
SSM3525  
SPECIFICATIONS  
PVDD = 12 V, AVDD = 5 V (internal), IOVDD = 1.8 V (external), RL = 8 Ω + 33 μH, BCLK = 3.072 MHz, FSYNC = 48 kHz, −40°C to +85°C,  
unless otherwise noted. The measurements are taken with a 20 kHz AES17 low-pass filter. The other load impedances used are 4 Ω + 15 μH  
and 3 Ω +10 μH. The sine wave output powers above 20 W in 4 Ω cannot be continuous and might invoke the thermal limit indicator  
based on the power dissipation capability of the printed circuit board (PCB).  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power/Channel  
RL = 8 Ω  
POUT  
Frequency (f) = 1 kHz  
THD + N = 1%, PVDD = 17 V  
THD + N = 1%, PVDD = 12 V  
THD + N = 1%, PVDD = 7 V  
15.2  
8.3  
2.8  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
%
%
%
%
%
THD + N = 1%, PVDD = 5 V  
1.4  
THD + N = 10%, PVDD = 17 V  
THD + N = 10%, PVDD = 12 V  
THD + N = 10%, PVDD = 7 V  
THD + N = 10%, PVDD = 5 V  
THD + N = 1%, PVDD = 17 V  
THD + N = 1%, PVDD = 12 V  
THD + N = 1%, PVDD = 7 V  
18.7  
10.4  
3.5  
1.8  
RL = 4 Ω  
30.2  
15.3  
5.2  
THD + N = 1%, PVDD = 5 V  
2.7  
THD + N = 10%, PVDD = 17 V  
THD + N = 10%, PVDD = 12 V  
THD + N = 10%, PVDD = 7 V  
THD + N = 10%, PVDD = 5 V  
POUT = 9 W, RL = 8 Ω, PVDD = 12 V  
POUT = 9 W, RL = 8 Ω, PVDD = 12 V (low EMI mode)  
POUT = 20 W, RL = 4 Ω, PVDD = 17 V  
POUT = 20 W, RL = 4 Ω, PVDD = 17 V (low EMI mode)  
37.2  
19.1  
6.6  
3.3  
92.1  
92  
89  
88.8  
0.004  
Efficiency  
η
Total Harmonic  
THD + N  
POUT = 5 W, RL = 8 Ω, f = 1 kHz, PVDD = 16 V  
0.01  
Distortion + Noise  
Load Inductance  
Output FET On Resistance RON  
OverCurrent Protection  
Trip Point  
Average Switching  
Frequency  
5
6
μH  
mΩ  
APEAK  
110  
300  
IOC  
fSW  
kHz  
mV  
Differential Output Offset  
Voltage  
VOOS  
Gain = 8.9V/V  
5.0  
POWER SUPPLIES  
Supply Voltage Range  
PVDD  
AVDD  
IOVDD  
PSRRAC  
Guaranteed from PSRR test  
4.5  
4.5  
1.1  
17  
V
V
V
dB  
5.0  
1.80  
87  
5.5  
1.98  
73  
I2S/TDM operation  
VRIPPLE = 1 V rms at 1 kHz  
Power Supply Rejection  
Ratio (AC)  
GAIN CONTROL  
Output Voltage Peak  
Measured with 0 dBFS input at 1 kHz, no load  
Analog gain setting = 6.3 V/V with PVDD = 6.3 V  
Analog gain setting = 8.9 V/V with PVDD = 8.9 V  
Analog gain setting = 12.6 V/V with PVDD = 12.6 V  
Analog gain setting = 16.0 V/V with PVDD = 16 V  
PDM input density for full-scale output  
6.3  
8.9  
12.6  
16  
VPEAK  
VPEAK  
VPEAK  
VPEAK  
FS  
PDM Input Gain  
0.5  
Rev. A |Page 5 of 60  
 
SSM3525  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SHUTDOWN CONTROL  
Turn-On Time  
Turn-Off Time  
tWU  
tSD  
I2S mode  
10  
500  
ms  
µs  
Output Impedance  
NOISE PERFORMANCE1  
Output Voltage Noise  
ZOUT  
100  
kΩ  
en  
f = 20 Hz to 20 kHz, A weighted, PVDD = 12 V  
f = 20 Hz to 20 kHz, A weighted, PVDD = 17 V  
POUT = 8.2 W, RL= 8 Ω, A weighted, PVDD = 12 V  
POUT = 31 W, RL= 4 Ω, A weighted, PVDD = 17 V  
37.5  
48  
107  
107  
µV rms  
µV rms  
dB  
Signal-to-Noise Ratio  
SNR  
dB  
OUTPUT SENSING  
Output Sampling Rate  
(TDM)  
PDM Gain Mapping  
fs  
FSYNC pulse rate  
8
192  
KHz  
FS  
Voltage to current (V/I) sense PDM output with full-scale  
input  
0.71  
85  
Voltage Sense Signal-to-  
Noise Ratio  
Voltage Sense Full-Scale  
Voltage Sense Absolute  
Accuracy  
SNRV  
VFS  
dB  
Output voltage at 0 dBFS output from ADC  
Temperature = 0°C to 70° C, output >−40 dBFS  
18  
1.5  
VPEAK  
%
Voltage Sense Gain Drift  
Current Sense SNR  
Current Sense Full-Scale  
Current Sense Absolute  
Accuracy  
Temperature = 0°C to 70° C, output >−40 dBFS  
0.5  
74  
6.96  
2
%
SNRI  
ISENSE,FS  
dB  
APEAK  
%
Peak current with 0 dBFS output from ADC  
Temperature = 0°C to 70° C, output >−40 dBFS  
Current Sense Gain Drift  
Voltage Sense over Current  
Sense Ratio Drift  
Temperature = 0°C to 70° C, output >−40 dBFS  
Temperature = 0°C to 70° C, output >−40 dBFS  
0.5  
0.5  
%
%
PVDD Sense Full-Scale  
Range  
PVDD Sense Absolute  
Accuracy  
Current and Voltage  
Sense Linearity  
PVFS  
PVDD with full-scale ADC output  
Temperature = 0°C to 70°C  
From −40 dBr to 0 dBr  
4
18  
V
3
LSBs  
dB  
0.5  
1 The noise performance minimum and maximum limits are based on the bench data for −40°C to +85°C.  
Rev. A | Page 6 of 60  
Data Sheet  
SSM3525  
Software master power-down indicates the clocks are turned off. Auto power-down indicates there is no dither or zero input signal with  
clocks on; the device enters soft power-down after 2048 cycles of zero input values. Quiescent indicates triangular dither with zero input  
signal. All specifications are typical, with a 48 kHz sample rate, unless otherwise noted.  
Table 2. Power Supply Current Consumption1  
No Load  
IPVDD IIOVDD IAVDD  
5 V 12 V 17 V 1.8 V 5 V 5 V 12 V 17 V 1.8 V 5 V 5 V 12 V 17 V 1.8 V 5 V  
Software master power-down 0.09 0.09 0.09 8.01 3.24 0.09 0.09 0.09 8.01 3.24 0.09 0.09 0.09 8.01 3.24 μA  
4 Ω + 15 μH  
8 Ω +33 μH  
Edge Rate  
Control  
Mode  
IPVDD IIOVDD IAVDD  
IPVDD IIOVDD AVDD  
Register REG_EN Bit Test Conditions  
Unit  
Normal  
0
1
0
1
Quiescent (all ADCs on)  
Quiescent (all ADCs off)  
1.73 3.43 4.49 0.992 5.14 1.96 3.55 4.61 0.994 5.26 1.67 3.29 4.49 0.995 5.14 mA  
1.74 3.44 4.51 0.817 3.28 1.96 3.54 4.61 0.816 3.44 1.67 3.29 4.49 0.82 3.34 mA  
Software master power-down 0.09 0.09 0.09 8.01 N/A 0.09 0.09 0.09 8.01 N/A 0.09 0.09 0.09 8.01 N/A μA  
Quiescent (all ADCs on)  
Quiescent (all ADCs off)  
6.86 8.56 9.65 0.995 N/A 6.81 8.61 10.21 0.998 N/A 6.83 8.51 9.79 0.996 N/A mA  
5.04 6.73 7.86 0.821 N/A 4.98 6.75 8.44 0.766 N/A 5.01 6.69 7.96 0.817 N/A mA  
Low EMI  
Software master power-down 0.09 0.09 0.09 8.01 3.24 0.09 0.09 0.09 8.01 3.24 0.09 0.09 0.09 8.01 3.24 μA  
Quiescent (all ADCs on)  
Quiescent (all ADCs off)  
1.663 3.35 4.48 0.991 5.08 1.6 3.35 4.68 0.994 5.21 1.59 3.28 4.48 0.996 5.09 mA  
1.663 3.35 4.58 0.823 3.28 1.6 3.37 4.71 0.819 3.41 1.59 3.25 4.48 0.819 3.27 mA  
Software master power-down 0.09 0.09 0.09 8.01 N/A 0.09 0.09 0.09 8.01 N/A 0.09 0.09 0.09 8.01 N/A μA  
Quiescent (all ADCs on)  
Quiescent (all ADCs off)  
6.73 8.46 9.8 0.998 N/A 6.71 8.56 10.02 0.995 N/A 6.72 8.45 9.61 0.992 N/A mA  
4.91 6.62 7.97 0.823 N/A 4.89 6.74 8.19 0.816 N/A 4.89 6.58 7.81 0.821 N/A mA  
1 N/A means not applicable.  
Table 3. Digital Input/Output  
Parameter  
Min  
Typ  
Max  
Unit  
HIGH INPUT VOLTAGE (VIH)  
BCLK, FSYNC, SDATAI, and SDATAO  
SCL and SDA  
0.7 × IOVDD  
0.7 × IOVDD  
1.98  
5.5  
V
V
LOW INPUT VOLTAGE (VIL)  
BCLK, FSYNC, SDATAI, SDATAO, SDA, SCL  
ADDR  
−0.3  
−0.3  
0.3 × IOVDD  
IOVDD + 0.3  
V
V
INPUT LEAKAGE  
HIGH (IIH)  
LOW (IIL)  
1
1
5
µA  
µA  
pF  
INPUT CAPACITANCE  
OUTPUT DRIVE STRENGTH (SDATAO)  
3
mA  
TIMING SPECIFICATIONS  
Table 4. I2C Port Timing  
Parameter  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
tSCR  
tSCF  
tSDR  
tSDF  
tBFT  
Min  
Max  
Unit  
Description  
1
MHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
SCL frequency  
SCL high  
SCL low  
Setup time; relevant for repeated start condition  
Hold time; after this period, the first clock is generated  
Data setup time  
SCL rise time  
SCL fall time  
SDA rise time  
SDA fall time  
0.26  
0.5  
0.26  
0.26  
50  
120  
120  
120  
120  
0.5  
Bus-free time (time between stop and start)  
Rev. A |Page 7 of 60  
 
SSM3525  
Data Sheet  
Table 5. Serial Port Digital Input Timing (I2S/TDM Operation Modes Only)  
Parameter  
Min  
Max  
Unit  
Description  
SERIAL PORT  
tBIL  
tBIH  
tSIS  
tSIH  
tLIS  
tLIH  
tBP  
8
8
4
4
5
5
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width  
BCLK high pulse width  
SDATAI setup time to BCLK rising edge  
SDATA hold time from BCLK rising edge  
FSYNC setup time to BCLK rising edge  
FSYNC hold time to BCLK rising edge  
Minimum BCLK period  
Table 6. Serial Port Digital Output Timing (I2S/TDM Operation Modes Only)  
Parameter  
Min  
Max  
Unit  
Description  
SERIAL PORT  
tBIL  
tBIH  
tSIS  
tSIH  
tLIS  
tLIH  
tBP  
8
8
4
4
5
5
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width.  
BCLK high pulse width.  
SDATAO setup time to BCLK rising edge  
SDATA hold time from BCLK rising edge  
FSYNC setup time to BCLK rising edge  
FSYNC hold time to BCLK rising edge  
Minimum BCLK period  
Table 7. PDM Timing Parameters  
Limit  
Max  
Parameter  
Min  
Unit  
Description  
PDM Clock Frequency  
tFALL  
2.048  
6.144  
10  
MHz  
ns  
Clock fall time  
Clock rise time  
Data setup time  
Data hold time  
tRISE  
tSETUP  
tHOLD  
10  
ns  
ns  
ns  
10  
7
Digital Timing Diagrams  
t
SCH  
t
t
SCH  
DS  
SDA  
SCL  
t
t
t
SCS  
SCR  
SCLH  
t
BFT  
t
t
SCF  
SCLL  
START  
CONDITION  
STOP  
CONDITION  
Figure 2. I2C Port Timing  
Rev. A | Page 8 of 60  
Data Sheet  
SSM3525  
t
t
BP  
BIH  
BCLK  
t
BIL  
t
t
LIH  
LIS  
LRCLK  
t
SIS  
SDATA  
LEFT–JUSTIFIED  
MODE  
MSB  
MSB–1  
t
SIH  
t
SIS  
SDATA  
MSB  
2
I C–JUSTIFIED  
MODE  
t
SIH  
t
t
SIS  
SIS  
SDATA  
RIGHT–JUSTIFIED  
MODE  
MSB  
LSB  
t
t
SIH  
SIH  
Figure 3. Serial Port SDATAI and SDATAO Timing  
BCLK  
t
t
HOLD  
SETUP  
SDATAI  
L DATA  
L DATA  
R DATA  
L DATA  
R DATA  
R DATA  
SDATAO  
R DATA  
L DATA  
Figure 4. PDM Input/Output Format  
Rev. A |Page 9 of 60  
SSM3525  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required. θJA and θJB are determined according to  
JESD51-9 on a 4-layer PCB with natural convection cooling.  
Table 8.  
Parameter  
Rating  
PVDD Supply Voltage  
IOVDD Supply Voltage  
AVDD Supply Voltage  
PGND and AGND Differential  
BCLK, FSYNC, ADDR, SDATAI Input  
Voltage  
−0.3 V to +18 V  
−0.3 V to +1.98 V  
−0.3 V to +5.5 V  
0.3 V  
Table 9. Thermal Resistance  
Package Type  
1
1
θJA  
θJB  
Unit  
−0.3 V to +1.98 V  
23-ball, 2.22 mm × 2.34 mm WLCSP  
64.6 21.9  
°C/W  
1 Thermal impedance simulated values are based on JEDEC2S2P thermal  
test board with two thermal vias. See JEDEC JESD51.  
SCL and SDA Input Voltage  
−0.3 V to +5.5 V  
1.5 kV  
Electrostatic Discharge (ESD)  
Susceptibility, HBM 1.5 kΩ, 100 pF,  
JEDEC JS-001-2014  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range  
(Soldering, 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 10 of 60  
 
 
 
Data Sheet  
SSM3525  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
4
5
A
B
BST–  
OUT–  
PVDD/VBAT  
OUT+  
BST+  
PGND  
PGND  
OUT–  
OUT+  
PGND  
PVDD/VBAT  
PVDD/VBAT  
ADDR  
C
D
PGND  
FSYNC  
BCLK  
VREG/  
AVDD  
AGND  
SDA  
IOVDD  
E
SCL  
SDATAI  
SDATAO  
Figure 5. Ball Configuration (Top Side View)  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
AIN  
Description  
A1  
BST−  
Bootstrap Capacitor, Inverting Output.  
Inverting Output.  
Power Stage Supply/Battery Supply.  
Noninverting Output.  
Bootstrap Capacitor, Noninverting Output.  
Power Stage Ground.  
Inverting Output.  
Noninverting Output.  
Analog Input/Output. 5 V regulator output/AVDD input.  
Analog Ground.  
Address Selection.  
Input/Output and Digital Supply.  
A2  
A3, B3, C3  
A4  
A5  
OUT−  
PVDD/VBAT  
OUT+  
BST+  
PGND  
AOUT  
PWR  
AOUT  
AIN  
PWR  
AOUT  
AOUT  
AIO  
PWR  
DIN  
PWR  
DIN  
DIN  
DIO  
DIN  
DOUT  
DIN  
B1, B5, C1, C5  
B2  
B4  
D1  
D2  
D3  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
OUT−  
OUT+  
VREG/AVDD  
AGND  
ADDR  
IOVDD  
FSYNC  
SCL  
Frame Sync Input.  
I2C Clock.  
SDA  
I2C Data.  
SDATAI  
SDATAO  
BCLK  
I2S/TDM Serial Data Input or PDM Data Input.  
I2S/TDM Serial Data Output or PDM Data Output.  
TDM/I2S Bit Clock Input, PDM Clock Input  
1 AOUT is analog output, PWR is power supply or ground pin, AIN is analog input, DIN is digital input, DOUT is digital output, and DIO is digital input/output.  
Rev. A |Page 11 of 60  
 
SSM3525  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
20  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Fast Fourier Transform (FFT), −60 dBFS Input,  
Analog Gain = 6.3, RL = 4 Ω  
Figure 9. FFT, −60 dBFS Input, Analog Gain = 16, RL = 4 Ω  
20  
0
20  
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. FFT, −60 dBFS Input, Analog Gain = 8.9, RL= 4 Ω  
Figure 10. FFT, No Signal, Analog Gain = 6.3, RL = 4 Ω  
20  
20  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. FFT, −60 dBFS Input, Analog Gain = 12.6, RL = 4 Ω  
Figure 11. FFT, No Signal, Analog Gain = 8.9, RL = 4 Ω  
Rev. A | Page 12 of 60  
Data Sheet  
SSM3525  
20  
1.0  
0.1  
0
5W  
1W  
100mW  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0.01  
0.001  
–180  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. FFT, No Signal, Analog Gain = 12.6, RL = 4 Ω  
Figure 15. THD + N vs. Frequency into RL = 4 Ω, PVDD = 12 V  
20  
0
1.0  
10W  
–20  
1W  
100mW  
–40  
0.1  
0.01  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. FFT, No Signal, Analog Gain = 16, RL = 4 Ω  
Figure 16. THD + N vs. Frequency into RL = 4 Ω, PVDD = 17 V  
1.0  
0.1  
1.0  
100mW  
1W  
100mW  
500mW  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. THD + N vs. Frequency into RL = 4 Ω, PVDD = 4.5 V  
Figure 17. THD + N vs. Frequency into RL = 8 Ω, PVDD = 4.5 V  
Rev. A |Page 13 of 60  
 
SSM3525  
Data Sheet  
1.0  
10  
1.0  
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
5W  
1W  
100mW  
0.1  
0.1  
0.01  
0.01  
0.001  
20  
0.001  
100  
1k  
10k 20k  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
FREQUENCY (Hz)  
POWER (W)  
Figure 18. THD + N vs. Frequency into RL = 8 Ω, PVDD = 12 V  
Figure 21. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 8.9  
1.0  
10  
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
10W  
1W  
100mW  
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
FREQUENCY (Hz)  
POWER (W)  
Figure 19. THD + N vs. Frequency into RL = 8 Ω, PVDD = 17 V  
Figure 22. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 12.6  
10  
10  
PVDD = 17V  
PVDD = 7V  
PVDD = 4.5V  
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
1.0  
0.1  
1.0  
0.1  
0.01  
0.01  
0.001  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
POWER (W)  
POWER (W)  
Figure 20. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 6.3  
Figure 23. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 16  
Rev. A | Page 14 of 60  
Data Sheet  
SSM3525  
10  
10  
1.0  
PVDD = 17V  
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
PVDD = 7V  
PVDD = 4.5V  
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
POWER (W)  
POWER (W)  
Figure 24. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 6.3  
Figure 27. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 16  
10  
7
6
5
4
3
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
1.0  
0.1  
1% THD + N  
10% THD + N  
2
0.01  
1
0
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
5
7
9
11  
PV (V)  
13  
15  
17  
POWER (W)  
DD  
Figure 25. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 8.9  
Figure 28. Output Power vs. PVDD, RL = 4 Ω, Analog Gain = 6.3  
10  
14  
13  
12  
11  
10  
9
PVDD = 17V  
PVDD = 12V  
PVDD = 4.5V  
1.0  
0.1  
8
7
6
5
1% THD + N  
10% THD + N  
4
0.01  
3
2
1
0
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
50  
5
6
7
8
9
10 11 12 13 14 15 16 17  
PV (V)  
POWER (W)  
DD  
Figure 26. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 12.6  
Figure 29. Output Power vs. PVDD Supply Voltage, RL = 4Ω, Analog Gain = 8.9  
Rev. A |Page 15 of 60  
SSM3525  
Data Sheet  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1% THD + N  
10% THD + N  
NORMAL EMI  
LOW EMI  
0
5
7
9
11  
PV (V)  
13  
15  
17  
0
1
2
3
4
5
6
7
OUTPUT POWER (W)  
DD  
Figure 33. Efficiency vs. Output Power (POUT), RL = 4 Ω, No Ferrite Bead (FB)  
and 220pF Capacitor, PVDD = 7 V, Analog Gain = 8.9  
Figure 30. Output Power vs. PVDD, RL = 4 Ω, Analog Gain = 12.6  
100  
90  
80  
70  
60  
50  
40  
40  
35  
30  
25  
20  
15  
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
1% THD + N  
10% THD + N  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
5
7
9
11  
PV (V)  
13  
15  
17  
OUTPUT POWER (W)  
DD  
Figure 34. Efficiency vs. Output Power (POUT), RL = 4 Ω, No Ferrite Bead (FB)  
and 220 pF Capacitor, PVDD = 12 V, Analog Gain = 12.6  
Figure 31. Output Power vs. PVDD, RL = 4 Ω,  
Analog Gain = 16  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
0
5
10  
15  
20  
25  
30  
35  
40  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 35. Efficiency vs. Output Power (POUT), RL = 4 Ω, No Ferrite Bead (FB)  
and 220 pF Capacitor, PVDD = 17 V, Analog Gain = 16  
Figure 32. Efficiency vs. Output Power (POUT), RL = 4 Ω, No Ferrite Bead (FB)  
and 220 pF Capacitor, PVDD = 5 V, Analog Gain = 6.3  
Rev. A | Page 16 of 60  
Data Sheet  
SSM3525  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
5
10  
15  
20  
25  
30  
35  
40  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 36. Efficiency vs. Output Power (POUT), RL = 4 Ω, FB and 220 pF  
Capacitor, PVDD = 5 V, Analog Gain = 6.3  
Figure 39. Efficiency vs. Output Power (POUT), RL = 4 Ω, FB and 220 pF  
Capacitor, PVDD = 17 V, Analog Gain = 16  
100  
90  
80  
70  
60  
50  
40  
8
7
6
5
4
3
NORMAL EMI  
LOW EMI  
NORMAL MODE  
30  
20  
10  
0
LOW EMI MODE  
2
1
0
0
1
2
3
4
5
6
7
5
7
9
11  
13  
15  
17  
19  
OUTPUT POWER (W)  
PV (V)  
DD  
Figure 37. Efficiency vs. Output Power (POUT), RL = 4 Ω, FB and 220 pF  
Capacitor, PVDD = 7 V, Analog Gain = 8.9  
Figure 40. Quiescent Current, RL = 4 Ω, No FB and 220 pF Capacitor,  
Analog Gain = 12.6  
100  
90  
80  
70  
60  
50  
40  
10  
9
8
7
6
5
4
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
NORMAL MODE  
LOW EMI MODE  
3
2
1
0
0
5
10  
15  
20  
5
7
9
11  
13  
15  
17  
19  
OUTPUT POWER (W)  
PV (V)  
DD  
Figure 38. Efficiency vs. Output Power (POUT), RL = 4 Ω, FB and 220 pF  
Capacitor, PVDD = 12 V, Analog Gain = 12  
Figure 41. Quiescent Current, RL = 4 Ω, FB and 220 pF Capacitor, Analog  
Gain = 12.6  
Rev. A |Page 17 of 60  
SSM3525  
Data Sheet  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
25  
20  
15  
10  
5
1% THD + N  
10% THD + N  
1% THD + N  
10% THD + N  
0
5
0
7
9
11  
PV (V)  
13  
15  
17  
5
7
9
11  
PV (V)  
13  
15  
17  
DD  
DD  
Figure 42. Output Power vs. PVDD Supply Voltage (PVDD), RL = 8 Ω,  
Analog Gain = 6.3  
Figure 45. Output Power vs. PVDD Supply Voltage (PVDD), RL = 8 Ω,  
Analog Gain = 16  
7
6
5
4
3
100  
90  
80  
70  
60  
50  
40  
1% THD + N  
10% THD + N  
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
2
1
0
5
7
9
11  
PV (V)  
13  
15  
17  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT POWER (W)  
DD  
Figure 46. Efficiency vs. Output Power (POUT), RL = 8 Ω, No FB and 220 pF  
Capacitor, PVDD = 5 V, Analog Gain = 6.3  
Figure 43. Output Power vs. PVDD Supply Voltage (PVDD), RL = 8 Ω,  
Analog Gain = 8.9  
100  
90  
80  
70  
60  
50  
40  
14  
12  
10  
8
6
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
1% THD + N  
4
10% THD + N  
2
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
5
7
9
11  
PV (V)  
13  
15  
17  
OUTPUT POWER (W)  
DD  
Figure 47. Efficiency vs. Output Power (POUT), RL = 8 Ω, No FB and 220 pF  
Capacitor, PVDD = 7 V, Analog Gain = 8.9  
Figure 44. Output Power vs. PVDD Supply Voltage (PVDD), RL = 8 Ω,  
Analog Gain = 12.6  
Rev. A | Page 18 of 60  
Data Sheet  
SSM3525  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
0
2
4
6
8
10  
12  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 48. Efficiency vs. Output Power (POUT), RL = 8 Ω, No FB and 220 pF  
Capacitor, PVDD = 12 V, Analog Gain = 12.6  
Figure 51. Efficiency vs. Output Power (POUT), RL = 8 Ω, FB and 220 pF  
Capacitor, PVDD = 7 V, Analog Gain = 8.9  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
30  
20  
10  
0
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
12  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 49. Efficiency vs. Output Power (POUT), RL = 8 Ω, No FB and 220 pF  
Capacitor, PVDD = 17 V, Analog Gain = 16  
Figure 52. Efficiency vs. Output Power (POUT), RL = 8 Ω, FB and 220 pF  
Capacitor, PVDD = 12 V, Analog Gain = 12.6  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
30  
20  
10  
0
30  
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
5
10  
15  
20  
25  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 50. Efficiency vs. Output Power (POUT), RL = 8 Ω, FB and 220 pF  
Capacitor, PVDD = 5 V, Analog Gain = 6.3  
Figure 53. Efficiency vs. Output Power (POUT), RL = 8 Ω, FB and 220 pF  
Capacitor, PVDD = 17 V, Analog Gain = 16  
Rev. A |Page 19 of 60  
SSM3525  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 54. Efficiency vs. Output Power (POUT), RL = 3 Ω, No FB and 220 pF  
Capacitor, PVDD = 5 V, Analog Gain = 6.3  
Figure 56. Efficiency vs. Output Power (POUT), RL = 3 Ω, No FB and 220 pF  
Capacitor, PVDD = 17 V, Analog Gain = 16  
100  
90  
80  
70  
60  
50  
40  
5
4
3
2
1
0
–1  
NORMAL EMI  
LOW EMI  
CURRENT SENSE  
VOLTAGE SENSE  
30  
20  
10  
0
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9
20  
100  
1k  
10k 20k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure. Efficiency vs. Output Power (POUT), RL = 3 Ω, No FB and 220 pF  
Capacitor, PVDD = 7 V, Analog Gain = 8.9  
Figure 57. Current Voltage (I/V) Sense Frequency Response, −20 dBFS  
Input Signal, PVDD = 12 V, Analog Gain = 12.6  
90  
80  
70  
60  
50  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
CURRENT SENSE  
VOLTAGE SENSE  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
30  
NORMAL EMI  
LOW EMI  
20  
10  
0
0
5
10  
15  
20  
25  
20  
100  
1k  
10k 20k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 55. Efficiency vs. Output Power (POUT), RL = 3 Ω, No FB and 220 pF  
Capacitor, PVDD = 12 V, Analog Gain = 12.6  
Figure 58. I/V Sense FFT, No Signal, PVDD = 12 V, Analog Gain = 12.6  
Rev. A | Page 20 of 60  
Data Sheet  
SSM3525  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
9
8
7
6
5
4
3
2
1
0
V
V
SENSE  
OUT  
CURRENT SENSE  
VOLTAGE SENSE  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
20  
100  
1k  
10k 20k  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (Hz)  
DIGITAL INPUT (dBFS)  
Figure 59. I/V Sense Output FFT, −60 dBFS Input, PVDD = 12 V,  
Analog Gain = 12.6  
Figure 62. Voltage Sense Output vs. Amplifier Output VRMS, PVDD = 12 V,  
Analog Gain = 12.6  
0
2.5  
–10  
I
I
–20  
–30  
SENSE  
OUT  
2.0  
1.5  
1.0  
0.5  
0
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
CURRENT SENSE  
VOLTAGE SENSE  
20  
100  
1k  
10k 20k  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (Hz)  
DIGITAL INPUT (dBFS)  
Figure 60. I/V Sense Output FFT, −1 dBFS Input, PVDD = 12 V,  
Analog Gain = 12.6  
Figure 63. Current Sense Output vs. Amplifier Output Current Arms,  
PVDD = 12 V, Analog Gain = 12.6  
2.0  
1.8  
1.6  
CURRENT SENSE  
VOLTAGE SENSE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 61. I/V Sense Linearity, −20 dBFS Input, PVDD = 12 V,  
Analog Gain = 12.6  
Rev. A |Page 21 of 60  
SSM3525  
Data Sheet  
TYPICAL APPLICATION CIRCUITS  
+5V (AVDD)  
+1.8V (DVDD)  
+1.8V  
PVDD  
+4.5V TO +17V  
C1  
2.2µF  
C2  
0.1uF  
C3  
1µF  
C4  
C5  
10µF  
C6  
470µF  
0.1µF  
R1  
2.2kΩ  
R2  
2.2kΩ  
VREG/AVDD  
SSM3525  
IOVDD  
PVDD  
BST+  
SCL  
SDA  
PVDD  
DAC  
2
I C  
REG  
AVDD  
2
I C  
OPTIONAL  
C5  
0.22µF  
FB1  
BCLK  
FSYNC  
FULL  
Σ-Δ  
OUT+  
OUT–  
TDM  
BRIDGE  
POWER  
STAGE  
FB2  
VOLUME  
4Ω/8Ω  
2
CLASS-D  
I S/TDM  
2
I S  
MODULATOR  
INPUT/  
OUTPUT  
SDATAI  
SDATAO  
C7  
220pF  
C8  
220pF  
C6  
0.22µF  
I
BST–  
SENSE  
V
SENSE  
FB1/FB2: MURATA FERRITE BEAD NFZ2MSM181  
ADDR  
AGND  
PGND  
SEE THE ADDR PIN SETUP AND CONTROL SECTION  
Figure 64. Typical Application Circuit  
Rev. A | Page 22 of 60  
 
Data Sheet  
SSM3525  
THEORY OF OPERATION  
The SSM3525 supports two main modes of operation with  
OVERVIEW  
control and data supplied through the I2C and TDM/I2S ports  
(see Table 12).  
The SSM3525 Class D audio amplifier features a filterless  
modulation scheme that reduces the external component count,  
conserving board space and reducing system cost. The SSM3525  
does not require an output filter; it relies on the inherent  
inductance of the speaker coil and the natural filtering of the  
speaker and human ear to recover the audio component of the  
square wave output. Most Class D amplifiers use some variation  
of pulse-width modulation (PWM), but the SSM3525 uses sigma-  
delta (Σ-Δ) modulation to determine the switching pattern of  
the output devices, resulting in a number of important benefits:  
Σ-Δ modulators do not produce a sharp peak with many  
harmonics in the amplitude modulation (AM) broadcast band,  
as PWMs often do. Σ-Δ modulation reduces the amplitude of  
spectral components at high frequencies, reducing EMI  
emission that can otherwise be radiated by speakers and long  
cable traces. Due to the inherent spread spectrum nature of Σ-Δ  
modulation, the need for oscillator synchronization is eliminated  
for designs incorporating multiple SSM3525 amplifiers.  
POWER SUPPLIES  
The power supply pins on the SSM3525 are as follows:  
PVDD, the power supply, is used for the output stage.  
AVDD is the analog supply used for the input stage,  
modulator, power stage gate drive, and other blocks. It can  
be generated internally by the integrated linear regulator.  
Alternatively, if higher system efficiency is needed, connect  
the AVDD pin to an external 5 V supply in the system.  
If the REG_EN control register is set to 1, the internal  
regulator is enabled; otherwise, an external 5 V supply is  
required.  
I
OVDD is the digital supply voltage for the serial audio  
interface and internal digital circuitry. It must be supplied  
externally.  
ADDR PIN SETUP AND CONTROL  
The SSM3525 also integrates overcurrent and temperature  
protection and a thermal warning with optional programmable  
gain reduction.  
The SSM3525 supports I2C control. The ADDR pin can be set  
to four different levels: pulled to GND, pulled up to IOVDD via a  
47 kΩ resistor, pulled down to ground via a 47 kΩ resistor, or  
left open. The state of the ADDR pin determines the I2C device  
address. By default in I2C mode, the device uses the BCLK, FSYNC,  
SDATAI, and SDATAO pins for TDM/I2S data. Alternatively, the  
device can be set to receive and transmit PDM data by setting  
the PDM_MODE register bit field. See Table 12 for setting up the  
desired mode.  
The SSM3525 contains output voltage and current sensing with  
digitization. It also has a temperature sensor and a supply voltage  
sensor for the PVDD pin. The PVDD pin is typically connected to  
the battery or power supply in the system.  
Table 11. I2C Address Selection  
ADDR Pin Connection  
Control Port Mode  
IOVDD Range (V)  
1.2 to 1.8  
1.2 to 1.8  
1.2 to 1.8  
1.2 to 1.8  
I2C Address  
0x24  
0x25  
0x26  
0x27  
Not applicable  
GND  
Pull Down  
Open  
Pull Up  
IOVDD  
I2C  
I2C  
I2C  
I2C  
Reserved  
Not applicable  
Table 12. Serial Port Mode Setup for I2S, TDM, and PDM  
Pin Usage  
BCLK Pin SDATAO Pin FSYNC Pin  
Serial Port  
Mode  
I2S/TDM  
IOVDD Range  
Description  
Sets the part into default I2S/TDM mode  
SDATAI Pin  
1.2 V to 1.8 V  
Bit clock  
input  
Sense data  
output  
Frame clock  
input  
Data input  
I2S/TDM  
format  
I2S/TDM  
format  
PDM  
1.2 V to 1.8 V  
Set the PDM_MODE bit to 1 in Register 0x21,  
PDM clock Sense data  
GND (left  
Data input  
use FSYNC pin for setting the left/right channel input  
output PDM channel) and PDM format  
format  
IOVDD (right  
channel)  
Rev. A |Page 23 of 60  
 
 
 
 
 
SSM3525  
Data Sheet  
The ADC input range is fixed internally from −60°C to +195°C.  
To convert the hexadecimal value to the temperature (Celsius)  
value, use the following steps:  
POWER-DOWN MODES  
The SSM3525 can be powered down by several methods.  
Setting the SPWDN bit to 1 in Register 0x20 fully powers down  
the device except for the I2C interface. Individual blocks can  
also be powered on or off via the block level power-down  
controls.  
1. Convert the hexadecimal value to decimal and then  
subtract 60. For example, if the hexadecimal value is 0x54,  
the decimal value is 84.  
2. Calculate the temperature using the following equation:  
For lowest power shutdown, the SSM3525 also contains a clock  
loss detection circuit that monitors the BCLK input clock.  
When no BCLK is present, the device automatically powers  
down all internal circuitry to its lowest power state. When  
BCLK returns, the device automatically powers up following its  
usual power sequence.  
Temperature = Decimal Value − 60  
3. With a decimal value of 84, Temperature = 84 − 60 = 24°C  
PCM DIGITAL AUDIO SERIAL INTERFACE  
The SSM3525 includes a standard serial audio interface that is  
slave only and used when in I2C mode. The interface is capable  
of receiving and transmitting I2S, left justified, pulse code  
modulated (PCM), or TDM formatted data.  
There is an optional auto power-down feature when using  
I2S/TDM: the device enters a lower power state when 2048  
consecutive zero input samples are received. The device auto-  
matically powers back up from this state once a single nonzero  
value sample is received. Only the I2C and digital audio input  
blocks are active.  
There is an input interface for sending audio to the DAC and  
amplifier and an output interface for the sense, temperature,  
and automatic gain control (AGC) gain data. These interfaces  
share the same FSYNC and BCLK signals.  
OUTPUT CURRENT SENSING  
Provide a BCLK signal to the SSM3525 for correct operation. The  
BCLK signal must have a minimum frequency of 2.048 MHz.  
The BCLK signal internally clocks the device. The BCLK rate is  
auto detected, but the sampling frequency must be known to  
the device. At the 32 kHz to 48 kHz sample rate, the supported  
BCLK rates are 50, 64, 100, 128, 150, 192, 200, 250, 256, 384,  
400, 500, 512, 768, 800, and 1024 times the sample rate.  
The SSM3525 uses an integrated sense resistor (50 mΩ typical)  
to determine the output current flowing to the load. The voltage  
across this sense resistor is proportional to the load current and  
sent to a 1-bit ADC running nominally at 128 × fs. The sense  
voltage can be output in I2S/TDM format in I2S/TDM mode or via  
the PDM interface in PDM mode. The output of this ADC can  
also be downsampled using digital filtering. The data is 16 bits,  
twos complement and in signed fraction format. This  
The serial interfaces have three main operating modes. Stereo  
modes, typically I2S or left justified, are used when there are one  
or two chips on the interface bus. TDM modes are more flexible  
and can support up to 32 chips on the bus. These mode selections  
can be set via the I2C interface with the SAI_MODE bit.  
downsampled signal is at an 8 kHz to 192 kHz sample rate. It  
can be output on the SDATAO pin.  
To set a different sample rate for both current and voltage  
sensing, use the SNS_FS bit in Register 0x05.  
The SAI_DRV bit setting determines the state of the SDATAO  
pin during the unused bit clock cycles. When the SAI_DRV bit  
is set to 1, the SDATAO pin is driven to logic low or not driven  
(high-Z) when set to 0. If using multiple chips on the serial  
interface bus, SAI_DRV bit must be set to 0.  
OUTPUT VOLTAGE SENSING  
The output voltage level is monitored at the OUT pins and  
sent to a 1-bit analog to digital converter running nominally at  
128 × fs. This can be output in PDM format in PDM mode or  
via the PDM interface in PDM mode. The output of this ADC is  
can also be downsampled using digital filtering. This  
downsampled signal at 8 kHz to 192 kHz sample rate is output  
on the digital audio interface. The data is 16 bits twos  
complement and in signed fraction format. It can be output on  
the SDATAO pin.  
STEREO (I2S/LEFT JUSTIFIED) OPERATING MODE  
Stereo modes use both edges of the FSYNC signal to determine  
placement of data. Stereo mode is enabled when SAI_MODE =  
0 and the I2S or left justified format is determined by the  
SDATA_FMT bit.  
The I2S or left justified formats accepts any number of BCLK  
cycles per FSYNC cycle.  
TEMPERATURE SENSOR  
The SSM3525 contains an 8-bit ADC that measures the die  
temperature of the device and is enabled via the TEMP_PWDN bit  
in Register 0x20. After the sensor is enabled, the temperature  
sense value can be read via the I2C in Register 0x12 in an 8-bit,  
unsigned format.  
The six placement control registers (Address 0x24 to Address 0x29)  
determine placement of input and output data. Odd numbered  
placement control registers determine the order on the left channel  
and even number on the right channel.  
Sample rates from 8 kHz to 192 kHz are accepted.  
Rev. A | Page 24 of 60  
 
 
 
 
 
 
Data Sheet  
SSM3525  
Up to four placements can be on the input stream and up to six  
placements can be on the output stream. Figure 65 shows a  
basic timing diagram of the placements in TDM mode.  
TDM OPERATING MODE  
The TDM operating mode allows multiple chips to use a single  
serial interface bus.  
When the serial port is operating in I2S mode, placements  
start directly after the FSYNC falling clock edge, signaling the  
beginning of a new frame. The first placement is referred to as P1,  
the second placement is referred to as P2, for example, increasing  
sequentially. The odd numbered placements (P1, P3, and P5)  
appear sequentially in the left channel, when the FSYNC signal  
is low (assuming FSYNC_MODE = 0), and the even numbered  
placements (P2, P4, and P6) appear sequentially in the right  
channel, when the FSYNC signal is high (assuming FSYNC_  
MODE = 0). Up to four placements can be on the input stream  
and up to six placements can be on the output stream. Figure 66  
shows a basic timing diagram of the placements in I2S mode.  
The FSYNC signal operates at the desired sample rate. A rising  
edge of the FSYNC signal indicates the start of a new frame. For  
proper operation, this signal must be one BCLK cycle wide,  
transitioning on a falling BCLK edge. The MSB of the data  
presents on the SDATAO signal one BCLK cycle later. The  
SDATAO signal must be latched on a rising edge of BCLK.  
Each chip on the TDM bus can occupy 16, 24, 32, 48, or 64  
BCLK cycles. This is set with the TDM_BCLKS bit in Register 0x22  
and all chips on the bus must have the same setting. Up to 32  
SSM3525 chips can be used on a single TDM bus, but only four  
unique I2C device addresses are available. The SSM3525 auto-  
matically determines how many possible chips can be placed on  
the bus from the BCLK rate. There is no limit to the total number  
of BCLK cycles per FSYNC pulse, except for the maximum  
50 MHz frequency of BCLK.  
The corresponding registers (Address 0x22 to Address 0x29)  
allow configuration of each data placement. An input placement  
(Px_DAC) can carry 24-bit audio data, 16-bit audio data, or 8 zero  
bits that are used as padding and ignored. A sense placement  
(Px_SNS) can contain 16-bit voltage output data, 16-bit current  
output data, 8-bit battery voltage data, 8-bit temperature data,  
alternating 16-bit voltage and current data, 8-bit status data, 8-bit  
V/I marker and status data, or 8 zero bits.  
For standard I2S mode, the serial input is configured to receive  
mono audio data and the serial output is configured to send  
voltage, current, and battery data back to the host device. The  
default register settings correspond to the timing diagram in  
Figure 67.  
The chip slot of multiple SSM3525 devices used are determined  
by the TDM_SLOT bits.  
The six placement control registers determine placement of input  
and output data within each chip slot. For input data to the DAC,  
either 16-bit or 24-bit data can be selected. For output data, there  
are multiple options available for placing the voltage sense, current  
sense, temperature sense, and PVDD voltage information. See  
Bits Px_SNS in Register 0x24 to Register 0x29.  
SERIAL DATA PLACEMENT  
When the 8-bit status output is selected, that 8-bit placement  
area outputs the same bits that are found in the read only  
STATUS register. The format can be seen in Table 13. When the  
8-bit V/I marker and status output placement is selected, the  
MSB indicates whether voltage sense or current sense is being  
output on that sample frame, and the 7 LSBs correspond to the  
STATUS register, the formatting for can be seen in Figure 14.  
The SSM3525 is flexible in where within a frame it places output  
data and where it looks for input data. There are four control  
bits (Px_DAC) for when input data is expected and six control  
bits (Px_SNS) for when output data is driven.  
A single data frame is broken up into individual fields, referred  
to as placements. Each placement can be 8 bits, 16 bits, or 24 bits in  
length. A single frame on the TDM or I2S data stream can contain  
several data placements of varying length.  
When the serial port is operating in TDM mode, placements start  
directly after the FSYNC pulse. The first placement is referred  
to as P1, and the second placement is referred to as P2, for  
example, increasing sequentially. These placements appear in  
sequential order on the serial data signal.  
BCLK  
FSYNC  
DAC_SDATAI  
P1  
P2  
Px  
8 BITS/16 BITS/24 BITS  
Figure 65. Basic Timing Diagram of Placements in TDM Stream  
Rev. A |Page 25 of 60  
 
 
 
SSM3525  
Data Sheet  
BCLK  
FSYNC  
DAC_SDATAI  
P1  
P3  
P2  
P4  
8 BITS/16 BITS/24 BITS  
Figure 66. Basic Timing Diagram of Placements in I2S Stream  
BCLK  
FSYNC  
DAC_SDATAI  
DAC_SDATAO  
DAC INPUT  
VOLTAGE  
16 BCLKs  
BATTERY  
8 BCLKs  
CURRENT  
16 BCLKs  
Figure 67. Standard I2S Data Placement Timing Diagram  
BCLK  
FSYNC  
32 BCLKS  
24  
DAC DATA 1  
DAC DATA 2  
DAC_SDATAI  
DAC_SDATAO  
16  
16  
1
I
1
V
I
2
SENSE  
SENSE  
Figure 68. TDM Serial Interface Format  
Table 13. 8-Bit Status Sense Output Format (STATUS Register)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
UVLO_VREG  
UVLO_PVDD  
LIM_EG  
CLIP  
AMP_OC  
OTF  
OTW  
BAT_WARN  
Table 14. 8-Bit V/I Marker and Status Sense Output Format (STATUS Register)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
1 = VSENSE, 0 = ISENSE  
UVLO_PVDD  
LIM_EG  
CLIP  
AMP_OC  
OTF  
OTW  
BAT_WARN  
BCLK  
FSYNC  
SDATA  
I
V
I
V
I
V
I
V
I
V
I
V
I
Figure 69. SDATA Output in PDM Mode  
PDM OPERATING MODE  
Table 15. FSYNC Settings for PDM Mode  
By setting the PDM_MODE bit in Register 0x21 to 1, the 1-bit  
PDM data from the sense ADCs can be output directly on  
SDATAO, and the DAC can be driven with 1-bit PDM data on  
SDATAI. In this case, a 2.048 MHz to 6.144MHz CLK must be  
provided on the BCLK pin.  
SDATA Input  
FSYNC Pin Configuration  
Use L Channel Data  
Use R Channel Data  
Connect to IOVDD  
Connect to GND  
PDM data is output on both edges of the clock. The current  
sense ADC data is output when BCLK is high, and the voltage  
sense ADC data is output when BCLK is low. Refer to Table 12  
and Figure 69.  
PDM input data is latched on both edges of the clock. The  
FSYNC pin state determines which channel (left or right) is  
sent to the DAC.  
Rev. A | Page 26 of 60  
 
 
 
 
 
Data Sheet  
SSM3525  
Table 17. Register 0x10 Fault Recovery  
ANALOG AND DIGITAL GAIN  
Status Reported  
Register  
There are several selectable settings for the analog gain of the  
system via the ANA_GAIN bits. These bits are designed to  
provide optimal gain staging at various PVDD supply voltages.  
Fault Type  
Flag Set Condition  
OTW  
The amount of gain  
reduction applied if  
there is an OTW  
Register 0x10, Bits[7:6],  
OTW_GAIN  
There is also a digital gain/volume control in the DAC_VOL  
register that provides fine control in 0.375 dB steps from −70 dB  
to +24 dB.  
Manual  
Recovery  
Use to attempt manual Register 0x10, Bit 5,  
recovery in case of a  
fault event  
MRCV  
Autorecovery  
Attempts  
When autorecovery  
from faults is used, set  
the number of attempts  
using this bit  
Recovery can be  
automatic or manual  
Recovery can be  
automatic or manual  
Recovery can be  
automatic or manual  
Register 0x10, Bits[4:3],  
MAX_AR  
PVDD (VBAT) SENSING  
The SSM3525 contains an 8-bit ADC that measures the voltage of  
the battery voltage (VBAT) supply. The battery voltage information is  
stored in Register 0x13 as an 8-bit unsigned format. The ADC  
input range is fixed internally as 4 V to 18 V. To convert the  
hexidecimal value to the voltage value, use the following steps:  
UV  
Register 0x10, Bit 2,  
ARCV_UV  
Register 0x10, Bit 1,  
ARCV_OT  
Register 0x10, Bit 0,  
ARCV_OC  
Die OT  
OC  
1. Convert the hex value to decimal. For example, if the  
hexadecimal value is 0xA9, the decimal value is 169.  
2. Calculate the voltage using the following equation:  
When the automatic recovery mode is set, the device attempts  
to recover itself after the fault event and, in case the fault  
persists, the device sets the fault again. This process repeats  
until the fault is resolved.  
Voltage = 4 V + 14 V × Decimal Value/255  
With a decimal value of 169,  
Voltage = 4 V + 14 V × 169/255 = 13.278 V  
When using the manual recovery mode, the device shuts down  
and the recovery must be attempted using the system  
microcontroller.  
This data can be output on the SDATAO pin along with V/I  
sense data or read via the VBAT register over the control  
interface, as previously mentioned.  
LIMITER AND BATTERY TRACKING THRESHOLD  
CONTROL  
FAULTS AND LIMITER STATUS REPORTING  
The SSM3525 offers comprehensive protections against the  
faults at the outputs and reporting to help with system design.  
The faults listed in Table 16 are reported using the status registers.  
The SSM3525 contains an output limiter that can limit the peak  
output voltage of the amplifier. The limiter works on the rms  
and peak value of the signal. The limiter threshold, slope, attack  
rate, and release rate are programmable using Register 0x08,  
Register 0x09, and Register 0x0A. The limiter can be enabled or  
disabled using LIM_EN, Bits[1:0] in Register 0x08.  
Table 16. Register 0x11 Faults  
Flag Set  
Condition  
Status Reported  
Register  
Fault Type  
5 V Regulator or AVDD 5 V regulator  
Undervoltage (UV) voltage at VREG/  
AVDD < 3.6 V  
Register 0x11, Bit 7,  
UVLO_VREG  
The threshold at which the output starts limiting is determined  
by the LIM_THRES register setting, in Register 0x09, Bits[7:3].  
When the ouput signal level exceeds the set threshold level, the  
limiter activates and limits the signal level to the set limit. Below  
the set threshold, the output level is not affected. The limiter  
PVDD Undervoltage  
When PVDD < 3.6V Register 0x11, Bit 6,  
UVLO_PVDD  
Limiter/Gain Reduction Limiter engaged  
Engage  
Register 0x11,  
Bit 5, LIM_EG  
threshold can be set from 2 VPEAK to 16 VPEAK  
.
Clipping  
DAC clipping  
Register 0x11,  
Bit 4, CLIP  
The limiter threshold can be set above the maximum output  
voltage of the amplifier. In this case, the limiter allows maximum  
peak output; the output can clip depending on the power supply  
voltage and not the limiter.  
Output Overcurrent  
(OC)  
Die Overtemperature Die temperature > Register 0x11,  
(OT) 145°C Bit 2, OTF  
Die Overtemperature Die temperature > Register 0x11,  
Warning (OTW)  
Battery Voltage >  
VBAT_INF  
Output current > Register 0x11,  
6 A peak Bit 3, AMP_OC  
The limiter threshold can be set as fixed or to vary with the  
battery voltage via the VBAT_TRACK bit (Register 0x08, Bit 2).  
When set to fixed, the limiter threshold is fixed and does not  
vary with battery voltage. The threshold can be set from 2 VPEAK to  
16 VPEAK using the LIM_THRES bit (see Figure 71).  
117°C  
Battery voltage  
PVDD > VBAT_INF  
Bit 4, OTW  
Register 0x11,  
Bit 0, BAT_WARN  
When set to a variable threshold, the SSM3525 monitors the  
VBAT supply and automatically adjusts the limiter threshold  
based on the VBAT supply voltage.  
The faults listed in Table 16 are reported in Register 0x11 and  
can be read via I2C by the microcontroller in the system.  
In the event of a fault occurrence, how the device reacts to the  
faults can be controlled by using Register 0x10.  
Rev. A |Page 27 of 60  
 
 
 
 
 
SSM3525  
Data Sheet  
The VBAT supply voltage at which the limiter threshold level  
begins to decrease the output level is determined by the VBAT  
inflection point, the VBAT_INF bits (Register 0x0A, Bits[7:0]).  
The limiter, when active, reduces the gain of the amplifier. The rate  
of gain reduction or attack rate is determined by the LIM_ATR bits  
(Register 0x08, Bits[5:4]). Similarly, when the signal level drops  
below the limiter threshold, the gain is restored. The gain release  
rate is determined by the LIM_RRT bits (Register 0x08, Bits[7:6]).  
The VBAT_INF point is defined as the battery voltage at which  
the limiter either activates or deactivates depending on the  
LIM_EN mode (see Table 18). When the battery voltage is  
greater than VBAT_INF, the limiter is not active. When the  
battery voltage is less than VBAT_INF, the limiter is activated.  
The VBAT_INF bits can be set from 4 V to 18 V. The 8-bit value  
for the voltage can be calculated using the following equation:  
LIM_EN = 00  
VBAT_TRACK = 0  
AMPLIFIER CLIPPING LEVEL  
Voltage = 4 + 14 × Decimal Value/255  
Convert the decimal value to an 8-bit hexadecimal value and  
use it to set the VBAT_INF bits.  
The rate at which the limiter threshold is lowered relative to  
the amount of change in VBAT below the VBAT_INF point is  
determined by the slope bits (Register 0x09, Bits[1:0]).  
INPUT LEVEL  
The slope is the ratio of the limiter threshold reduction to the  
VBAT voltage reduction.  
Figure 70. Limiter Example (LIM_EN = 0b00, VBAT_TRACK = 0bx)  
Slope = ∆Limiter Threshold/∆VBAT  
LIMITER THRESHOLD FIXEDAT SET VALUE  
AND DOES NOT TRACK VBAT  
The slope ratio can be set from 1:1 to 4:1. This function is useful  
to prevent early shutdown under low battery conditions. As the  
LIM_THRES  
V
BAT voltage falls, the limiter threshold is lowered. The limiter  
reduces the output level, therefore helping reduce the current  
drawn from the battery and preventing early shutdown due to low  
VBAT.  
The limiter offers various active modes, which can be set using the  
LIM_EN bits (Register 0x08, Bits[1:0]) and the VBAT_TRACK bit,  
as shown in Table 18.  
VBAT  
When LIM_EN = 01, the limiter is enabled. When LIM_EN = 10,  
the limiter mutes the output if VBAT falls below VBAT_INF. When  
LIM_EN = 11, the limiter engages only when the battery voltage  
is lower than VBAT_INF.  
Figure 71. Limiter Fixed (LIM_EN = 0b01, VBAT_TRACK = 0b0)  
When VBAT is above VBAT_INF, no limiting occurs. There is  
hysteresis around VBAT_INF for the limiter disengaging.  
Table 18. Limiter Modes  
LIM_EN  
VBAT_TRACK  
Limiter  
No  
VBAT < VBAT_INF  
Not applicable  
VBAT > VBAT_INF  
Not applicable  
Comments  
00  
0 or 1  
See Figure 70  
01  
01  
10  
11  
0
1
Fixed  
Variable  
Fixed  
Fixed  
Variable  
Use the set threshold  
Lowers the threshold  
Mutes the output  
Use the set threshold  
Lowers the threshold  
Use the set threshold  
Use the set threshold  
Use the set threshold  
No limiting  
See Figure 71  
See Figure 72 and Figure 73  
Not applicable  
See Figure 74 and Figure 75  
See Figure 76 and Figure 77  
0 or 1  
0
1
11  
No limiting  
Rev. A | Page 28 of 60  
 
 
 
Data Sheet  
SSM3525  
LIM_EN = 01  
VBAT_TRACK = 1  
LIMITER THRESHOLD FIXEDAT SET VALUE  
AND DOES NOT TRACK VBAT  
LIM_THRES  
VBAT > VBAT_INF LIMITER  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BIT IN REG 0x09  
VBAT  
INPUT LEVEL  
Figure 72. Limiter Fixed (LIM_EN = 0b01, VBAT_TRACK = 0b1)  
Figure 75. Limiter Fixed (LIM_EN = 0b11, VBAT_TRACK = 0b0)  
LIM_EN = 11  
VBAT_TRACK = 1  
LIMITER THRESHOLD STAYS AT  
THE SET VALUE FOR VBAT > VBAT_INF  
VBAT > VBAT_INF LIMITER IS NOTACTIVE  
AMPLIFIER CLIPPING LEVEL  
VBAT_INF  
LIM_THRES  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BIT IN REG 0x09  
INPUT LEVEL  
VBAT  
Figure 73. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN = 0b01,  
VBAT_TRACK = 0b1)  
Figure 76. Limiter Example (LIM_EN = 0b11, VBAT_TRACK = 0b1)  
LIMITER THRESHOLD INACTIVE FOR VBAT > VBAT_INF  
LIM_EN = 11  
VBAT_TRACK = 0  
VBAT_INF  
SET LIM_THRES  
AMPLIFIER CLIPPING LEVEL  
LIMITER THRESHOLD SETTING  
NO CHANGE IN LIM THRESHOLD PER VBAT  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF  
VBAT  
Figure 77. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN = 0b11,  
VBAT_TRACK = 0b1)  
INPUT LEVEL  
Figure 74. Limiter Example (LIM_EN = 0b11, VBAT_TRACK = 0)  
Rev. A |Page 29 of 60  
 
 
 
 
 
 
SSM3525  
Data Sheet  
Linking Limiters of Multiple SSM3525 Devices  
HIGH FREQUENCY CLIPPER  
If multiple SSM3525 devices are used in a system, the gain  
adjustment from the limiters of all or some of the devices can be  
linked. The device internally generates the gain adjustment  
value (AGC_GAIN) based on the limiter settings. When  
limiters of multiple devices on the bus are linked, the device  
uses the highest (most gain reduction) gain adjustment value  
(AGC_GAIN) of all devices. Up to four SSM3525 devices can  
be linked in this manner.  
The high frequency clipper can be controlled via the  
DAC_CLIP bits (Register 0x0F, Bits[7:0]).  
These bits determine the clipper threshold, relative to full scale.  
When enabled, the clipper digitally clips the signal after the  
DAC interpolation.  
EMI NOISE  
The SSM3525 uses a proprietary modulation and spread  
spectrum technology to minimize EMI emissions from the  
device. The SSM3525 passes FCC Class B emissions testing with  
an unshielded 20 inch cable using ferrite bead-based filtering.  
For applications that have difficulty passing FCC Class B  
emission tests, the SSM3525 includes an ultralow EMI  
emissions mode that significantly reduces the radiated emissions at  
the Class D outputs, particularly above 100 MHz. Reducing the  
supply voltage greatly reduces radiated emissions.  
To link the AGC_GAIN to other chips, the LIM_LINKx bits  
must be set in the LIM_LINK register, 0x0E.  
When using I2S/TDM, for every chip that is linked, the placement  
of its respective AGC_GAIN value within the TDM stream must  
be given. The AGC_GAIN data for a respective device is made  
available at the assigned slot using the AGC_GAINx_SLOT bits.  
The AGC_GAIN data is eight bits wide and in an assigned slot,  
these bits can be placed in any one of eight places in a 64-bit  
frame. This setting is available in the AGC_GAINx_PLACE  
register. These values can be set in Register 0x2A through Register  
0x2D.  
OUTPUT MODULATION DESCRIPTION  
The SSM3525 uses three-level, Σ-Δ output modulation. Each  
output can swing from ground to PVDD, and vice versa. Ideally,  
when no input signal is present, the output differential voltage is  
0 V because there is no need to generate a pulse. In a real-world  
situation, noise sources are always present.  
The audio signal is not affected by the AGC function unless the  
peak audio output voltage exceeds the limiter threshold level.  
POP AND CLICK SUPPRESSION  
Due to this constant presence of noise, a differential pulse is  
occasionally generated in response to this stimulus. A small  
amount of current flows into the inductive load when the  
differential pulse is generated. However, typically, the output  
differential voltage is 0 V. This feature ensures the current flowing  
through the inductive load is small.  
Voltage transients at the output of audio amplifiers can occur  
when shutdown is activated or deactivated. Voltage transients  
as small as 10 mV can be heard as an audible pop in a speaker.  
Clicks and pops are defined as undesirable audible transients,  
generated by the amplifier system, that do not come from the  
system input signal.  
When the user sends an input signal, an output pulse is generated  
to follow the input voltage. The differential pulse density is  
increased by raising the input signal level. Figure 78 depicts  
three-level, Σ-Δ output modulation with and without input  
stimulus.  
Such transients can be generated when the amplifier system  
changes its operating mode. For example, system power-up and  
power-down can be sources of audible transients.  
The SSM3525 has a pop and click suppression architecture that  
reduces these output transients, resulting in noiseless activation and  
deactivation.  
Set either mute or power-down before the BCLK signal is  
removed to ensure a pop free power-down.  
Rev. A | Page 30 of 60  
 
 
 
 
Data Sheet  
SSM3525  
OUTPUT = 0V  
+5V  
OUT+  
OUT–  
0V  
+5V  
0V  
+5V  
VOUT  
0V  
OUTPUT > 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
+5V  
0V  
OUTPUT < 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
+5V  
0V  
Figure 78. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Rev. A |Page 31 of 60  
 
SSM3525  
Data Sheet  
BOOTSTRAP CAPACITORS  
OUTPUT EMI FILTERING  
The output stage of the SSM3525 uses a high-side N-channel  
metal-oxide semiconductor (NMOS) driver, rather than a  
P-channel metal-oxide semiconductor (PMOS) driver. To generate  
the gate drive voltage for the high-side NMOS, a bootstrap  
capacitor for each output terminal acts as a floating power supply  
for the switching cycle. Use 0.22 μF capacitors to connect the  
appropriate output pin (OUT ) to the bootstrap pin (BST ). For  
example, connect a 0.22 μF capacitor between OUT+ and BST+  
for bootstrapping the OUT+ pin. Similarly, connect another 0.22  
μF capacitor between the OUT− and BST− pins for the OUT−  
pin.  
Additional EMI filtering may be required when the speaker  
traces and cables are long and present a significant capacitive  
load that can create additional draw from the amplifier. Typical  
power ferrites present a significant magnetic hysteresis cycle  
that affects THD performance and are not recommended for  
high performance designs. The NFZ series ferrite beads from  
Murata are recommended. These ferrite beads provide a closed  
hysteresis loop similar to an air coil with minimum impact on  
performance. The ferrite beads with output current rating ≥4 A  
rms, are recommended for this application. A 220 pF capacitor  
can be added between the output of the filter and ground to  
further attenuate high frequencies. Ensure the capacitor is  
properly sized so as not to affect idle power consumption or  
efficiency.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low THD, and high PSRR, proper  
power supply decoupling is necessary. Noise transients on the  
power supply lines are short duration voltage spikes. These spikes  
can contain frequency components that extend into the hundreds  
of megahertz. The power supply input must be decoupled with  
a low equivalent series inductance (ESL) and a low equivalent  
series resistance (ESR) bulk capacitor larger than 220 µF. For high  
frequency decoupling, place 1 µF capacitors as close as possible to  
the PVDD pins of the device.  
PCB COMPONENT PLACEMENT  
Component selection and placement have great influence on  
system performance, both measured and subjective. Proper  
PVDD layout and decoupling is necessary to reach the specified  
level of performance, particularly at the highest power levels.  
The placement shown in Figure 79 ensures proper output stage  
decoupling for each channel, for minimum supply noise and  
maximum separation between channels. Additional bulk de-  
coupling is necessary to reduce current ripple at low frequencies,  
and can be shared between several amplifiers in a multichannel  
solution.  
PVDD DECOUPLING CAPACITOR  
BST+ 0.22µF CAPACITOR  
BST+ 0.22µF CAPACITOR  
IOVDD DECOUPLING CAPACITOR  
AVDD DECOUPLING CAPACITOR  
Figure 79. Recommended Component Placement {should PVDD, AVDD, and IOVDD be AVDD, PVDD, IOVDD  
?
Rev. A | Page 32 of 60  
 
 
 
 
 
Data Sheet  
SSM3525  
Addressing  
LAYOUT  
Initially, each device on the I2C bus is in an idle state, monitoring  
the SDA and SCL lines for a start condition and the proper  
address. The I2C master initiates a data transfer by establishing a  
start condition, defined by a high to low transition on SDA while  
SCL remains high. This transition indicates that an address or  
data stream follows. All devices on the bus respond to the start  
condition and shift the next eight bits (the 7-bit address plus the  
As output power increases, take care to lay out PCB traces and  
wires properly among the amplifier, load, and power supply; a  
poor layout increases voltage drops, consequently decreasing  
efficiency. A good practice is to use short, wide PCB tracks to  
decrease voltage drops and minimize inductance. For the lowest  
dc resistance (DCR) and minimum inductance, ensure that  
trace widths for the speaker outputs are at least 200 mil for  
every inch of length and use 1 oz or 2 oz copper.  
W
R/ bit) MSB first. The device that recognizes the transmitted  
address responds by pulling the data line low during the ninth  
clock pulse. This ninth bit is an acknowledge bit. All other  
devices withdraw from the bus at this point and return to the  
idle condition. The device address for the SSM3525 is  
determined by the state of the ADDR pin. See Table 20 for four  
available addresses.  
To maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins must be as wide as possible. In addition, good PCB layout  
isolates critical analog paths from sources of high interference.  
Separate high frequency circuits (analog and digital) from low  
frequency circuits.  
W
The R/ bit determines the direction of the data. A Logic 0 on  
PVDD and PGND carry most of the device current, and must  
be properly decoupled with multiple capacitors close to the  
device power supply and ground pins. To minimize ground  
bounce, use independent power planes to carry PVDD and  
PGND to the power supply. Proper grounding guidelines help  
improve audio performance, minimize crosstalk between  
channels, and prevent switching noise from coupling into the  
audio signal.  
the LSB of the first byte means the master writes information to  
the peripheral, whereas a Logic 1 means the master reads  
information from the peripheral after writing the subaddress  
and repeating the start address. A data transfer occurs until a  
stop condition is encountered. A stop condition occurs when  
SDA transitions from low to high while SCL is held high. The  
timing for the I2C port is shown in Figure 80.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, the SSM3525 immediately  
jumps to the idle condition. During a given SCL high period,  
the user must issue only one start condition, one stop condition, or  
a single stop condition followed by a single start condition. If  
the user issues an invalid subaddress, the SSM3525 does not  
issue an acknowledge and returns to the idle condition. If the  
user exceeds the highest subaddress while in auto-increment mode,  
one of two actions is taken.  
Properly designed multilayer PCBs can reduce electromagnetic  
emission and improve radio frequency (RF) immunity, compared  
with double-sided boards. A multilayer board allows a complete  
layer to be used for the ground plane, whereas the ground plane  
side of a double-sided board is often disrupted by signal traces.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane must be directly beneath the  
analog power plane, and, similarly, the digital ground plane must  
be directly beneath the digital power plane. There must be no  
overlap between the analog and digital ground planes or between  
the analog and digital power planes.  
In read mode, the SSM3525 outputs the highest subaddress register  
contents until the master device issues a no acknowledge, indi-  
cating the end of a read. A no acknowledge condition is when the  
SDA line is not pulled low on the ninth clock pulse on SCL. If the  
highest subaddress location is reached while in write mode, the  
data for the invalid byte is not loaded into any subaddress register,  
a no acknowledge is issued by the SSM3525, and the device  
returns to the idle condition.  
I2C CONTROL  
The SSM3525 supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. Two pins,  
serial data (SDA) and serial clock (SCL), carry information  
between the SSM3525 and the system I2C master controller. The  
SSM3525 is always a slave on the bus, meaning it cannot initiate  
a data transfer. Each slave device is recognized by a unique address.  
Using the ADDR pin provides the four device addresses, which are  
listed in Table 20. The address byte format is shown in Table 19.  
The address resides in the first seven bits of the I2C write. The  
LSB of this byte sets either a read or write operation. Logic Level 1  
corresponds to a read operation, and Logic Level 0 corresponds  
to a write operation.  
I2C Read and Write Operations  
Figure 81 shows the timing of a single-word write operation.  
Every ninth clock, the SSM3525 issues an acknowledge (ACK)  
by pulling SDA low.  
Figure 82 shows the timing of a burst mode write sequence. This  
figure shows an example in which the target destination registers  
are two bytes. The SSM3525 increments its subaddress register  
every byte because the requested subaddress corresponds to a  
register or memory area with a byte word length.  
Connect 2.2 kΩ pull-up resistors on the lines connected to the  
SDA and SCL pins. The voltage on these signal lines must not  
be more than 5 V.  
Rev. A |Page 33 of 60  
 
 
SSM3525  
Data Sheet  
The timing of a single word read operation is shown in Figure 83.  
Figure 81 through Figure 84 use the following abbreviations:  
W
The first R/ bit is 0, indicating a write operation followed by  
S is the start bit  
P is the stop bit  
AM is the acknowledge by master  
AS is the acknowledge by slave  
the subaddress of the register to be read. After the SSM3525  
acknowledges the receipt of the subaddress, the master must issue  
a repeated start command followed by the chip address byte with  
W
the R/ set to 1 (read). The SSM3525 acknowledges and puts  
8-bit data on the SDA pin. The master then responds every  
ninth pulse with an acknowledge pulse to the SSM3525.  
Table 19. I2C Device Address Byte Format Using the ADDR Pin1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
0
0
1
X
X
R/W  
1 X means don’t care.  
Table 20. ADDR Pin to I2C Device Address Mapping  
ADDR Pin  
ADDR Voltage  
I2C Address Bit 2  
I2C Address Bit 1  
GND  
GND  
0
0
Pull-Down 47 kΩ Resistor  
Open  
Pull-Up 47 kΩ Resistor  
IOVDD  
0.25 × IOVDD  
0.5 × IOVDD  
0.75 × IOVDD  
IOVDD  
0
1
1
1
0
1
Not applicable  
Not applicable  
SCK  
SDA  
R/W  
ACK  
ACK  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
SUBADDRESS BYTE  
START BY  
MASTER  
SCK  
(CONTINUED)  
SDA  
(CONTINUED)  
ACK  
ACK  
FRAME 3  
DATA BYTE 1  
FRAME 4  
DATA BYTE 2  
STOP BY  
MASTER  
Figure 80. I2C Read/Write Timing  
2
START  
BIT  
I C ADDRESS  
(7 BITS)  
ACK BY  
SLAVE  
SUBADDRESS  
(8 BITS)  
ACK BY  
SLAVE  
DATA BYTE 1  
(8 BITS)  
STOP  
BIT  
R/W= 0  
Figure 81. Single Word I2C Write Format  
CHIP ADDRESS,  
DATA  
WORD 1  
DATA  
WORD 2  
S
A
SUBADDRESS  
A
A
A
S
P
S
S
S
R/W = 0  
Figure 82. Burst Mode I2C Write Format  
CHIP ADDRESS,  
R/W = 0  
CHIP ADDRESS,  
DATA  
BYTE 1  
DATA  
BYTE N  
S
A
SUBADDRESS  
A
S
A
A
M
P
S
S
S
R/W = 1  
Figure 83. Single Word I2C Read Format  
CHIP ADDRESS,  
R/W = 0  
CHIP ADDRESS,  
DATA  
WORD 1  
S
A
SUBADDRESS  
A
S
A
A
M
P
S
S
S
R/W = 1  
Figure 84. Burst Mode I2C Read Format  
Rev. A | Page 34 of 60  
 
 
 
 
 
 
 
Data Sheet  
SSM3525  
APPLICATIONS INFORMATION  
Figure 64 shows typical application for a single channel using  
I2S/TDM input and I2C control. In a typical application, the  
PVDD and IOVDD are supplied externally. AVDD can be generated  
using an internal regulator by setting the REG_EN bit in Register  
0x04 to 1. Alternately, AVDD can be provided externally and  
disabling the REG_EN bit. By default, the AVDD regulator is  
disabled. The IOVDD by default is set to 1.8 V and can be  
changed to 1.2 V by using the IOVDD_SEL bit in Register 0x20.  
The slew rate for the output can be set to low EMI mode in  
Register 0x05. By default, the slew rate is set to normal mode. In  
low EMI mode, the output slew rate is reduced to lower the  
radiated emissions at the speaker output.  
The device can be reset to default settings by writing 1 to the  
S_RST bit in Register 0x2E. This bit must be cleared by writing  
0 to bring the device out of reset.  
The PVDD (VBAT) sense cannot be powered down and is enabled  
by default. By default, the high pass filter is enabled and it is  
recommended to keep it enabled to block the dc from  
appearing at the speaker outputs.  
During power up, turn the PVDD supply on first, followed by  
IOVDD. While powering off, turn off the IOVDD supply first,  
followed by PVDD. The IOVDD must be stable before I2C  
commands are sent to the device. The digital input data can be  
2-channel I2S or multichannel TDM format, and the desired  
format must be selected in the SAI control registers. Refer to the  
PCM Digital Audio Serial Interface section.  
The fault status register, 0x11, can be read to check for any fault  
conditions during operation.  
FB1, FB2, C7, and C8 (see Figure 64) are recommended for  
filtering the switching noise and must be placed closer to the  
amplifier outputs to be effective.  
On power-up, the device stays in power-down; to enable the  
amplifier, the SPWDN bit in Register 0x20 must be set to 0.  
Once this bit is set to 0, the amplifier turns on and the output  
starts switching.  
Rev. A | Page 35 of 60  
 
SSM3525  
Data Sheet  
SSM3525 I2C MODE REGISTER MAP (SSM3525_I2C_REGMAP) REGISTER SUMMARY  
Table 21. SSM3525_I2C_REGMAP Register Summary  
Reg  
Name  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
VENDOR  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
VENDOR_ID  
DEVICE_ID1  
DEVICE_ID2  
REVISION_ID  
REG_ENABLE  
AMP_CTRL  
DAC_CTRL  
DAC_VOL  
0x41  
0x35  
0x25  
0x01  
0x00  
0x22  
0x32  
0x40  
0xA4  
0x51  
0x22  
R
DEVICE1  
DEVICE2  
REVISION  
R
R
R
RESERVED  
REG_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
[7:0] SNS_HPF_BP  
[7:0] DAC_HV  
[7:0]  
SNS_FS  
DAC_HPF  
RESERVED  
DAC_POL  
EDGE  
ANA_GAIN  
DAC_FS  
DAC_MUTE  
DAC_LPM  
VOL  
RESERVED  
LIM_CTRL1  
LIM_CTRL2  
LIM_CTRL3  
[7:0]  
[7:0]  
[7:0]  
LIM_RRT  
LIM_ATR  
LIM_THRES  
VBAT_TRACK  
RESERVED  
LIM_EN  
SLOPE  
VBAT_INF  
VBAT_LIM_CTRL1 [7:0]  
VBAT_LIM_CTRL2 [7:0]  
VBAT_LIM_RRT  
VBAT_LIM_ATR  
RESERVED  
VBAT_LIM_EN 0xA0  
VBAT_THRES  
0x22  
0x65  
0x0D VBAT_LIM_CTRL3 [7:0]  
VBAT_LIM_MAX_ATTN  
RESERVED  
VBAT_LIM_HOLD  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
LIM_LINK  
[7:0]  
LIM_LINK4 LIM_LINK3  
LIM_LINK2  
LIM_LINK1  
0x00  
0xFF  
0x18  
0x00  
0x00  
0x00  
0x05  
0x00  
0x21  
0x00  
0x01  
0x21  
0x21  
0x21  
0x01  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
DAC_CLIP  
FAULT_CTRL  
STATUS  
[7:0]  
DAC_CLIP  
MAX_AR  
[7:0]  
OTW_GAIN  
MRCV  
ARCV_UV  
OTF  
ARCV_OT  
OTW  
ARCV_OC  
[7:0] UVLO_VREG  
UVLO_PVDD LIM_EG  
CLIP  
AMP_OC  
BAT_WARN  
TEMP  
[7:0]  
[7:0]  
TEMP  
VBAT  
R
VBAT  
R
PWR_CTRL  
PDM_CTRL  
SAI_CTRL1  
SAI_CTRL2  
SAI_PLACE1  
SAI_PLACE2  
SAI_PLACE3  
SAI_PLACE4  
SAI_PLACE5  
SAI_PLACE6  
AGC_PLACE1  
AGC_PLACE2  
AGC_PLACE3  
[7:0]  
RESERVED  
VSNS_PWDN ISNS_PWDN RESERVED  
PDM_FS  
TEMP_PWDN  
RESERVED  
IOVDD_SEL  
SPWDN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
[7:0]  
RESERVED  
PDM_MODE  
[7:0] SAI_DRV  
[7:0]  
TDM_BCLKS  
BCLK_POL FSYNC_MODE SDATA_FMT SAI_MODE  
RESERVED  
TDM_SLOT  
P1_SNS  
[7:0]  
RESERVED  
P1_DAC  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
P2_DAC  
P3_DAC  
P4_DAC  
P2_SNS  
[7:0]  
P3_SNS  
[7:0]  
P4_SNS  
[7:0]  
RESERVED  
RESERVED  
P5_SNS  
[7:0]  
P6_SNS  
[7:0]  
AGC_GAIN1_PLACE  
AGC_GAIN1_SLOT  
AGC_GAIN2_SLOT  
AGC_GAIN3_SLOT  
AGC_GAIN4_SLOT  
S_RST  
[7:0]  
AGC_GAIN2_PLACE  
AGC_GAIN3_PLACE  
AGC_GAIN4_PLACE  
[7:0]  
0x2D AGC_PLACE4  
0x2E SOFT_RESET  
[7:0]  
[7:0]  
RESERVED  
Rev. A | Page 36 of 60  
 
Data Sheet  
SSM3525  
SSM3525 I2C MODE REGISTER MAP (SSM3525_I2C_REGMAP) REGISTER DETAILS  
ADI VENDOR ID REGISTER  
Address: 0x00, Reset: 0x41, Name: VENDOR_ID  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
1
[7:0] VENDOR (R)  
ADI Vendor ID  
Table 22. Bit Descriptions for VENDOR_ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR  
ADI Vendor ID  
0x41  
R
DEVICE ID 1 REGISTER  
Address: 0x01, Reset: 0x35, Name: DEVICE_ID1  
7
6
5
4
3
2
1
0
0
0
1
1
0
1
0
1
[7:0] DEVICE1 (R)  
SSM3525 Device ID 1  
Table 23. Bit Descriptions for DEVICE_ID1  
Bits  
[7:0]  
Bit Name  
DEVICE1  
Settings  
Description  
SSM3525 Device ID 1  
Reset  
0x35  
Access  
R
DEVICE ID 1 REGISTER  
Address: 0x02, Reset: 0x25, Name: DEVICE_ID2  
7
6
5
4
3
2
1
0
0
0
1
0
0
1
0
1
[7:0] DEVICE2 (R)  
SSM3525 Device ID 2  
Table 24. Bit Descriptions for DEVICE_ID2  
Bits  
[7:0]  
Bit Name  
DEVICE2  
Settings  
Description  
SSM3525 Device ID 2  
Reset  
0x25  
Access  
R
REVISION ID REGISTER  
Address: 0x03, Reset: 0x01, Name: REVISION_ID  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] REVISION (R)  
Revision ID  
Table 25. Bit Descriptions for REVISION_ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
REVISION  
Revision ID  
0x1  
R
Rev. A | Page 37 of 60  
 
 
 
 
 
 
SSM3525  
Data Sheet  
REGULATOR ENABLE AND IOVDD SELECTION REGISTER  
Address: 0x04, Reset: 0x00, Name: REG_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] REG_EN (R/W)  
Internal Regulator Enable  
0: Never enable internal regulator.  
1: Normal operation. Internal regulator  
turns on if VREG is not applied externally.  
Table 26. Bit Descriptions for REG_ENABLE  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
REG_EN  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Internal Regulator Enable  
Never enable internal regulator.  
Normal operation. Internal regulator turns on if VREG is not applied externally.  
0
1
AMPLIFIER GAIN, EDGE CONTROL, AND SENSE SAMPLE RATE REGISTER  
Address: 0x05, Reset: 0x22, Name: AMP_CTRL  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7] SNS_HPF_BP (R/W)  
I/V Sense High Pass Filter On/Off  
0: I/V sense high pass filter on.  
1: I/V sense high pass filter off.  
[1:0] ANA_GAIN (R/W)  
Amplifier Analog Gain Select  
0: +13 dB (6.3x)  
1: +16 dB (8.9x)  
10: +19 dB (12.6x)  
11: +21 dB (16x)  
[6:4] SNS_FS (R/W)  
Sense Sample Rate  
00: 8 kHz to 12 kHz I and V sense sample  
[2] EDGE (R/W)  
rate.  
Edge Rate Control  
01: 16 kHz to 24 kHz I and V sense sample  
0: Normal operation.  
1: Low EMI mode operation.  
rate.  
10: 32 kHz to 48 kHz I and V sense sample  
rate.  
11: 64 kHz to 96 kHz I and V sense sample  
rate.  
100: 128 kHz to 192 kHz I and V sense  
sample rate.  
[3] RESERVED  
Table 27. Bit Descriptions for AMP_CTRL  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
SNS_HPF_BP  
I/V Sense High Pass Filter On/Off  
I/V sense high pass filter on.  
I/V sense high pass filter off.  
0x0  
R/W  
0
1
[6:4] SNS_FS  
Sense Sample Rate. The sense output sample rate can be set at a lower rate than  
the DAC sample rate. When the sense sample rate is less than the DAC sample rate,  
sense ADC samples repeat. The number of times the sample repeats is equal to the  
ratio of the DAC sample rate/sense sample rate.  
0x2  
R/W  
00 8 kHz to 12 kHz I and V sense sample rate.  
01 16 kHz to 24 kHz I and V sense sample rate.  
10 32 kHz to 48 kHz I and V sense sample rate.  
11 64 kHz to 96 kHz I and V sense sample rate.  
100 128 kHz to 192 kHz I and V sense sample rate.  
Reserved.  
3
2
RESERVED  
EDGE  
0x0  
0x0  
R
R/W  
Edge Rate Control. This controls the edge speed of the power stage. The low EMI  
operation mode reduces the edge speed, lowering EMI and power efficiency  
0
1
Normal operation.  
Low EMI mode operation.  
Rev. A | Page 38 of 60  
 
Data Sheet  
SSM3525  
Bits  
Bit Name  
Settings Description  
Amplifier Analog Gain Select  
+13 dB (6.3x)  
+16 dB (8.9x)  
Reset Access  
[1:0] ANA_GAIN  
0x2  
R/W  
0
1
10 +19 dB (12.6x)  
11 +21 dB (16x)  
DAC CONTROL REGISTER  
Address: 0x06, Reset: 0x32, Name: DAC_CTRL  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
0
[7] DAC_HV (R/W)  
[2:0] DAC_FS (R/W)  
DAC Hard Volume  
0: Soft volume ramping.  
1: Hard/immediate volume change.  
DAC Sample Rate Selection  
000: 8 kHz to 12 kHz sample rate.  
001: 16 kHz to 24 kHz sample rate.  
010: 32 kHz to 48 kHz sample rate.  
011: 64 kHz to 96 kHz sample rate.  
100: 128 kHz to 192 kHz sample rate.  
101: Reserved.  
[6] DAC_MUTE (R/W)  
DAC Mute Control  
0: DAC unmuted.  
1: DAC muted.  
110: Reserved.  
111: Reserved.  
[5] DAC_HPF (R/W)  
DAC High Pass Filter Enable  
0: DAC high pass filter off.  
1: DAC high pass filter on.  
[3] DAC_POL (R/W)  
DAC Output Polarity control  
0: Normal behavior.  
1: Invert the DAC output.  
[4] DAC_LPM (R/W)  
DAC Low Power Mode Enable  
0: DAC low power mode off.  
1: DAC low power mode on.  
Table 28. Bit Descriptions for DAC_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_HV  
DAC Hard Volume  
Soft volume ramping.  
Hard/immediate volume change.  
DAC Mute Control  
DAC unmuted.  
DAC muted.  
DAC High Pass Filter Enable  
DAC high pass filter off.  
DAC high pass filter on.  
DAC Low Power Mode Enable  
DAC low power mode off.  
DAC low power mode on.  
DAC Output Polarity control  
Normal behavior.  
0x0  
R/W  
0
1
6
DAC_MUTE  
DAC_HPF  
DAC_LPM  
DAC_POL  
DAC_FS  
0x0  
0x1  
0x1  
0x0  
0x2  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
5
0
1
4
0
1
3
0
1
Invert the DAC output.  
DAC Sample Rate Selection  
[2:0]  
000 8 kHz to 12 kHz sample rate.  
001 16 kHz to 24 kHz sample rate.  
010 32 kHz to 48 kHz sample rate.  
011 64 kHz to 96 kHz sample rate.  
100 128 kHz to 192 kHz sample rate.  
101 Reserved.  
110 Reserved.  
111 Reserved.  
Rev. A | Page 39 of 60  
 
SSM3525  
Data Sheet  
DAC VOLUME CONTROL REGISTER  
Address: 0x07, Reset: 0x40, Name: DAC_VOL  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7:0] VOL (R/W)  
Volume Control  
00000000: +24 dB.  
00000001: +23.625 dB.  
00000010: +23.35 dB.  
...  
11111101: -70.875 dB.  
11111110: -71.25 dB.  
11111111:Mute.  
Table 29. Bit Descriptions for DAC_VOL  
Bits  
[7:0]  
Bit Name  
VOL  
Settings  
Description  
Volume Control  
Reset  
0x40  
Access  
R/W  
00000000 +24 dB.  
00000001 +23.625 dB.  
00000010 +23.35 dB.  
00000011 +22.875 dB.  
00000100 +22.5 dB.  
00000101 ...  
00111111 +0.375 dB.  
01000000 0.  
01000001 −0.375 dB.  
01000010 ...  
11111101 −70.875 dB.  
11111110 −71.25 dB.  
11111111 Mute.  
Rev. A | Page 40 of 60  
 
 
Data Sheet  
SSM3525  
AUDIO LIMITER CONTROL 1 REGISTER  
Address: 0x08, Reset: 0xA4, Name: LIM_CTRL1  
7
6
5
4
3
2
1
0
1
0
1
0
0
1
0
0
[7:6] LIM_RRT (R/W)  
[1:0] LIM_EN (R/W)  
Audio Limiter Release Rate  
00: 3200 ms/dB.  
01: 1600 ms/dB.  
10: 1200 ms/dB.  
11: 800 ms/dB.  
Limiter or Mute Mode Enable  
00: Limiter and mute mode off.  
01: Limiter on.  
10: Output mutes if VBAT is below VBAT_INF  
11: Limiter on but only engages if VBAT  
is below VBAT_INF.  
[5:4] LIM_ATR (R/W)  
Audio Limiter Attack Rate  
00: 120 µs/dB.  
01: 60 µs/dB.  
10: 30 µs/dB.  
[2] VBAT_TRACK (R/W)  
Threshold Battery Tracking Enable  
0: Limiter attack threshold fixed.  
1: Limiter attack threshold varies or  
gain reduction with battery voltage.  
11: 20 µs/dB.  
[3] RESERVED  
Table 30. Bit Descriptions for LIM_CTRL1  
Bits  
[7:6]  
Bit Name  
LIM_RRT  
Settings  
Description  
Audio Limiter Release Rate  
00 3200 ms/dB.  
Reset  
0x2  
Access  
R/W  
01 1600 ms/dB.  
10 1200 ms/dB.  
11 800 ms/dB.  
[5:4]  
LIM_ATR  
Audio Limiter Attack Rate  
0x2  
R/W  
00 120 µs/dB.  
01 60 µs/dB.  
10 30 µs/dB.  
11 20 µs/dB.  
Reserved.  
3
2
RESERVED  
VBAT_TRACK  
0x0  
0x1  
R
R/W  
Threshold Battery Tracking Enable  
0
1
Limiter attack threshold fixed.  
Limiter attack threshold varies or gain reduction with battery voltage.  
Limiter or Mute Mode Enable  
[1:0]  
LIM_EN  
0x0  
R/W  
00 Limiter and mute mode off.  
01 Limiter on.  
10 Output mutes if VBAT is below VBAT_INF.  
11 Limiter on but only engages if VBAT is below VBAT_INF.  
Rev. A | Page 41 of 60  
 
SSM3525  
Data Sheet  
AUDIO LIMITER CONTROL 2 REGISTER  
Address: 0x09, Reset: 0x51, Name: LIM_CTRL2  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
[7:3] LIM_THRES (R/W)  
Limiter Attack Threshold  
0: 16 V peak.  
1: 15.5 V peak.  
2: 15 V peak.  
...  
29: 3 V peak.  
30: 2.5 V peak.  
31: 2 V peak.  
[1:0] SLOPE (R/W)  
Slope of threshold reduction/battery  
voltage change  
00: 1:1 threshold/battery reduction.  
01: 2:1 threshold/battery reduction.  
10: 3:1 threshold/battery reduction.  
11: 4:1 threshold/battery reduction.  
[2] RESERVED  
Table 31. Bit Descriptions for LIM_CTRL2  
Bits  
[7:3]  
Bit Name  
LIM_THRES  
Settings  
Description  
Limiter Attack Threshold  
16 VPEAK  
15.5 VPEAK  
15 VPEAK  
14.5 VPEAK  
14 VPEAK  
13.5 VPEAK  
13 VPEAK  
12.5 VPEAK  
12 VPEAK  
11.5 VPEAK  
Reset  
0xA  
Access  
R/W  
0
1
2
3
4
5
6
7
8
9
.
.
.
.
.
.
.
.
.
.
.
10 11 VPEAK  
11 10.5 VPEAK  
12 10 VPEAK  
13 9.5 VPEAK  
14 9.25 VPEAK  
15 9 VPEAK  
16 8.75 VPEAK  
17 8.5 VPEAK  
18 8.25 VPEAK  
19 8 VPEAK  
20 7.5 VPEAK  
21 7 VPEAK  
22 6.5 VPEAK  
23 6 VPEAK  
24 5.5 VPEAK  
25 5 VPEAK  
26 4.5 VPEAK  
27 4 VPEAK  
28 3.5 VPEAK  
29 3 VPEAK  
30 2.5 VPEAK  
31 2 VPEAK  
Reserved.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
[1:0]  
RESERVED  
SLOPE  
0x0  
0x1  
R
R/W  
Slope of Threshold Reduction/Battery Voltage Change  
00 1:1 threshold/battery reduction.  
01 2:1 threshold/battery reduction.  
10 3:1 threshold/battery reduction.  
11 4:1 threshold/battery reduction.  
Rev. A | Page 42 of 60  
Data Sheet  
SSM3525  
AUDIO LIMITER CONTROL 3 REGISTER  
Address: 0x0A, Reset: 0x22, Name: LIM_CTRL3  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7:0] VBAT_INF (R/W)  
Audio Limiter Battery Voltage Inflection  
Point  
Table 32. Bit Descriptions for LIM_CTRL3  
Bits  
Bit Name Settings Description  
Reset Access  
[7:0] VBAT_INF  
Audio Limiter Battery Voltage Inflection Point. The hexadecimal value corresponds to  
the battery or PVDD voltage at which the limiter either activates or starts reducing the  
limiter threshold. To convert the hexadecimal value to the corresponding battery  
voltage, see the PVDD (VBAT ) Sensing section.  
0x22  
R/W  
VBAT LIMITER CONTROL 1 REGISTER  
Address: 0x0B, Reset: 0xA0, Name: VBAT_LIM_CTRL1  
7
6
5
4
3
2
1
0
1
0
1
0
0
0
0
0
[7:6] VBAT_LIM_RRT (R/W)  
VBAT Limiter Release Rate  
00: 3200 ms/dB.  
[0] VBAT_LIM_EN (R/W)  
VBAT Limiter Enable  
0: VBAT limiter disabled.  
1: VBAT limiter enabled.  
01: 1600 ms/dB.  
10: 1200 ms/dB.  
11: 800 ms/dB.  
[3:1] RESERVED  
[5:4] VBAT_LIM_ATR (R/W)  
VBAT Limiter Attack Rate  
00: 120 µs/dB.  
01: 60 µs/dB.  
10: 30 µs/dB.  
11: 20 µs/dB.  
Table 33. Bit Descriptions for VBAT_LIM_CTRL1  
Bits  
[7:6]  
Bit Name  
VBAT_LIM_RRT  
Settings  
Description  
VBAT Limiter Release Rate  
00 3200 ms/dB.  
Reset  
0x2  
Access  
R/W  
01 1600 ms/dB.  
10 1200 ms/dB.  
11 800 ms/dB.  
[5:4]  
VBAT_LIM_ATR  
VBAT Limiter Attack Rate  
0x2  
R/W  
00 120 µs/dB.  
01 60 µs/dB.  
10 30 µs/dB.  
11 20 µs/dB.  
Reserved.  
[3:1]  
0
RESERVED  
0x0  
0x0  
R
VBAT_LIM_EN  
VBAT Limiter Enable  
R/W  
0
1
VBAT limiter disabled.  
VBAT limiter enabled.  
Rev. A | Page 43 of 60  
 
 
 
SSM3525  
Data Sheet  
VBAT LIMITER CONTROL 2 REGISTER  
Address: 0x0C, Reset: 0x22, Name: VBAT_LIM_CTRL2  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7:0] VBAT_THRES (R/W)  
VBAT Limiter Battery Voltage Threshold  
Table 34. Bit Descriptions for VBAT_LIM_CTRL2  
Bits Bit Name Settings Description  
[7:0] VBAT_THRES  
Reset Access  
VBAT Limiter Battery Voltage Threshold. This is the threshold value in hexadecimal  
at which the VBAT limiter starts reducing the gain. To convert the hexadecimal  
value to the corresponding battery voltage refer to VBAT sensing section.  
0x22  
R/W  
VBAT LIMITER CONTROL 3 REGISTER  
Address: 0x0D, Reset: 0x65, Name: VBAT_LIM_CTRL3  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
[7:4] VBAT_LIM_MAX_ATTN (R/W)  
VBAT Limiter Maximum Attenuation  
[3:0] VBAT_LIM_HOLD (R/W)  
VBAT Limiter Hold-Off Time  
0: No hold off.  
1: 200 ms.  
0: 0.75 dB maximum attenuation.  
1: 1.5 dB maximum attenuation.  
10: 2.25 dB maximum attenuation.  
...  
10: 400 ms.  
...  
1101: 10.5 dB maximum attenuation.  
1110: 11.25 dB maximum attenuation.  
1111: 12 dB maximum attenuation.  
1101: 4000 ms.  
1110: 5000 ms.  
1111: 6000 ms.  
Table 35. Bit Descriptions for VBAT_LIM_CTRL3  
Bits Bit Name Settings Description  
[7:4] VBAT_LIM_MAX_ATTN  
Reset  
0x6  
Access  
R/W  
VBAT Limiter Maximum Attenuation  
0.75 dB maximum attenuation.  
1.5 dB maximum attenuation.  
0
1
10 2.25 dB maximum attenuation.  
11 3 dB maximum attenuation.  
100 3.75 dB maximum attenuation.  
101 4.5 dB maximum attenuation.  
110 5.25 dB maximum attenuation.  
111 6 dB maximum attenuation.  
1000 6.75 dB maximum attenuation.  
1001 7.5 dB maximum attenuation.  
1010 8.25 dB maximum attenuation.  
1011 9 dB maximum attenuation.  
1100 9.75 dB maximum attenuation.  
1101 10.5 dB maximum attenuation.  
1110 11.25 dB maximum attenuation.  
1111 12 dB maximum attenuation.  
VBAT Limiter Hold-Off Time'  
[3:0] VBAT_LIM_HOLD  
0x5  
R/W  
0
1
No hold off.  
200 ms.  
10 400 ms.  
11 600 ms.  
100 800 ms.  
101 1000 ms.  
110 1200 ms.  
111 1400 ms.  
1000 1600 ms.  
1001 1800 ms.  
Rev. A | Page 44 of 60  
 
Data Sheet  
SSM3525  
Bits  
Bit Name  
Settings Description  
1010 2000 ms.  
1011 2500 ms.  
1100 3000 ms.  
1101 4000 ms.  
1110 5000 ms.  
1111 6000 ms.  
Reset  
Access  
LIMITER LINK CONTROL REGISTER  
Address: 0x0E, Reset: 0x00, Name: LIM_LINK  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[0] LIM_LINK1 (R/W)  
Limiter Gain Link with AGC_GAIN1  
Input  
0: Limiter gain not linked.  
1: Limiter gain linked.  
[3] LIM_LINK4 (R/W)  
Limiter Gain Link with AGC_GAIN4  
Input  
0: Limiter gain not linked.  
1: Limiter gain linked.  
[1] LIM_LINK2 (R/W)  
Limiter Gain Link with AGC_GAIN2  
Input  
0: Limiter gain not linked.  
1: Limiter gain linked.  
[2] LIM_LINK3 (R/W)  
Limiter Gain Link with AGC_GAIN3  
Input  
0: Limiter gain not linked.  
1: Limiter gain linked.  
Table 36. Bit Descriptions for LIM_LINK  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
LIM_LINK4  
Settings  
Description  
Reserved.  
Limiter Gain Link with AGC_GAIN4 Input  
Limiter gain not linked.  
Limiter gain linked.  
Reset  
0x0  
0x0  
Access  
R
R/W  
0
1
2
1
0
LIM_LINK3  
LIM_LINK2  
LIM_LINK1  
Limiter Gain Link with AGC_GAIN3 Input  
Limiter gain not linked.  
Limiter gain linked.  
Limiter Gain Link with AGC_GAIN2 Input  
Limiter gain not linked.  
Limiter gain linked.  
Limiter Gain Link with AGC_GAIN1 Input  
Limiter gain not linked.  
Limiter gain linked.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
0
1
0
1
DAC CLIP POINT CONTROL REGISTER  
Address: 0x0F, Reset: 0xFF, Name: DAC_CLIP  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
[7:0] DAC_CLIP (R/W)  
DAC High Frequency Clip Value  
0xFF: Clip to 256/256 or 0 dB.  
0xFE: Clip to 255/256 or −0.034 dB.  
0xFD: Clip to 254/256 or −0.068 dB.  
0xFC: ...  
0x00: Clip to 1/256 or −48.16 dB.  
Table 37. Bit Descriptions for DAC_CLIP  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC_CLIP  
DAC High Frequency Clip Value  
0xFF  
R/W  
0xFF Clip to 256/256 or 0 dB.  
0xFE Clip to 255/256 or −0.034 dB.  
0xFD Clip to 254/256 or −0.068 dB.  
0xFC ...  
0x00 Clip to 1/256 or −48.16 dB.  
Rev. A | Page 45 of 60  
 
 
SSM3525  
Data Sheet  
FAULT CONTROL REGISTER  
Address: 0x10, Reset: 0x18, Name: FAULT_CTRL  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7:6] OTW_GAIN (R/W)  
[0] ARCV_OC (R/W)  
Overtemperature Warning Gain Reduction  
00: No gain reduction in thermal warning.  
Over Current Auto Fault Recovery  
Control  
01: 1.5 dB gain reduction in thermal warning.  
10: 3 dB gain reduction in thermal warning.  
11: 5.625 dB gain reduction in thermal  
warning.  
0: Auto fault recovery for over current  
fault.  
1: Manual fault recovery for over current  
fault.  
[5] MRCV (W1)  
[1] ARCV_OT (R/W)  
Manual Fault Recovery  
0: Normal operation.  
Overtemperature Auto Fault Recovery  
Control  
1: Writing of 1 causes a manual fault  
recovery attempt when ARCV_x bits  
are set to 1.  
0: Auto fault recovery for over temperature  
fault.  
1: Manual fault recovery for over temperature  
fault.  
[4:3] MAX_AR (R/W)  
Maximum Fault Recovery Attempts  
00: 1 auto recovery attempt.  
01: 3 auto recovery attempts.  
10: 7 auto recovery attempts.  
11: Unlimited auto recovery attempts.  
[2] ARCV_UV (R/W)  
Undervoltage Auto Fault Recovery  
Control  
0: Auto fault recovery for under voltage  
fault.  
1: Manual fault recovery for under voltage  
fault.  
Table 38. Bit Descriptions for FAULT_CTRL  
Bits Bit Name Settings Description  
[7:6] OTW_GAIN  
Reset  
0x0  
Access  
R/W  
Overtemperature Warning Gain Reduction  
00 No gain reduction in thermal warning.  
01 1.5 dB gain reduction in thermal warning.  
10 3 dB gain reduction in thermal warning.  
11 5.625 dB gain reduction in thermal warning.  
Manual Fault Recovery  
5
MRCV  
0x0  
0x3  
W1  
0
1
Normal operation.  
Writing 1 causes a manual fault recovery attempt when ARCV_x bits are set to 1.  
[4:3] MAX_AR  
Maximum Fault recovery Attempts. The maximum auto recovery register  
determines how many attempts at auto recovery are performed.  
R/W  
00 1 auto recovery attempt.  
01 3 auto recovery attempts.  
10 7 auto recovery attempts.  
11 Unlimited auto recovery attempts.  
Undervoltage Auto Fault Recovery Control  
2
1
0
ARCV_UV  
ARCV_OT  
ARCV_OC  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Auto fault recovery for undervoltage fault.  
Manual fault recovery for undervoltage fault.  
Overtemperature Auto Fault Recovery Control  
Auto fault recovery for overtemperature fault.  
Manual fault recovery for overtemperature fault.  
Over Current Auto Fault Recovery Control  
Auto fault recovery for over current fault.  
Manual fault recovery for over current fault.  
0
1
0
1
Rev. A | Page 46 of 60  
 
Data Sheet  
SSM3525  
CHIP STATUS REGISTER  
Address: 0x11, Reset: 0x00, Name: STATUS  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] UVLO_VREG (R)  
[0] BAT_WARN (R)  
Regulator Undervoltage Fault Status  
0: Normal operation.  
1: Voltage regulator fault condition.  
Battery Voltage Warning  
0: Battery voltage above VBAT_INF.  
1: Battery voltage at or below VBAT_INF.  
[6] UVLO_PVDD (R)  
[1] OTW (R)  
PVDD Undervoltage Fault Condition  
Overtemperature Warning Status  
0: Normal operation.  
1: Over temperature warning condition.  
[5] LIM_EG (R)  
Limiter/Gain Reduction Engaged  
0: Normal operation.  
[2] OTF (R)  
1: Limiter or gain reduction has reduced  
gain.  
Overtemperature Fault Status  
0: Normal operation.  
1: Over temperature fault condition.  
[4] CLIP (R)  
Clip Detector  
[3] AMP_OC (R)  
0: Normal operation.  
1: DAC clipping detected.  
Amplifier Over Current Fault Status  
0: Normal operation.  
1: Amplifier over current fault condition.  
Table 39. Bit Descriptions for STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
UVLO_VREG  
Regulator Undervoltage Fault Status  
Normal operation.  
Voltage regulator fault condition.  
PVDD Undervoltage Fault Condition  
Limiter/Gain Reduction Engaged  
Normal operation.  
Limiter or gain reduction has reduced gain.  
Clip Detector  
Normal operation.  
DAC clipping detected.  
Amplifier Over Current Fault Status  
Normal operation.  
Amplifier over current fault condition.  
Overtemperature Fault Status  
Normal operation.  
Overtemperature fault condition.  
Overtemperature Warning Status  
Normal operation.  
0x0  
R
0
1
6
5
UVLO_PVDD  
LIM_EG  
0x0  
0x0  
R
R
0
1
4
3
2
1
0
CLIP  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
0
1
AMP_OC  
OTF  
0
1
0
1
OTW  
0
1
Overtemperature warning condition.  
Battery Voltage Warning  
BAT_WARN  
0
1
Battery voltage above VBAT_INF.  
Battery voltage at or below VBAT_INF.  
TEMPERATURE SENSOR VALUE REGISTER  
Address: 0x12, Reset: 0x00, Name: TEMP  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] TEMP (R)  
Temperature Sensor Readout  
Table 40. Bit Descriptions for TEMP  
Bits  
[7:0] TEMP  
Bit Name Settings Description  
Reset  
0x0  
Access  
R
Temperature Sensor Readout. To calculate actual temperature in degrees Celsius,  
convert the TEMP hexadecimal value to decimal and then subtract 60.  
Rev. A | Page 47 of 60  
 
 
SSM3525  
Data Sheet  
PVDD/VBAT ADC VALUE REGISTER  
Address: 0x13, Reset: 0x00, Name: VBAT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VBAT (R)  
8-Bit Unsigned Battery Voltage Readback  
Table 41. Bit Descriptions for VBAT  
Bits  
Bit Name Settings Description  
Reset  
Access  
[7:0] VBAT  
8-Bit Unsigned Battery Voltage Readback. To calculate this value in volts. Convert the  
hexadecimal value to decimal, and then voltage = 4 + 14 × decimal value/255.  
0x0  
R
MASTER AND BLOCK POWER CONTROL REGISTER  
Address: 0x20, Reset: 0x05, Name: PWR_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
1
[7:6] RESERVED  
[0] SPWDN (R/W)  
Master Software Power-Down  
0: Normal operation.  
1: Software master power-down.  
[5] VSNS_PWDN (R/W)  
Voltage Sense Power-Down  
0: Voltage sense powered on.  
1: Voltage sense powered off.  
[1] IOVDD_SEL (R/W)  
IOVDD Voltage Selection  
0: IOVDD is 1.8V.  
[4] ISNS_PWDN (R/W)  
Current Sense Power-Down  
0: Current sense powered on.  
1: Current sense powered off.  
1: IOVDD is 1.2V.  
[2] TEMP_PWDN (R/W)  
Temperature Sensor Power-Down  
0: Temperature sensor on.  
[3] RESERVED  
1: Temperature sensor powered down.  
Table 42. Bit Descriptions for PWR_CTRL  
Bits Bit Name Settings Description  
[7:6] RESERVED Reserved.  
Reset  
0x0  
Access  
R
5
VSNS_PWDN  
Voltage Sense Power-Down  
Voltage sense powered on.  
Voltage sense powered off.  
Current Sense Power-Down  
Current sense powered on.  
Current sense powered off.  
Reserved.  
Temperature Sensor Power-Down  
Temperature sensor on.  
Temperature sensor powered down.  
IOVDD Voltage Selection  
IOVDD is 1.8 V.  
0x0  
R/W  
0
1
4
ISNS_PWDN  
0x0  
R/W  
0
1
3
2
RESERVED  
TEMP_PWDN  
0x0  
0x1  
R
R/W  
0
1
1
0
IOVDD_SEL  
SPWDN  
0x0  
0x1  
R/W  
R/W  
0
1
IOVDD is 1.2 V.  
Master Software Power-Down. Software power-down puts all blocks except the  
I2C interface in a low power state.  
0
1
Normal operation.  
Software master power-down.  
Rev. A | Page 48 of 60  
 
 
Data Sheet  
SSM3525  
PDM CONTROL REGISTER  
Address: 0x21, Reset: 0x00, Name: PDM_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] PDM_MODE (R/W)  
PDM Input and Output Mode  
0: Normal I2S/TDM operation.  
1: PDM used for input and output.  
[4] PDM_FS (R/W)  
PDM Sample Rate Selection  
0: 4 MHz to 6 MHz clock in PDM mode.  
1: 2 MHz to 3 MHz clock in PDM mode.  
[3:1] RESERVED  
Table 43. Bit Descriptions for PDM_CTRL  
Bits  
[7:5]  
4
Bit Name  
RESERVED  
PDM_FS  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
PDM Sample Rate Selection  
R/W  
0
1
4 MHz to 6 MHz clock in PDM mode.  
2 MHz to 3 MHz clock in PDM mode.  
Reserved.  
[3:1]  
0
RESERVED  
PDM_MODE  
0x0  
0x0  
R
R/W  
PDM Input and Output Mode  
Normal I2S/TDM operation.  
PDM used for input and output.  
0
1
SERIAL INTERFACE CONTROL 1 REGISTER  
Address: 0x22, Reset: 0x21, Name: SAI_CTRL1  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
1
[7] SAI_DRV (R/W)  
[0] SAI_MODE (R/W)  
Drive Control for Unused BCLK Cycles  
0: Unused BCLK cycles on SDATAO  
are not driven (high-Z)  
Serial Interface Mode Selection  
0: Stereo modes (I2S or left justified)  
1: TDM/PCM modes.  
1: Unused BCLK cycles on SDATAO  
are driven low.  
[1] SDATA_FMT (R/W)  
Serial Data Format  
[6:4] TDM_BCLKS (R/W)  
Number of Bit Clocks per Chip in  
TDM Mode  
000: 16 BCLKs per Chip in TDM.  
001: 24 BCLKs per Chip in TDM.  
010: 32 BCLKs per Chip in TDM.  
011: 48 BCLKs per Chip in TDM.  
100: 64 BCLKs per Chip in TDM.  
0: I2S/delay by one bit clock from FSYNC  
edge.  
1: Left Justified/no delay from FSYNC  
edge.  
[2] FSYNC_MODE (R/W)  
FSYNC Mode Control  
0: Low FSYNC is left channel in stereo  
modes or pulsed FSYNC mode in  
TDM modes.  
[3] BCLK_POL (R/W)  
BCLK Polarity Control  
0: Rising edge of BCLK registers SDATA.  
1: Falling edge of BCLK registers SDATA.  
1: High FSYNC is left channel in stereo  
modes or 50% FSYNC mode in TDM  
modes.  
Table 44. Bit Descriptions for SAI_CTRL1  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
SAI_DRV  
Drive Control for Unused BCLK Cycles  
0x0  
R/W  
0
1
Unused BCLK cycles on SDATAO are not driven (high-Z).  
Unused BCLK cycles on SDATAO are driven low.  
[6:4] TDM_BCLKS  
Number of Bit Clocks per Chip in TDM Mode. Any number of bit clock cycles per  
FSYNC can be used in stereo modes (I2S or left justified) or in TDM mode with only  
one chip. When in TDM mode and having multiple chips on the TDM bus, the  
number of bit clocks per chip must be defined.  
0x2  
R/W  
000 16 BCLKs per chip in TDM.  
001 24 BCLKs per chip in TDM.  
010 32 BCLKs per chip in TDM.  
011 48 BCLKs per chip in TDM.  
100 64 BCLKs per chip in TDM.  
BCLK Polarity Control  
3
BCLK_POL  
0x0  
R/W  
0
1
Rising edge of BCLK registers SDATA.  
Falling edge of BCLK registers SDATA.  
Rev. A | Page 49 of 60  
 
 
SSM3525  
Data Sheet  
Bits  
2
Bit Name  
Settings Description  
FSYNC Mode Control  
Reset Access  
FSYNC_MODE  
SDATA_FMT  
SAI_MODE  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
0
1
Low FSYNC is left channel in stereo modes or pulsed FSYNC mode in TDM modes.  
High FSYNC is left channel in stereo modes or 50% FSYNC mode in TDM modes.  
Serial Data Format  
1
0
0
1
I2S/delay by one bit clock from FSYNC edge.  
Left Justified/no delay from FSYNC edge.  
Serial Interface Mode Selection  
0
1
Stereo modes (I2S or left justified)  
TDM/PCM modes.  
SERIAL INTERFACE CONTROL 2 REGISTER  
Address: 0x23, Reset: 0x00, Name: SAI_CTRL2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[4:0] TDM_SLOT (R/W)  
TDM Slot Selection  
0000: Chip Slot 1 used.  
0001: Chip Slot 2 used.  
0010: Chip Slot 3 used.  
...  
11101: Chip Slot 30 used.  
11110: Chip Slot 31 used.  
11111: Chip Slot 32 used.  
Table 45. Bit Descriptions for SAI_CTRL2  
Bits  
[7:5]  
[4:0]  
Bit Name  
RESERVED  
TDM_SLOT  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
TDM Slot Selection  
R/W  
0000 Chip Slot 1 used.  
0001 Chip Slot 2 used.  
0010 Chip Slot 3 used.  
0011 Chip Slot 4 used.  
0100 Chip Slot 5 used.  
0101 Chip Slot 6 used.  
0110 Chip Slot 7 used.  
0111 Chip Slot 8 used.  
1000 Chip Slot 9 used.  
1001 Chip Slot 10 used.  
1010 Chip Slot 11 used.  
1011 Chip Slot 12 used.  
1100 Chip Slot 13 used.  
1101 Chip Slot 14 used.  
1110 Chip Slot 15 used.  
1111 Chip Slot 16 used.  
10000 Chip Slot 17 used.  
10001 Chip Slot 18 used.  
10010 Chip Slot 19 used.  
10011 Chip Slot 20 used.  
10100 Chip Slot 21 used.  
10101 Chip Slot 22 used.  
10110 Chip Slot 23 used.  
10111 Chip Slot 24 used.  
11000 Chip Slot 25 used.  
11001 Chip Slot 26 used.  
11010 Chip Slot 27 used.  
Rev. A | Page 50 of 60  
 
Data Sheet  
SSM3525  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
11011 Chip Slot 28 used.  
11100 Chip Slot 29 used.  
11101 Chip Slot 30 used.  
11110 Chip Slot 31 used.  
11111 Chip Slot 32 used.  
SERIAL INTERFACE PLACEMENT CONTROL 1 REGISTER  
Address: 0x24, Reset: 0x01, Name: SAI_PLACE1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:6] RESERVED  
[3:0] P1_SNS (R/W)  
Placement 1 or L1 Control for Sense  
Output  
1000: Blank 8-bits.  
0100: Alternating 16-bit voltage and current.  
0000: 16-bit voltage output.  
...  
0101: 8-bit status output.  
0010: 8-bit battery voltage output unsigned.  
0011: 8-bit AGC_GAIN output.  
[5:4] P1_DAC (R/W)  
Placement 1 or L1 Control for DAC  
Input  
00: 24-Bit DAC input.  
01: 16-Bit DAC input.  
10: Unused 8-bits.  
11: Unused 8-bits.  
Table 46. Bit Descriptions for SAI_PLACE1  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
P1_DAC  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R
Placement 1 or L1 Control for DAC Input  
0x0  
R/W  
00 24-bit DAC input.  
01 16-bit DAC input.  
10 Unused 8-bits.  
11 Unused 8-bits.  
[3:0]  
P1_SNS  
Placement 1 or L1 Control for Sense Output  
1000 Blank 8-bits.  
0x1  
R/W  
0100 Alternating 16-bit voltage and current.  
0000 16-bit voltage output.  
0001 16-bit current output.  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
0101 8-bit status output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
Rev. A | Page 51 of 60  
 
 
SSM3525  
Data Sheet  
SERIAL INTERFACE PLACEMENT CONTROL 2 REGISTER  
Address: 0x25, Reset: 0x21, Name: SAI_PLACE2  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
1
[7:6] RESERVED  
[3:0] P2_SNS (R/W)  
Placement 2 or R1 Control for Sense  
Output  
0000: 16-bit voltage output.  
0001: 16-bit current output.  
0010: 8-bit battery voltage output unsigned.  
...  
0110: 8-bit V/I marker and status.  
0111: 8-bit temperature output.  
1000: Blank 8-bits.  
[5:4] P2_DAC (R/W)  
Placement 2 or R1 Control for DAC  
Input  
00: 24-bit DAC input.  
01: 16-bit DAC input.  
10: Unused 8-bits.  
11: Unused 8-bits.  
Table 47. Bit Descriptions for SAI_PLACE2  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
P2_DAC  
Settings  
Description  
Reserved.  
Placement 2 or R1 Control for DAC Input  
Reset  
0x0  
0x2  
Access  
R
R/W  
00 24-bit DAC input.  
01 16-bit DAC input.  
10 Unused 8-bits.  
11 Unused 8-bits.  
[3:0]  
P2_SNS  
Placement 2 or R1 Control for Sense Output  
0000 16-bit voltage output.  
0001 16-bit current output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
0100 Alternating 16-bit voltage and current.  
0101 8-bit status output.  
0x1  
R/W  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
1000 Blank 8-bits.  
SERIAL INTERFACE PLACEMENT CONTROL 3 REGISTER  
Address: 0x26, Reset: 0x21, Name: SAI_PLACE3  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
1
[7:6] RESERVED  
[3:0] P3_SNS (R/W)  
Placement 3 or L2 Control for Sense  
Output  
0000: 16-bit voltage output.  
0001: 16-bit current output.  
0010: 8-bit battery voltage output unsigned.  
...  
0110: 8-bit V/I marker and status.  
0111: 8-bit temperature output.  
1000: Blank 8-bits.  
[5:4] P3_DAC (R/W)  
Placement 3 or L2 Control for DAC  
Input  
00: 24-bit DAC input.  
01: 16-bit DAC input.  
10: Unused 8-bits.  
11: Unused 8-bits.  
Table 48. Bit Descriptions for SAI_PLACE3  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
P3_DAC  
Settings  
Description  
Reserved.  
Placement 3 or L2 Control for DAC Input  
Reset  
0x0  
0x2  
Access  
R
R/W  
00 24-bit DAC input.  
01 16-bit DAC input.  
10 Unused 8-bits.  
11 Unused 8-bits.  
Rev. A | Page 52 of 60  
 
Data Sheet  
SSM3525  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:0]  
P3_SNS  
Placement 3 or L2 Control for Sense Output  
0x1  
R/W  
0000 16-bit voltage output.  
0001 16-bit current output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
0100 Alternating 16-bit voltage and current.  
0101 8-bit status output.  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
1000 Blank 8-bits.  
SERIAL INTERFACE PLACEMENT CONTROL 4 REGISTER  
Address: 0x27, Reset: 0x21, Name: SAI_PLACE4  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
1
[7:6] RESERVED  
[3:0] P4_SNS (R/W)  
Placement 4 or R2 Control for Sense  
Output  
0000: 16-bit voltage output.  
0001: 16-bit current output.  
0010: 8-bit battery voltage output unsigned.  
...  
0110: 8-bit V/I marker and status.  
0111: 8-bit temperature output.  
1000: Blank 8-bits.  
[5:4] P4_DAC (R/W)  
Placement 4 or R2 Control for DAC  
Input  
00: 24-bit DAC input.  
01: 16-bit DAC input.  
10: Unused 8-bits.  
11: Unused 8-bits.  
Table 49. Bit Descriptions for SAI_PLACE4  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
P4_DAC  
Settings  
Description  
Reserved.  
Placement 4 or R2 Control for DAC Input  
Reset  
0x0  
0x2  
Access  
R
R/W  
00 24-bit DAC input.  
01 16-bit DAC input.  
10 Unused 8-bits.  
11 Unused 8-bits.  
[3:0]  
P4_SNS  
Placement 4 or R2 Control for Sense Output  
0000 16-bit voltage output.  
0001 16-bit current output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
0100 Alternating 16-bit voltage and current.  
0101 8-bit status output.  
0x1  
R/W  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
1000 Blank 8-bits.  
Rev. A | Page 53 of 60  
 
 
SSM3525  
Data Sheet  
SERIAL INTERFACE PLACEMENT CONTROL 5 REGISTER  
Address: 0x28, Reset: 0x01, Name: SAI_PLACE5  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:4] RESERVED  
[3:0] P5_SNS (R/W)  
Placement 5 or L3 Control for Sense  
Output  
0000: 16-bit voltage output.  
0001: 16-bit current output.  
0010: 8-bit battery voltage output unsigned.  
...  
0110: 8-bit V/I marker and status.  
0111: 8-bit temperature output.  
1000: Blank 8-bits.  
Table 50. Bit Descriptions for SAI_PLACE5  
Bits  
[7:4]  
[3:0]  
Bit Name  
RESERVED  
P5_SNS  
Settings  
Description  
Reserved.  
Placement 5 or L3 Control for Sense Output  
0000 16-bit voltage output.  
Reset  
0x0  
0x1  
Access  
R
R/W  
0001 16-bit current output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
0100 Alternating 16-bit voltage and current.  
0101 8-bit status output.  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
1000 Blank 8-bits.  
SERIAL INTERFACE PLACEMENT CONTROL 6 REGISTER  
Address: 0x29, Reset: 0x01, Name: SAI_PLACE6  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:4] RESERVED  
[3:0] P6_SNS (R/W)  
Placement 6 or R3 Control for Sense  
Output  
0000: 16-bit voltage output.  
0001: 16-bit current output.  
0010: 8-bit battery voltage output unsigned.  
...  
0110: 8-bit V/I marker and status.  
0111: 8-bit temperature output.  
1000: Blank 8-bits.  
Table 51. Bit Descriptions for SAI_PLACE6  
Bits  
[7:4]  
[3:0]  
Bit Name  
RESERVED  
P6_SNS  
Settings  
Description  
Reserved.  
Placement 6 or R3 Control for Sense Output  
0000 16-bit voltage output.  
Reset  
0x0  
0x1  
Access  
R
R/W  
0001 16-bit current output.  
0010 8-bit battery voltage output unsigned.  
0011 8-bit AGC_GAIN output.  
0100 Alternating 16-bit voltage and current.  
0101 8-bit status output.  
0110 8-bit V/I marker and status.  
0111 8-bit temperature output.  
1000 Blank 8-bits.  
Rev. A | Page 54 of 60  
 
Data Sheet  
SSM3525  
AGC_GAIN1 INPUT DATA PLACEMENT REGISTER  
Address: 0x2A, Reset: 0x00, Name: AGC_PLACE1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] AGC_GAIN1_PLACE (R/W)  
[4:0] AGC_GAIN1_SLOT (R/W)  
Placement Within Slot for AGC_GAIN1  
Data  
Slot Used for Limiter Linking AGC_GAIN1  
0: AGC_GAIN data placed in Slot 1.  
1: AGC_GAIN data placed in Slot 2.  
10: AGC_GAIN data placed in Slot 3.  
...  
1101: AGC_GAIN data placed in Slot 14.  
1110: AGC_GAIN data placed in Slot 15.  
1111: AGC_GAIN data placed in Slot 16.  
0: AGC_GAIN1 data starts at Bit 0 within  
assigned slot.  
1: AGC_GAIN1 data starts at Bit 8 within  
assigned slot.  
10: AGC_GAIN1 data starts at Bit 16 within  
assigned slot.  
11: AGC_GAIN1 data starts at Bit 24 within  
assigned slot.  
100: AGC_GAIN1 data starts at Bit 32 within  
assigned slot.  
101: AGC_GAIN1 data starts at Bit 40 within  
assigned slot.  
110: AGC_GAIN1 data starts at Bit 48 within  
assigned slot.  
111: AGC_GAIN1 data starts at Bit 54 within  
assigned slot.  
Table 52. Bit Descriptions for AGC_PLACE1  
Bits  
[7:5]  
Bit Name  
AGC_GAIN1_PLACE  
Settings  
Description  
Placement Within Slot for AGC_GAIN1 Data  
Reset  
0x0  
Access  
R/W  
0
1
AGC_GAIN1 data starts at Bit 0 within assigned slot.  
AGC_GAIN1 data starts at Bit 8 within assigned slot.  
10 AGC_GAIN1 data starts at Bit 16 within assigned slot.  
11 AGC_GAIN1 data starts at Bit 24 within assigned slot.  
100 AGC_GAIN1 data starts at Bit 32 within assigned slot.  
101 AGC_GAIN1 data starts at Bit 40 within assigned slot.  
110 AGC_GAIN1 data starts at Bit 48 within assigned slot.  
111 AGC_GAIN1 data starts at Bit 54 within assigned slot.  
Slot Used for Limiter Linking AGC_GAIN1  
[4:0]  
AGC_GAIN1_SLOT  
0x0  
R/W  
0
1
AGC_GAIN data placed in Slot 1.  
AGC_GAIN data placed in Slot 2.  
10 AGC_GAIN data placed in Slot 3.  
11 AGC_GAIN data placed in Slot 4.  
100 AGC_GAIN data placed in Slot 5.  
101 AGC_GAIN data placed in Slot 6.  
110 AGC_GAIN data placed in Slot 7.  
111 AGC_GAIN data placed in Slot 8.  
1000 AGC_GAIN data placed in Slot 9.  
1001 AGC_GAIN data placed in Slot 10.  
1010 AGC_GAIN data placed in Slot 11.  
1011 AGC_GAIN data placed in Slot 12.  
1100 AGC_GAIN data placed in Slot 13.  
1101 AGC_GAIN data placed in Slot 14.  
1110 AGC_GAIN data placed in Slot 15.  
1111 AGC_GAIN data placed in Slot 16.  
Rev. A | Page 55 of 60  
 
SSM3525  
Data Sheet  
AGC_GAIN2 INPUT DATA PLACEMENT REGISTER  
Address: 0x2B, Reset: 0x00, Name: AGC_PLACE2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] AGC_GAIN2_PLACE (R/W)  
[4:0] AGC_GAIN2_SLOT (R/W)  
Placement Within Slot for AGC_GAIN2  
Data  
Slot Used for Limiter Linking AGC_GAIN2  
0: AGC_GAIN data placed in Slot 1.  
1: AGC_GAIN data placed in Slot 2.  
10: AGC_GAIN data placed in Slot 3.  
...  
1101: AGC_GAIN data placed in Slot 14.  
1110: AGC_GAIN data placed in Slot 15.  
1111: AGC_GAIN data placed in Slot 16.  
0: AGC_GAIN2 data starts at Bit 0 within  
assigned slot.  
1: AGC_GAIN2 data starts at Bit 8 within  
assigned slot.  
10: AGC_GAIN2 data starts at Bit 16 within  
assigned slot.  
11: AGC_GAIN2 data starts at Bit 24 within  
assigned slot.  
100: AGC_GAIN2 data starts at Bit 32 within  
assigned slot.  
101: AGC_GAIN2 data starts at Bit 40 within  
assigned slot.  
110: AGC_GAIN2 data starts at Bit 48 within  
assigned slot.  
111: AGC_GAIN2 data starts at Bit 54 within  
assigned slot.  
Table 53. Bit Descriptions for AGC_PLACE2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:5]  
AGC_GAIN2_PLACE  
Placement Within Slot for AGC_GAIN2 Data  
0x0  
R/W  
0
1
AGC_GAIN2 data starts at Bit 0 within assigned slot.  
AGC_GAIN2 data starts at Bit 8 within assigned slot.  
10 AGC_GAIN2 data starts at Bit 16 within assigned slot.  
11 AGC_GAIN2 data starts at Bit 24 within assigned slot.  
100 AGC_GAIN2 data starts at Bit 32 within assigned slot.  
101 AGC_GAIN2 data starts at Bit 40 within assigned slot.  
110 AGC_GAIN2 data starts at Bit 48 within assigned slot.  
111 AGC_GAIN2 data starts at Bit 54 within assigned slot.  
Slot Used for Limiter Linking AGC_GAIN2  
[4:0]  
AGC_GAIN2_SLOT  
0x0  
R/W  
0
1
AGC_GAIN data placed in Slot 1.  
AGC_GAIN data placed in Slot 2.  
10 AGC_GAIN data placed in Slot 3.  
11 AGC_GAIN data placed in Slot 4.  
100 AGC_GAIN data placed in Slot 5.  
101 AGC_GAIN data placed in Slot 6.  
110 AGC_GAIN data placed in Slot 7.  
111 AGC_GAIN data placed in Slot 8.  
1000 AGC_GAIN data placed in Slot 9.  
1001 AGC_GAIN data placed in Slot 10.  
1010 AGC_GAIN data placed in Slot 11.  
1011 AGC_GAIN data placed in Slot 12.  
1100 AGC_GAIN data placed in Slot 13.  
1101 AGC_GAIN data placed in Slot 14.  
1110 AGC_GAIN data placed in Slot 15.  
1111 AGC_GAIN data placed in Slot 16.  
Rev. A | Page 56 of 60  
 
Data Sheet  
SSM3525  
AGC_GAIN3 INPUT DATA PLACEMENT REGISTER  
Address: 0x2C, Reset: 0x00, Name: AGC_PLACE3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] AGC_GAIN3_PLACE (R/W)  
[4:0] AGC_GAIN3_SLOT (R/W)  
Placement Within Slot for AGC_GAIN3  
Data  
Slot Used for Limiter Linking AGC_GAIN3  
0: AGC_GAIN data placed in Slot 1.  
1: AGC_GAIN data placed in Slot 2.  
10: AGC_GAIN data placed in Slot 3.  
...  
1101: AGC_GAIN data placed in Slot 14.  
1110: AGC_GAIN data placed in Slot 15.  
1111: AGC_GAIN data placed in Slot 16.  
0: AGC_GAIN3 data starts at Bit 0 within  
assigned Slot.  
1: AGC_GAIN3 data starts at Bit 8 within  
assigned Slot.  
10: AGC_GAIN3 data starts at Bit 16 within  
assigned Slot.  
11: AGC_GAIN3 data starts at Bit 24 within  
assigned Slot.  
100: AGC_GAIN3 data starts at Bit 32 within  
assigned Slot.  
101: AGC_GAIN3 data starts at Bit 40 within  
assigned Slot.  
110: AGC_GAIN3 data starts at Bit 48 within  
assigned Slot.  
111: AGC_GAIN3 data starts at Bit 54 within  
assigned Slot.  
Table 54. Bit Descriptions for AGC_PLACE3  
Bits  
[7:5]  
Bit Name  
AGC_GAIN3_PLACE  
Settings  
Description  
Placement within slot for AGC_GAIN3 data  
Reset  
0x0  
Access  
R/W  
0
1
AGC_GAIN3 data starts at Bit 0 within assigned slot.  
AGC_GAIN3 data starts at Bit 8 within assigned slot.  
10 AGC_GAIN3 data starts at Bit 16 within assigned slot.  
11 AGC_GAIN3 data starts at Bit 24 within assigned slot.  
100 AGC_GAIN3 data starts at Bit 32 within assigned slot.  
101 AGC_GAIN3 data starts at Bit 40 within assigned slot.  
110 AGC_GAIN3 data starts at Bit 48 within assigned slot.  
111 AGC_GAIN3 data starts at Bit 54 within assigned slot.  
Slot Used for Limiter Linking AGC_GAIN3  
[4:0]  
AGC_GAIN3_SLOT  
0x0  
R/W  
0
1
AGC_GAIN data placed in Slot 1.  
AGC_GAIN data placed in Slot 2.  
10 AGC_GAIN data placed in Slot 3.  
11 AGC_GAIN data placed in Slot 4.  
100 AGC_GAIN data placed in Slot 5.  
101 AGC_GAIN data placed in Slot 6.  
110 AGC_GAIN data placed in Slot 7.  
111 AGC_GAIN data placed in Slot 8.  
1000 AGC_GAIN data placed in Slot 9.  
1001 AGC_GAIN data placed in Slot 10.  
1010 AGC_GAIN data placed in Slot 11.  
1011 AGC_GAIN data placed in Slot 12.  
1100 AGC_GAIN data placed in Slot 13.  
1101 AGC_GAIN data placed in Slot 14.  
1110 AGC_GAIN data placed in Slot 15.  
1111 AGC_GAIN data placed in Slot 16.  
Rev. A | Page 57 of 60  
 
SSM3525  
Data Sheet  
AGC_GAIN4 INPUT DATA PLACEMENT REGISTER  
Address: 0x2D, Reset: 0x00, Name: AGC_PLACE4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] AGC_GAIN4_PLACE (R/W)  
[4:0] AGC_GAIN4_SLOT (R/W)  
Placement Within Slot for AGC_GAIN4  
Data  
Slot Used for Limiter Linking AGC_GAIN4  
0: AGC_GAIN data placed in Slot 1.  
1: AGC_GAIN data placed in Slot 2.  
10: AGC_GAIN data placed in Slot 3.  
...  
1101: AGC_GAIN data placed in Slot 14.  
1110: AGC_GAIN data placed in Slot 15.  
1111: AGC_GAIN data placed in Slot 16.  
0: AGC_GAIN4 data starts at Bit 0 within  
assigned slot.  
1: AGC_GAIN4 data starts at Bit 8 within  
assigned slot.  
10: AGC_GAIN4 data starts at Bit 16 within  
assigned slot.  
11: AGC_GAIN4 data starts at Bit 24 within  
assigned slot.  
100: AGC_GAIN4 data starts at Bit 32 within  
assigned slot.  
101: AGC_GAIN4 data starts at Bit 40  
within assigned slot.  
110: AGC_GAIN4 data starts at Bit 48 within  
assigned slot.  
111: AGC_GAIN4 data starts at Bit 54 within  
assigned slot.  
Table 55. Bit Descriptions for AGC_PLACE4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:5]  
AGC_GAIN4_PLACE  
Placement Within Slot for AGC_GAIN4 Data  
0x0  
R/W  
0
1
AGC_GAIN4 data starts at Bit 0 within assigned slot.  
AGC_GAIN4 data starts at Bit 8 within assigned slot.  
10 AGC_GAIN4 data starts at Bit 16 within assigned slot.  
11 AGC_GAIN4 data starts at Bit 24 within assigned slot.  
100 AGC_GAIN4 data starts at Bit 32 within assigned slot.  
101 AGC_GAIN4 data starts at Bit 40 within assigned slot.  
110 AGC_GAIN4 data starts at Bit 48 within assigned slot.  
111 AGC_GAIN4 data starts at Bit 54 within assigned slot.  
Slot Used for Limiter Linking AGC_GAIN4  
[4:0]  
AGC_GAIN4_SLOT  
0x0  
R/W  
0
1
AGC_GAIN data placed in Slot 1.  
AGC_GAIN data placed in Slot 2.  
10 AGC_GAIN data placed in Slot 3.  
11 AGC_GAIN data placed in Slot 4.  
100 AGC_GAIN data placed in Slot 5.  
101 AGC_GAIN data placed in Slot 6.  
110 AGC_GAIN data placed in Slot 7.  
111 AGC_GAIN data placed in Slot 8.  
1000 AGC_GAIN data placed in Slot 9.  
1001 AGC_GAIN data placed in Slot 10.  
1010 AGC_GAIN data placed in Slot 11.  
1011 AGC_GAIN data placed in Slot 12.  
1100 AGC_GAIN data placed in Slot 13.  
1101 AGC_GAIN data placed in Slot 14.  
1110 AGC_GAIN data placed in Slot 15.  
1111 AGC_GAIN data placed in Slot 16.  
Rev. A | Page 58 of 60  
 
Data Sheet  
SSM3525  
SOFTWARE RESET REGISTER  
Address: 0x2E, Reset: 0x00, Name: SOFT_RESET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] S_RST (W)  
Full Software Reset  
0: Normal operation.  
1: Reset all blocks and I2C registers.  
Table 56. Bit Descriptions for SOFT_RESET  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
S_RST  
Settings  
Description  
Reserved.  
Full Software Reset  
Normal operation.  
Reset all blocks and I2C registers.  
Reset  
0x0  
0x0  
Access  
R
W
0
1
Rev. A | Page 59 of 60  
 
SSM3525  
Data Sheet  
OUTLINE DIMENSIONS  
2.260  
2.220  
2.180  
0.37  
REF  
5
4
3
2
1
A
B
C
D
E
BALL A1  
IDENTIFIER  
2.380  
2.340  
2.300  
1.60  
REF  
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.31  
REF  
0.330  
0.560  
0.500  
0.440  
0.300  
0.270  
END VIEW  
COPLANARITY  
0.04  
SEATING  
PLANE  
0.300  
0.260  
0.220  
0.230  
0.200  
0.170  
Figure 85. 23-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-23-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
SSM3525BCBZRL  
EVAL-SSM3525Z  
−40°C to +85°C  
23-Ball Wafer Level Chip Scale Package [WLCSP]  
SSM3525 Evaluation Board  
CB-23-2  
1 Z = RoHs Compliant Part.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16190-0-5/18(A)  
Rev. A | Page 60 of 60  
 

相关型号:

SSM3525BCBZRL

30 W, Filterless, Class D, Output Sensing Audio Amplifier
ADI

SSM3582

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZ

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZR7

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZRL

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM35PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM360AF

Rectifier Diode,
SURGE

SSM36PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM3J01F

High Speed Switching Applications
TOSHIBA

SSM3J01F(TE85L,F)

SSM3J01F(TE85L,F)
TOSHIBA

SSM3J01T

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA

SSM3J02F

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA