SSM3582BCPZ [ADI]

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier;
SSM3582BCPZ
型号: SSM3582BCPZ
厂家: ADI    ADI
描述:

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier

文件: 总59页 (文件大小:751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2×, 31.76 W, Digital Input,  
Filterless Stereo Class-D Audio Amplifier  
SSM3582  
Data Sheet  
Supported sample rates from 8 kHz to 192 kHz; 24-bit  
FEATURES  
resolution  
Digital input stereo, high efficiency Class-D amplifier  
Operates from a single 4.5 V to 16 V supply  
State-of-the-art, proprietary, filterless Σ-Δ modulation  
106.5 dB signal-to-noise ratio  
0.004% total harmonic distortion plus noise (THD + N)  
at 5 W into 8 Ω  
Multiple PCM audio serial data formats  
TDM slave with support for up to 16 devices on a single bus  
I2S or left justified slave  
Adjustable full-scale output tailored for many PVDD sources  
2- and 3-cell Li-Ion batteries  
Digital volume control with selectable smooth ramp  
Automatic power-down function  
38.5 μV rms A weighted output noise  
Pop/clickless on/off sequence  
Supply monitoring automatic gain control (AGC) function  
reduces system brownout  
Standalone operational mode without I2C  
Temperature sensor with 1°C step readout via I2C  
Short-circuit, undervoltage, and thermal protection  
Thermal early warning  
2× 14.67 W output at 12 V supply to 4 Ω loads at <1% THD + N  
2× 14.4 W output at 16 V supply to 8 Ω loads at <1% THD + N  
Mono mode for increased maximum output power  
1× 49.69 W output at 16 V supply to 2 Ω loads at <1% THD + N  
Support for low impedance loads  
As low as 3 Ω/5 ꢀH in stereo mode  
As low as 2 Ω/5 ꢀH in mono mode  
High power efficiency  
93.8% efficiency into an 8 Ω load  
Power-on reset  
PVDD sensing ADC  
40-lead, 6 mm × 6 mm LFCSP with thermal pad  
90.6% efficiency into a 4 Ω load  
APPLICATIONS  
12.34 mA quiescent current with single 12 V PVDD supply  
Single supply operation with internal LDOs or option to use  
an external 5 V and 1.8 V supply for lowest power  
consumption  
I2C control and hardware modes with up to 16 pin-selectable  
slots/addresses  
Mobile computing  
All in one computers  
Portable electronics  
Wireless speakers  
Televisions  
FUNCTIONAL BLOCK DIAGRAM  
DVDD  
DVDD_EN  
AVDD AVDD_EN  
PVDD  
SDA  
SCL  
ADDR0  
ADDR1  
DVDD  
1.8V LDO  
AVDD  
2
PVDD  
ADC  
TEMPERATURE  
SENSOR  
I C  
CONTROL  
5V LDO  
OUTL+  
THREE-LEVEL  
BSTL+  
BSTL–  
FULL BRIDGE  
Σ-∆  
DAC  
DAC  
POWER STAGE  
MODULATOR  
OUTL–  
VOLUME  
BLCK  
FSYNC  
SDATA  
2
I S  
TDM  
INTERFACE  
BATTERY  
AGC  
OUTR+  
THREE-LEVEL  
Σ-∆  
MODULATOR  
BSTR+  
BSTR–  
FULL BRIDGE  
POWER STAGE  
OUTR–  
SSM3582  
AGND  
PGND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
SSM3582  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mono Mode................................................................................. 31  
Analog and Digital Gain ........................................................... 31  
Pop and Click Suppression........................................................ 31  
Temperature Sensor ................................................................... 31  
Faults and Limiter Status Reporting ........................................ 32  
VBAT (PVDD) Sensing................................................................ 32  
Limiter and Battery Tracking Threshold Control.................. 32  
High Frequency Clipper............................................................ 35  
EMI Noise.................................................................................... 35  
Output Modulation Description .............................................. 35  
Bootstrap Capacitors.................................................................. 36  
Power Supply Decoupling ......................................................... 36  
Output EMI Filtering................................................................. 36  
PCB Placement ........................................................................... 36  
Layout .......................................................................................... 37  
Register Summary .......................................................................... 38  
Register Details ............................................................................... 39  
Typical Application Circuit........................................................... 57  
Outline Dimensions....................................................................... 59  
Ordering Guide .......................................................................... 59  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
Digital Input/Output Specifications........................................... 8  
Digital Timing Specifications ..................................................... 8  
Digital Input Timing Specifications........................................... 8  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
Theory of Operation ...................................................................... 25  
Overview...................................................................................... 25  
Power Supplies ............................................................................ 25  
Power-Up Sequence ................................................................... 26  
Power-Down Operation ............................................................ 26  
Clocking....................................................................................... 26  
Digital Audio Serial Interface ................................................... 26  
Standalone Operation................................................................ 30  
REVISION HISTORY  
4/16—Revision 0: Initial Version  
Rev. 0| Page 2 of 59  
 
Data Sheet  
SSM3582  
GENERAL DESCRIPTION  
The SSM3582 is a fully integrated, high efficiency, digital input  
stereo Class-D audio amplifier. It can operate from a single supply,  
and requires only a few external components, significantly  
reducing the circuit bill of materials.  
The pulse code modulation (PCM) audio serial port supports  
most common protocols, such as I2S, left justified, and time  
division multiplexing (TDM), and can address up to 16 devices  
on a single interface, for up to 32 audio playback channels.  
A proprietary, spread spectrum Σ-Δ modulation scheme  
enables direct connection to the speaker, and ensures state-of-  
the-art analog performance while lowering radiated emissions  
compared to other Class-D architectures. An optional ultralow  
electromagnetic interference (EMI) mode significantly reduces  
radiated emissions above 100 MHz, enabling longer speaker  
cable lengths. Audio is transmitted digitally to the amplifier,  
minimizing the possibility of signal corruption in digital  
environments. The amplifier provides outstanding analog  
performance, with an over 106 dB signal-to-noise ratio and a  
vanishingly low 0.004% THD + N.  
IC operation is controlled through a dedicated I2C interface.  
The two ADDRx pins (2×, 5-level) define up to 16 individual  
addresses in I2C and standalone modes, and automatically set  
the default TDM slots attribution.  
A micropower shutdown mode is triggered by removing the  
digital audio interface clock, with a typical current of <1 ꢀA.  
A software power-down mode is also available.  
An automatic power-down feature shuts down the amplifier  
and the digital-to-analog converter (DAC) when no signal is  
present at the input, minimizing power consumption during  
digital silence. The device restarts when nonzero data is present at  
the input. Mute and unmute transitions are pop/click free.  
The SSM3582 operates from a single 4.5 V to 16 V supply, and  
is capable of delivering 2 × 15 W rms continuously into 8 Ω and  
4 Ω loads at <1% total harmonic distortion (THD). The  
efficient modulation scheme maintains excellent power  
efficiency over a wide range of impedances: 93% into an 8 Ω  
load and 90% into a 4 Ω load. Optimization of the output pulse  
maintains performance at impedances as low as 3 Ω/5 μH,  
enabling its use with extended bandwidth tweeters.  
The SSM3582 is specified over the commercial temperature range  
of −40C to +85C. The device has built-in thermal shutdown and  
output short-circuit protection, as well as an early thermal warning  
with programmable gain limiting to maintain operation.  
The SSM3582 is available in a 40-lead, 6 mm × 6 mm lead  
frame chip scale package (LFCSP), with a thermal pad to  
improve heat dissipation.  
Rev. 0| Page 3 of 59  
 
SSM3582  
Data Sheet  
SPECIFICATIONS  
PVDD = 12 V, AVDD = 5 V (external), DVDD = 1.8 V (external), RL = 8 ꢁ + 33 μH, BCLK = 3.072 MHz, FSYNC = 48 kHz, TA = −40°C to  
+85°C, unless otherwise noted. The measurements are taken with a 20 kHz AES17 low-pass filter. The other load impedances used are  
4 ꢁ + 15 μH and 3 ꢁ + 10 μH. Measurements are taken with a 20 kHz AES17 low-pass filter, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power Per Channel  
Stereo Mode  
PO  
f = 1 kHz, both channels driven  
RL = 8 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
14.4  
8.1  
2.76  
1.41  
18  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
RL = 8 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 8 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 8 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 8 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 8 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 8 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 8 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 4 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 4 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 4 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 4 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 4 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 4 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 4 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 4 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
f = 1 kHz  
10  
3.43  
1.75  
25.6  
14.67  
5.06  
2.6  
31.76  
18.31  
6.3  
3.21  
Mono Mode  
RL = 3 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 3 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 3 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 3 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 3 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 3 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 3 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 3 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 2 Ω, THD + N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 2 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 2 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 2 Ω, THD +N < 1%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
RL = 2 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 16 V  
RL = 2 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 2 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 2 Ω, THD + N = 10%, f = 1 kHz, 20 kHz BW, PVDD = 5 V  
Speaker inductance  
36.11  
20.46  
7
3.58  
44.96  
25.49  
8.7  
4.43  
49.69  
28.55  
9.85  
5
62.4  
35.5  
12.22  
6.22  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
μH  
Minimal Load Inductance  
Efficiency  
5
η
Stereo Mode  
Both channels driven  
PO = 10 W, RL = 8 Ω, PVDD = 12 V  
PO = 10 W, RL = 8 Ω, PVDD = 12 V (low EMI mode)  
PO = 18 W, RL = 4 Ω, PVDD = 12 V  
94  
%
%
%
%
93.8  
90.6  
89.5  
PO = 15 W, RL = 4 Ω, PVDD = 12 V (low EMI mode)  
Mono Mode  
PO = 25 W, RL = 3 Ω, PVDD = 12 V  
PO = 25 W, RL = 3 Ω, PVDD = 12 V (low EMI mode)  
PO = 35 W, RL = 2 Ω, PVDD = 12 V  
PO = 35 W, RL = 2 Ω, PVDD = 12 V (low EMI mode)  
Rev. 0| Page 4 of 59  
92.3  
92.1  
89.9  
89.7  
%
%
%
%
 
Data Sheet  
SSM3582  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Total Harmonic Distortion +  
Noise  
THD + N PO = 5 W into 8 Ω, f = 1 kHz, PVDD = 12 V  
0.004  
%
Output Stage On Resistance RON  
100  
6
mΩ  
A peak  
Overcurrent Protection  
Trip Point  
IOC  
Average Switching  
Frequency  
Differential Output Offset  
Voltage  
Crosstalk between Left and  
Right  
fSW  
300  
1
kHz  
mV  
dB  
VOOS  
AV = 19 dB  
Measured at 1 kHz with regards to full-scale output  
100  
POWER SUPPLIES  
Supply Voltage Range  
PVDD  
AVDD  
DVDD  
PSRR  
4.5  
4.5  
1.62  
16  
5.5  
1.98  
V
V
V
5.0  
1.8  
Power Supply Rejection  
Ratio  
AC  
PSRRAC  
AV  
VRIPPLE =100 mV rms at 1 kHz  
VRIPPLE =1 V rms at 1 kHz  
Measured with 0 dBFS input at 1 kHz  
PVDD ≥ 6.3 V  
PVDD ≥ 9 V  
PVDD ≥ 12.6 V  
86  
88  
dB  
dB  
ANALOG GAIN  
Gain = 00  
Gain = 01  
Gain = 10  
Gain = 11  
6.2  
V peak  
V peak  
V peak  
V peak  
8.75  
12.5  
15.5  
PVDD = 16 V  
SHUTDOWN CONTROL1  
Turn On Time, Volume  
Ramp Disabled  
tWU  
Time from SPWDN = 0 to output switching, DAC_HV = 1 or  
DAC_MUTE_x = 1, tWU = 4 FSYNC cycles to 7 FSYNC cycles +  
7.68 ms  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
8.01  
7.84  
7.76  
7.72  
7.70  
8.27  
7.98  
7.83  
7.76  
7.72  
ms  
ms  
ms  
ms  
ms  
Turn On Time, Volume  
Ramp Enabled  
tWUR  
Time from SPWDN = 0 to full volume output switching,  
DAC_HV = 0 and DAC_MUTE_x = 0, VOL_x = 0x40  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 7.92 ms  
tWUR = tWU + 0.99 ms  
23.84  
23.67  
23.59  
15.64  
8.69  
24.10 ms  
23.81 ms  
23.66 ms  
15.68 ms  
8.71  
ms  
μs  
Turn Off Time, Volume  
Ramp Disabled  
tSD  
Time from SPWDN = 1 to full power-down, DAC_HV = 1 or  
DAC_MUTE_x = 1  
100  
Turn Off Time, Volume  
Ramp Enabled  
tSDR  
Time from SPWDN = 1 to full power-down, DAC_HV = 0 and  
DAC_MUTE_x = 0, VOL_x = 0x40  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
Output Impedance  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 7.92 ms  
tSDR = tSD + 0.99 ms  
15.932  
15.932  
15.932  
8.016  
1.09  
ms  
ms  
ms  
ms  
ms  
kΩ  
ZOUT  
100  
Rev. 0| Page 5 of 59  
SSM3582  
Data Sheet  
Parameter  
NOISE PERFORMANCE2  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Stereo mode  
Output Voltage Noise  
en  
f = 20 Hz to 20 kHz, A weighted, PVDD = 12 V, 8 Ω  
37.8  
38.5  
36.8  
36.3  
106.5  
108.9  
106.3  
108.9  
ꢀV rms  
ꢀV rms  
ꢀV rms  
ꢀV rms  
dB  
dB  
dB  
dB  
f = 20 Hz to 20 kHz, A weighted, PVDD = 16 V, 8 Ω  
f = 20 Hz to 20 kHz, A weighted, PVDD = 12 V, 4 Ω  
f = 20 Hz to 20 kHz, A weighted, PVDD = 16 V, 4 Ω  
PO = 8.1 W, RL = 8 Ω, AV = 19 dB, PVDD = 12 V, A weighted  
PO = 14.4 W, RL = 8 Ω, AV = 21 dB, PVDD = 16 V, A weighted  
PO = 14.67 W, RL = 4 Ω, AV = 19 dB, PVDD = 12 V, A weighted  
PO = 25.58 W, RL = 4 Ω, AV = 21 dB, PVDD = 16 V, A weighted  
Signal-to-Noise Ratio  
SNR  
PVDD ADC PERFORMANCE  
PVDD Sense Full-Scale  
Range  
PVDD Sense Absolute  
Accuracy  
PVDD with full-scale ADC output  
PVDD = 15 V  
3.8  
−8  
−6  
16.2  
+8  
V
LSB  
PVDD = 5 V  
Unsigned 8-bit output with 3.8 V offset  
+6  
LSB  
Bits  
Resolution  
Temperature Sense ADC  
Temperature Sense Range  
Temperature Sense  
Accuracy  
8
5
−60  
+160 °C  
°C  
DIE TEMPERATURE  
Overtemperature Warning  
Overtemperature Protection  
UNDERVOLTAGE FAULT  
AVDD  
117  
145  
°C  
°C  
3.6  
3.6  
V
V
PVDD  
1 Guaranteed by design.  
2 Noise performance is based on the bench data for TA = −40°C to +85°C.  
Software master power-down indicates that the clocks are turned off. Automatic power-down indicates that there is no dither or zero  
input signal with clocks on; the device enters soft power-down after 2048 cycles of zero input values. Quiescent indicates triangular dither  
with zero input signal. All specifications are typical, with a 48 kHz sample rate, in stereo mode, unless otherwise noted.  
Table 2. Power Supply Current Consumption, No Load1  
Edge Rate  
Control  
Mode  
IPVDD  
IDVDD  
IAVDD  
Internal  
Regulator Test Conditions  
PVDD = 5 V PVDD = 12 V PVDD = 16 V PVDD = 1.8 V PVDD = 5 V Unit  
Normal  
Disabled  
Enabled  
Disabled  
Enabled  
Software master power-down 0.065  
0.065  
0.065  
4.94  
0.065  
0.065  
6.25  
2.68  
43.72  
0.945  
N/A  
N/A  
N/A  
7.542  
7.542  
6.335  
N/A  
N/A  
N/A  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
Automatic power-down  
Quiescent  
0.065  
2.54  
Software master power-down 0.065  
0.065  
286  
12.38  
0.065  
0.065  
5.01  
0.065  
329  
14.05  
0.065  
0.065  
6.31  
Automatic power-down  
Quiescent  
209  
9.78  
Low EMI  
Software master power-down 0.065  
2.68  
43.72  
0.945  
N/A  
N/A  
N/A  
7.542  
7.542  
6.171  
N/A  
N/A  
N/A  
Automatic power-down  
Quiescent  
0.065  
2.56  
Software master power-down 0.065  
0.065  
286  
12.09  
0.065  
329  
13.74  
Automatic power-down  
Quiescent  
209  
9.69  
1 N/A means not applicable.  
Rev. 0| Page 6 of 59  
Data Sheet  
SSM3582  
Table 3. Power Supply Current Consumption, 4 Ω + 15 μH1  
Edge Rate  
Control  
Mode  
IPVDD  
IDVDD  
IAVDD  
Internal  
Regulator Test Conditions  
PVDD = 5 V PVDD = 12 V PVDD = 16 V PVDD = 1.8 V PVDD = 5 V Unit  
Normal  
Disabled  
Enabled  
Disabled  
Enabled  
Software master power-down 0.065  
0.065  
0.065  
4.93  
0.065  
0.065  
6.25  
2.68  
43.72  
0.945  
N/A  
N/A  
N/A  
7.542  
7.542  
6.477  
N/A  
N/A  
N/A  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
Automatic power-down  
Quiescent  
0.065  
2.6  
Software master power-down 0.065  
0.065  
286  
12.34  
0.065  
0.065  
4.62  
0.065  
329  
13.58  
0.065  
0.065  
5.6  
Automatic power-down  
Quiescent  
209  
9.83  
Low EMI  
Software master power-down 0.065  
2.68  
43.72  
0.945  
N/A  
N/A  
N/A  
7.542  
7.542  
6.182  
N/A  
N/A  
N/A  
Automatic power-down  
Quiescent  
0.065  
2.51  
Software master power-down 0.065  
0.065  
286  
11.86  
0.065  
329  
12.87  
Automatic power-down  
Quiescent  
209  
9.64  
1 N/A means not applicable.  
Table 4. Power Supply Current Consumption, 8 Ω + 33 μH1  
Edge Rate  
Control  
IPVDD  
IDVDD  
IAVDD  
Internal  
Mode  
Regulator Test Conditions  
PVDD = 5 V PVDD = 12 V PVDD = 16 V PVDD = 1.8 V PVDD = 5 V Unit  
Normal  
Disabled  
Enabled  
Disabled  
Enabled  
Software master power-down 0.065  
0.065  
0.065  
5.02  
0.065  
0.065  
6.31  
2.68  
43.72  
0.942  
N/A  
N/A  
N/A  
7.542  
7.542  
6.432  
N/A  
N/A  
N/A  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
ꢀA  
ꢀA  
mA  
Automatic power-down  
Quiescent  
0.065  
2.59  
Software master power-down 0.065  
0.065  
286  
12.39  
0.065  
0.065  
4.86  
0.065  
329  
13.73  
0.065  
0.065  
6.02  
Automatic power-down  
Quiescent  
209  
9.82  
Low EMI  
Software master power-down 0.065  
2.68  
43.72  
0.942  
N/A  
N/A  
N/A  
7.542  
7.542  
6.232  
N/A  
N/A  
N/A  
Automatic power-down  
Quiescent  
0.065  
2.57  
Software master power-down 0.065  
0.065  
286  
12.02  
0.065  
329  
13.18  
Automatic power-down  
Quiescent  
209  
9.65  
1 N/A means not applicable.  
Table 5. Power-Down Current  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER-DOWN CURRENT  
External AVDD = 5 V and DVDD = 1.8 V, software  
master power-down, no BCLK/FSYNC  
IPVDD  
PVDD = 5 V  
PVDD = 12 V  
PVDD = 16 V  
AVDD = 5 V external  
DVDD = 1.8 V external  
65  
65  
65  
7.542  
2.7  
nA  
nA  
nA  
μA  
μA  
IAVDD  
IDVDD  
Rev. 0| Page 7 of 59  
SSM3582  
Data Sheet  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
Table 6.  
Parameter  
INPUT VOLTAGE1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BCLK, FSYNC, SDATA, SCL, and SDA Pins  
High (VIH)  
Low (VIL)  
0.7 × DVDD  
−0.3  
5.5  
+0.3 × DVDD  
V
V
INPUT LEAKAGE  
BCLK, FSYNC, SDATA, ADDRx, SCL, and SDA Pins  
High (IIH)  
Low (IIL)  
1
1
5
ꢀA  
ꢀA  
pF  
INPUT CAPACITANCE  
OUTPUT DRIVE STRENGTH1  
SDA  
3
8
5
mA  
kHz  
SAMPLE RATE (FSYNC FREQUENCY)  
192  
1 The pull-up resistor for SCL and SDA must be scaled according to the external pull-up voltage in the system. The typical value for a pull-up resistor for 1.8 V is 2.2 kΩ.  
DIGITAL TIMING SPECIFICATIONS  
All timing specifications are given for the default setting (I2S mode) of the serial input port.  
Table 7.  
Limit  
Parameter  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
tDH  
tSCR  
tSCF  
tSDR  
tSDF  
Min  
Max  
Unit  
Description  
400  
kHz  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ns  
ꢀs  
ns  
ns  
ns  
ns  
ꢀs  
SCL frequency  
SCL high  
SCL low  
Setup time; relevant for repeated start condition  
Hold time; after this period, the first clock is generated  
Data setup time  
Data hold time  
SCL rise time  
SCL fall time  
SDA rise time  
SDA fall time  
Bus free time (time between stop and start)  
0.26  
0.5  
0.26  
0.26  
50  
0.14  
120  
120  
120  
120  
tBFT  
0.5  
DIGITAL INPUT TIMING SPECIFICATIONS  
Table 8.  
Limit  
Parameter  
TMIN  
TMAX  
Unit  
Description  
SERIAL PORT  
tBIL  
tBIH  
tSIS  
tSIH  
tLIS  
tLIH  
tBP  
10  
10  
4
4
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width  
BCLK high pulse width  
SDATA setup; time to BCLK rising  
SDATA hold; time from BCLK rising  
FSYNC setup time to BCLK rising  
FSYNC hold time to BCLK rising  
Minimum BCLK period  
5
20  
Rev. 0| Page 8 of 59  
 
 
 
Data Sheet  
SSM3582  
Digital Timing Diagrams  
tSDR  
tDS  
tSCH  
tSCH  
SDA  
SCL  
tSDF  
tSCS  
tDH  
tSCR  
tSCLH  
tSCLL  
tSCF  
tBFT  
START  
CONDITION  
STOP  
CONDITION  
Figure 2. I2C Port Timing  
tBIH  
tBP  
BCLK  
tBIL  
tLIS  
tLIH  
FSYNC  
tSIS  
SDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tSIH  
tSIS  
SDATA  
2
I C-JUSTIFIED  
MSB  
MODE  
tSIH  
tSIS  
tSIS  
SDATA  
RIGHT-JUSTIFIED  
MODE  
MSB  
LSB  
tSIH  
tSIH  
Figure 3. Serial Input Port Timing  
PVDD  
tWU  
PVDD/2  
OUTPUT  
0V  
2
I C POWER-UP COMMAND  
Figure 4. Turn On Time, Hard Volume  
Rev. 0| Page 9 of 59  
SSM3582  
Data Sheet  
tSD  
PVDD  
OUTPUT  
0V  
2
I C POWER-DOWN COMMAND  
Figure 5. Turn Off Time, Hard Volume  
Rev. 0| Page 10 of 59  
Data Sheet  
SSM3582  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA (junction to air) is specified for the worst case conditions,  
that is, a device soldered in a circuit board for surface-mount  
packages. θJA and θJB are determined according to JESD51-9 on  
a 4-layer (2s2p) printed circuit board (PCB) with natural  
convection cooling.  
Table 9.  
Parameter  
Rating  
PVDD Supply Voltage  
DVDD Supply Voltage  
AVDD Supply Voltage  
PGND and AGND Differential  
Digital Input Pins  
−0.3 V to +17 V  
−0.3 V to +1.98 V  
−0.3 V to +5.5 V  
0.3 V  
Table 10. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
FSYNC, BCLK, SDATA, SCL, SDA  
Analog Input Pins  
−0.3 V to +5.5 V  
40-Lead, 6 mm × 6 mm LFCSP  
27  
1.1  
°C/W  
ADDRx  
AVDD_EN  
DVDD_EN  
−0.3 V to +1.98 V  
−0.3 V to +17 V  
−0.3 V to +5.5 V  
ESD CAUTION  
ESD Susceptibility  
Human Body Model  
Charged Device Model  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
2 kV  
1 kV  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0| Page 11 of 59  
 
 
 
SSM3582  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PGND  
30  
PGND  
PGND  
1
2
3
4
5
6
7
8
9
29 PGND  
28 DVDD  
27 ADDR1  
26 ADDR0  
25 AGND  
24 AVDD  
AVDD_EN  
SCL  
SSM3582  
TOP VIEW  
(Not to Scale)  
SDA  
FSYNC  
SDATA  
BCLK  
23 DVDD_EN  
22 PGND  
21 PGND  
PGND  
PGND 10  
NOTES  
1. USE MULTIPLE VIAS TO CONNECT THE EXPOSED PAD  
TO THE GROUND PLANE ON THE PCB.  
Figure 6. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin No. Mnemonic Type1 Description  
1
2
3
PGND  
PGND  
AVDD_EN  
PWR  
PWR  
AIN  
Left Channel Power Stage Ground.  
Left Channel Power Stage Ground.  
5 V AVDD Regulator Enable. Connect this pin to PVDD to enable the AVDD regulator or connect to AGND  
to disable the regulator. When this pin is connected to PVDD, the regulator is enabled. When this pin is  
connected to AGND, the regulator is disabled.  
I2C Clock Input.  
I2C Data.  
I2S/TDM Frame Sync (FSYNC) Input.  
I2S/TDM Serial Data (SDATA) Input.  
I2S/TDM Bit Clock (BCLK) Input.  
Right Channel Power Stage Ground.  
Right Channel Power Stage Ground.  
Bootstrap Input, Right Channel Noninverting.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
SCL  
SDA  
FSYNC  
SDATA  
BCLK  
DIN  
DIO  
DIN  
DIN  
DIN  
PWR  
PWR  
AIN  
PGND  
PGND  
BSTR+  
OUTR+  
OUTR+  
PVDD  
PVDD  
PVDD  
PVDD  
OUTR−  
OUTR−  
BSTR−  
PGND  
PGND  
DVDD_EN  
AOUT Right Channel Noninverting Output.  
AOUT Right Channel Noninverting Output.  
PWR  
PWR  
PWR  
PWR  
AOUT Right Channel Inverting Output.  
AOUT Right Channel Inverting Output.  
AIN  
Right Channel Power Stage Supply.  
Right Channel Power Stage Supply.  
Right Channel Power Stage Supply.  
Right Channel Power Stage Supply.  
Bootstrap Input, Right Channel Inverting.  
Right Channel Power Stage Ground.  
Right Channel Power Stage Ground.  
1.8 V DVDD Regulator Enable. Connect this pin to AVDD to enable the DVDD regulator or connect to  
AGND to disable the regulator. When this pin is connected to AVDD, the regulator is enabled. When this  
pin is connected to AGND, the regulator is disabled.  
PWR  
PWR  
AIN  
24  
25  
26  
27  
28  
29  
30  
31  
AVDD  
AGND  
ADDR0  
ADDR1  
DVDD  
PGND  
PGND  
BSTL−  
PWR  
PWR  
AIN  
Analog Supply 5 V Regulator Output/External 5 V Input.  
Analog Ground.  
Address Select 0 (See Table 14).  
AIN  
Address Select 1 (See Table 14).  
PWR  
PWR  
PWR  
AIN  
Digital Supply 1.8 V Regulator Output/External 1.8 V Input.  
Left Channel Power Stage Ground.  
Left Channel Power Stage Ground.  
Bootstrap Input, Left Channel Inverting.  
Rev. 0| Page 12 of 59  
 
Data Sheet  
SSM3582  
Pin No. Mnemonic Type1 Description  
32  
33  
34  
35  
36  
37  
38  
39  
40  
OUTL−  
OUTL−  
PVDD  
PVDD  
PVDD  
PVDD  
OUTL+  
OUTL+  
BSTL+  
EPAD  
AOUT Left Channel Inverting Output.  
AOUT Left Channel Inverting Output.  
PWR  
PWR  
PWR  
PWR  
Left Channel Power Stage Supply.  
Left Channel Power Stage Supply.  
Left Channel Power Stage Supply.  
Left Channel Power Stage Supply.  
AOUT Left Channel Noninverting Output.  
AOUT Left Channel Noninverting Output.  
AIN  
Bootstrap Input, Left Channel Noninverting.  
Exposed Pad. Use multiple vias to connect the exposed pad to the ground plane on the PCB.  
1 PWR is power supply or ground pin, AIN is analog input, DIN is digital input, DIO is digital input/output, and AOUT is analog output.  
Rev. 0| Page 13 of 59  
 
SSM3582  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
10  
20  
10  
0
60dBFS INPUT  
60dBFS INPUT  
ANALOG GAIN = 6.3V peak  
ANALOG GAIN = 16V peak  
0
R
= 4(LOW EMI)  
R = 4(LOW EMI)  
L
L
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Amplitude vs. Frequency, 60 dBFS Input, Analog Gain = 6.3 V peak  
Figure 10. Amplitude vs. Frequency, 60 dBFS Input, Analog Gain = 16 V peak  
20  
20  
10  
0
–10  
10  
0
–10  
60dBFS INPUT  
NO SIGNAL  
ANALOG GAIN = 8.9V peak  
ANALOG GAIN = 6.3V peak  
R
= 4(LOW EMI)  
R = 4(LOW EMI)  
L
L
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. Amplitude vs. Frequency, 60 dBFS Input, Analog Gain = 8.9 V peak  
Figure 11. Amplitude vs. Frequency, No Signal, Analog Gain = 6.3 V peak  
20  
20  
10  
0
–10  
10  
0
–10  
60dBFS INPUT  
NO SIGNAL  
ANALOG GAIN = 12.6V peak  
ANALOG GAIN = 8.9V peak  
R
= 4(LOW EMI)  
R = 4(LOW EMI)  
L
L
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. Amplitude vs. Frequency, 60 dBFS Input, Analog Gain = 12.6 V peak  
Figure 12. Amplitude vs. Frequency, No Signal, Analog Gain = 8.9 V peak  
Rev. 0| Page 14 of 59  
 
Data Sheet  
SSM3582  
20  
10  
0
–10  
1.000  
0.500  
NO SIGNAL  
R
= 4  
L
ANALOG GAIN = 12.6V peak  
PV = 12V  
DD  
R
= 4(LOW EMI)  
L
–20  
–30  
–40  
–50  
–60  
–70  
0.200  
0.100  
0.050  
–80  
–90  
0.020  
0.010  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
100mW  
1W  
5W  
0.005  
0.002  
0.001  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. THD + N vs. Frequency, RL = 4 Ω, PVDD = 12 V  
Figure 13. Amplitude vs. Frequency, No Signal, Analog Gain = 12.6 V peak  
1.000  
0.500  
20  
10  
0
–10  
NO SIGNAL  
R
= 4Ω  
L
ANALOG GAIN = 16V peak  
PV = 16V  
DD  
R
= 4(LOW EMI)  
L
–20  
–30  
–40  
–50  
–60  
–70  
0.200  
0.100  
0.050  
–80  
–90  
0.020  
0.010  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
100mW  
1W  
0.005  
10W  
0.002  
0.001  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. THD + N vs. Frequency, RL = 4 Ω, PVDD = 16 V  
Figure 14. Amplitude vs. Frequency, No Signal, Analog Gain = 16 V peak  
1.000  
0.500  
1.000  
R
= 8Ω  
R
= 4  
L
L
PV = 4.5V  
0.500  
PV = 4.5V peak  
DD  
DD  
0.200  
0.100  
0.050  
0.200  
0.100  
0.050  
0.020  
0.010  
0.020  
0.010  
100mW  
100mW  
500mW  
0.005  
0.005  
1W  
0.002  
0.001  
0.002  
0.001  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. THD + N vs. Frequency, RL = 8 Ω, PVDD = 4.5 V  
Figure 15. THD + N vs. Frequency, RL = 4 Ω, PVDD = 4.5 V peak  
Rev. 0| Page 15 of 59  
SSM3582  
Data Sheet  
1.000  
10  
5
R
= 8Ω  
R = 4  
L
ANALOG GAIN = 8.9V peak  
L
0.500  
PV = 12V  
DD  
2
0.200  
0.100  
0.050  
1.000  
0.500  
4.5V  
12.0V  
0.200  
0.100  
16.0V (3dB GAIN ADDED)  
0.020  
0.010  
0.050  
100mW  
0.020  
0.010  
0.005  
0.005  
1W  
5W  
0.002  
0.001  
0.002  
0.001  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
POWER (W)  
Figure 19. THD + N vs. Frequency, RL = 8 Ω, PVDD = 12 V  
Figure 22. THD + N vs. Power, RL = 4 Ω, Analog Gain = 8.9 V peak  
1.000  
0.500  
10  
R
= 8Ω  
R = 4  
L
ANALOG GAIN = 12.6V peak  
L
5
2
PV = 16V  
DD  
1.000  
0.500  
0.200  
0.100  
4.5V  
12.0V  
16.0V  
0.200  
0.100  
0.050  
0.020  
0.010  
0.050  
100mW  
1W  
0.020  
0.010  
0.005  
0.005  
0.002  
0.001  
5W  
0.002  
0.001  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
POWER (W)  
Figure 23. THD + N vs. Power, RL = 4 Ω, Analog Gain = 12.6 V peak  
Figure 20. THD + N vs. Frequency, RL = 8 Ω, PVDD = 16 V  
10  
10  
5
R
= 4Ω  
R
= 4Ω  
L
L
5
2
ANALOG GAIN = 16V peak  
ANALOG GAIN = 6.3V peak  
2
1.000  
0.500  
1.000  
0.500  
4.5V  
4.5V  
12.0V  
16.0V  
7.0V  
16.0V  
0.200  
0.100  
0.200  
0.100  
0.050  
0.050  
0.020  
0.010  
0.005  
0.020  
0.010  
0.005  
0.002  
0.001  
0.002  
0.001  
POWER (W)  
POWER (W)  
Figure 24. THD + N vs. Power, RL = 4 Ω, Analog Gain = 16 V peak  
Figure 21. THD + N vs. Power, RL = 4 Ω, Analog Gain = 6.3 V peak  
Rev. 0| Page 16 of 59  
Data Sheet  
SSM3582  
10  
10  
5
R
= 8Ω  
R = 8Ω  
L
ANALOG GAIN = 16V peak  
L
5
2
ANALOG GAIN = 6.3V peak  
2
1.000  
0.500  
1.000  
0.500  
4.5V  
4.5V  
7.0V  
16.0V  
12.0V  
16.0V  
0.200  
0.100  
0.200  
0.100  
0.050  
0.050  
0.020  
0.010  
0.005  
0.020  
0.010  
0.005  
0.002  
0.001  
0.002  
0.001  
POWER (W)  
POWER (W)  
Figure 25. THD + N vs. Power, RL = 8 Ω, Analog Gain = 6.3 V peak  
Figure 28. THD + N vs. Power, RL = 8 Ω, Analog Gain = 16 V peak  
10  
7
ANALOG GAIN = 6.3V peak  
L
R
= 8Ω  
L
P
P
= 10%  
= 1%  
OUT  
5
2
R
= 4  
ANALOG GAIN = 8.9V peak  
6
5
4
3
2
1
0
1.000  
0.500  
OUT  
4.5V  
12.0V  
16.0V  
0.200  
0.100  
0.050  
0.020  
0.010  
0.005  
0.002  
0.001  
5
6
7
8
9
10  
11  
12  
PV (V)  
DD  
POWER (W)  
Figure 29. Power vs. PVDD, RL = 4 Ω, Analog Gain = 6.3 V peak  
Figure 26. THD + N vs. Power, RL = 8 Ω, Analog Gain = 8.9 V peak  
14  
10  
ANALOG GAIN = 8.9V peak  
= 4Ω  
R
= 8Ω  
L
P
= 10%  
= 1%  
OUT  
5
2
R
L
ANALOG GAIN = 12.6V peak  
12  
10  
8
P
1.000  
0.500  
OUT  
4.5V  
12.0V  
16.0V  
0.200  
0.100  
0.050  
6
0.020  
0.010  
0.005  
4
2
0.002  
0.001  
0
7
8
9
10  
11  
12  
PV (V)  
DD  
POWER (W)  
Figure 27. THD + N vs. Power, RL = 8 Ω, Analog Gain = 12. 6 V peak  
Figure 30. Power vs. PVDD, RL = 4 Ω, Analog Gain = 8.9 V peak  
Rev. 0| Page 17 of 59  
SSM3582  
Data Sheet  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ANALOG GAIN = 12.6V peak  
= 4  
R
L
P
= 10%  
OUT  
25  
20  
15  
10  
5
NORMAL EMI  
LOW EMI  
P
= 1%  
OUT  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak  
R
= 4  
L
PV  
= 7V  
DD  
0
7
9
11  
PV (V)  
13  
15  
0
1
2
3
4
5
6
7
P
(W)  
DD  
OUT  
Figure 31. Power vs. PVDD, RL = 4 Ω, Analog Gain = 12.6 V peak  
Figure 34. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 4 Ω, PVDD = 7 V  
35  
100  
90  
ANALOG GAIN = 16V peak  
L
R
= 4Ω  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak  
P
= 10%  
OUT  
R
PV  
= 4Ω  
L
= 12V  
DD  
P
= 1%  
OUT  
0
0
2.5  
5.0  
7.5  
10.0  
(W)  
OUT  
12.5  
15.0  
17.5  
20.0  
7
9
11  
PV (V)  
13  
15  
P
DD  
Figure 32. Power vs. PVDD, RL = 4 Ω, Analog Gain = 16 V peak  
Figure 35. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 4 Ω, PVDD = 12 V  
100  
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
70  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak  
60  
50  
40  
30  
20  
10  
0
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak  
R
= 4Ω  
L
R
PV  
= 4Ω  
L
PV  
= 16V  
DD  
= 5V  
DD  
0
0.5  
1.0  
1.5  
P
2.0  
(W)  
2.5  
3.0  
3.5  
0
5
10  
15  
20  
(W)  
25  
30  
35  
P
OUT  
OUT  
Figure 33. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 4 Ω, PVDD = 5 V  
Figure 36. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 16 V peak,  
RL = 4 Ω, PVDD = 16 V  
Rev. 0| Page 18 of 59  
Data Sheet  
SSM3582  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak  
R
PV  
= 4Ω  
L
R
PV  
= 4Ω  
L
= 16V  
DD  
= 5V  
DD  
0
0.5  
1.0  
1.5  
P
2.0  
(W)  
2.5  
3.0  
3.5  
0
5
10  
15  
20  
(W)  
25  
30  
35  
P
OUT  
OUT  
Figure 37. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 4 Ω, PVDD = 5 V  
Figure 40. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 16 V peak,  
RL = 4 Ω, PVDD = 16 V  
100  
90  
0.010  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak  
R
= 4  
L
80  
70  
60  
50  
40  
30  
20  
10  
0
0.008  
0.006  
0.004  
0.002  
0
NORMAL EMI  
LOW EMI  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak  
R
PV  
= 4Ω  
L
NORMAL EMI  
= 7V  
DD  
LOW EMI  
0
1
2
3
4
5
6
7
5
7
9
11  
(V)  
13  
15  
P
(W)  
P
VDD  
OUT  
Figure 38. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 4 Ω, PVDD = 7 V  
Figure 41. IPVDD vs. PVDD, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 4 Ω  
100  
90  
0.010  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak  
R
= 4Ω  
L
80  
70  
60  
50  
40  
30  
20  
10  
0
0.008  
0.006  
0.004  
0.002  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12V peak  
R
PV  
= 4Ω  
L
= 12V  
DD  
0
5
10  
15  
20  
5
7
9
11  
13  
15  
P
(W)  
P
(V)  
OUT  
VDD  
Figure 39. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 12 V peak,  
RL = 4 Ω, PVDD = 12 V  
Figure 42. IPVDD vs. PVDD, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 4 Ω  
Rev. 0| Page 19 of 59  
SSM3582  
Data Sheet  
3.5  
20  
18  
16  
14  
12  
10  
8
ANALOG GAIN = 6.3V peak  
L
ANALOG GAIN = 16V peak  
L
P
P
= 10%  
= 1%  
OUT  
OUT  
R
= 8  
R
= 8  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
P
= 10%  
OUT  
P
= 1%  
OUT  
6
4
2
0
7
8
9
10  
11  
PV  
12  
(V)  
13  
14  
15  
16  
5
6
7
8
9
10  
11  
12  
PV (V)  
DD  
DD  
Figure 43. Power vs. PVDD, Analog Gain = 6.3 V peak, RL = 8 Ω  
Figure 46. Power vs. PVDD, Analog Gain = 16 V peak, RL = 8 Ω  
7
100  
ANALOG GAIN = 8.9V peak  
= 8Ω  
P
P
= 10%  
= 1%  
OUT  
OUT  
R
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak  
R
= 8Ω  
L
PV  
= 5V  
DD  
0
0.5  
1.0  
(W)  
1.5  
2.0  
7
8
9
10  
11  
12  
P
PV (V)  
OUT  
DD  
Figure 44. Power vs. PVDD, Analog Gain = 8.9 V peak, RL = 8 Ω  
Figure 47. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 8 Ω, PVDD = 5 V  
14  
100  
90  
ANALOG GAIN = 12.6V peak  
L
P
P
= 10%  
= 1%  
OUT  
OUT  
R
= 8Ω  
12  
10  
8
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak  
R
= 8Ω  
L
PV  
= 7V  
DD  
6
4
2
0
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
0.5  
1.0  
1.5  
2.0  
P (W)  
OUT  
2.5  
3.0  
3.5  
4.0  
PV  
(V)  
DD  
Figure 45. Power vs. PVDD, Analog Gain = 12.6 V peak, RL = 8 Ω  
Figure 48. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 8 Ω, PVDD = 7 V  
Rev. 0| Page 20 of 59  
Data Sheet  
SSM3582  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak  
R
= 8Ω  
R = 8Ω  
PV = 7V  
DD  
L
L
PV = 12V  
DD  
0
2
4
6
8
10  
12  
0
0.5  
1.0  
1.5  
2.0  
P (W)  
OUT  
2.5  
3.0  
3.5  
4.0  
P
(W)  
OUT  
Figure 49. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 8 Ω, PVDD = 12 V  
Figure 52. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 8 Ω, PVDD = 7 V  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak  
R
PV  
= 8Ω  
L
R
= 8Ω  
= 16V  
L
DD  
PV = 12V  
DD  
0
5
10  
15  
20  
0
2.5  
5.0  
7.5  
10.0  
12.5  
P
(W)  
P
(W)  
OUT  
OUT  
Figure 50. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 16 V peak,  
RL = 8 Ω, PVDD = 16 V  
Figure 53. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 8 Ω, PVDD = 12 V  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak  
FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak  
R
PV  
= 8Ω  
R = 8Ω  
PV = 16V  
DD  
L
L
= 5V  
DD  
0
0.25  
0.50  
0.75  
1.00  
(W)  
1.25  
1.50  
1.75  
2.00  
0
2.5  
5.0  
7.5  
10.0  
P (W)  
OUT  
12.5  
15.0  
17.5  
20.0  
P
OUT  
Figure 51. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 8 Ω, PVDD = 5 V  
Figure 54. Efficiency vs. POUT, with Ferrite Bead, Analog Gain = 16 V peak,  
RL = 8 Ω, PVDD = 16 V  
Rev. 0| Page 21 of 59  
SSM3582  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak (MONO)  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak (MONO)  
R
PV  
= 2Ω  
L
R
PV  
= 2Ω  
L
= 5V  
DD  
= 16V  
DD  
0
0
1
2
3
4
5
6
7
0
10  
20  
30  
40  
(W)  
50  
60  
70  
P
(W)  
P
OUT  
OUT  
Figure 55. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 2 Ω, PVDD = 5 V  
Figure 58. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 16 V peak,  
RL = 2 Ω, PVDD = 16 V  
100  
90  
100  
90  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
70  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 6.3V peak (MONO)  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak (MONO)  
60  
50  
40  
30  
20  
10  
0
R
PV  
= 3Ω  
L
R
PV  
= 2Ω  
L
= 5V  
DD  
= 7V  
DD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
P (W)  
OUT  
3.0  
3.5  
4.0  
4.5  
5.0  
0
2
4
6
8
10  
12  
14  
P
(W)  
OUT  
Figure 56. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 2 Ω, PVDD = 7 V  
Figure 59. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 6.3 V peak,  
RL = 3 Ω, PVDD = 5 V  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
NORMAL EMI  
LOW EMI  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak (MONO)  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 8.9V peak (MONO)  
R
PV  
= 2Ω  
R = 3Ω  
PV = 7V  
DD  
L
L
= 12.6V  
DD  
0
5
10  
15  
20  
25  
30  
35  
40  
0
1
2
3
4
5
6
7
8
9
10  
P
(W)  
P
(W)  
OUT  
OUT  
Figure 57. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 2 Ω, PVDD = 12.6 V  
Figure 60. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 8.9 V peak,  
RL = 3 Ω, PVDD = 7 V  
Rev. 0| Page 22 of 59  
Data Sheet  
SSM3582  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
ANALOG GAIN = 8.9V peak (MONO)  
= 2Ω  
R
L
NORMAL EMI  
LOW EMI  
P
P
= 10%  
= 1%  
OUT  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 12.6V peak (MONO)  
OUT  
R
PV  
= 3Ω  
L
= 12V  
DD  
0
0
5
10  
15  
20  
25  
30  
7
8
9
10  
11  
12  
P
(W)  
PV (V)  
DD  
OUT  
Figure 61. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 12.6 V peak,  
RL = 3 Ω, PVDD = 12 V  
Figure 64. Power vs. PVDD, Analog Gain = 8.9 V peak, RL = 2 Ω  
100  
90  
60  
ANALOG GAIN = 12.6V peak (MONO)  
L
R
= 2Ω  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
NORMAL EMI  
LOW EMI  
P
P
= 10%  
= 1%  
OUT  
NO FERRITE BEAD, 220pF CAPACITOR  
ANALOG GAIN = 16V peak (MONO)  
OUT  
R
PV  
= 3Ω  
L
= 16V  
DD  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
7
8
9
10  
11  
12  
13  
14  
15  
16  
P
(W)  
PV (V)  
OUT  
DD  
Figure 62. Efficiency vs. POUT, No Ferrite Bead, Analog Gain = 16 V peak,  
RL = 3 Ω, PVDD = 16 V  
Figure 65. Power vs. PVDD, Analog Gain = 12.6 V peak, RL = 2 Ω  
14  
70  
ANALOG GAIN = 8.9V peak (MONO)  
L
ANALOG GAIN = 16V peak MONO)  
L
R
= 4Ω  
R
= 2Ω  
12  
10  
8
60  
50  
40  
30  
20  
10  
0
P
P
= 10%  
= 1%  
OUT  
P
= 10%  
OUT  
OUT  
P
= 1%  
OUT  
6
4
2
0
7
8
9
10  
11  
12  
13  
14  
15  
16  
5
6
7
8
9
10  
11  
12  
PV (V)  
DD  
PV (V)  
DD  
Figure 63. Power vs. PVDD, Analog Gain = 8.9 V p-p, RL = 4 Ω  
Figure 66. Power vs. PVDD, Analog Gain = 16 V peak, RL = 2 Ω  
Rev. 0| Page 23 of 59  
SSM3582  
Data Sheet  
9
35  
30  
25  
20  
15  
10  
5
ANALOG GAIN = 6.3V peak (MONO)  
L
ANALOG GAIN = 12.6V peak (MONO)  
L
P
P
= 10%  
= 1%  
OUT  
R
= 4Ω  
R
= 3Ω  
8
7
6
5
4
3
2
1
0
OUT  
P
= 10%  
OUT  
P
= 1%  
OUT  
0
7
8
9
10  
11  
12  
13  
14  
15  
16  
5
6
7
8
9
10  
11  
12  
PV (V)  
DD  
PV (V)  
DD  
Figure 67. Power vs. PVDD, Analog Gain = 6.3 V peak, RL = 4 Ω  
Figure 69. Power vs. PVDD, Analog Gain = 12.6 V peak, RL = 3 Ω  
18  
50  
ANALOG GAIN = 8.9V peak (MONO)  
= 3Ω  
ANALOG GAIN = 16V peak (MONO)  
L
P
P
= 10%  
= 1%  
OUT  
OUT  
R
R
= 3Ω  
L
45  
40  
35  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
P
= 10%  
OUT  
P
= 1%  
OUT  
6
4
2
0
0
7
8
9
10  
11  
12  
7
8
9
10  
11  
12  
13  
14  
15  
16  
PV (V)  
DD  
PV (V)  
DD  
Figure 68. Power vs. PVDD, Analog Gain = 8.9 V peak RL = 3 Ω  
Figure 70. Power vs. PVDD, Analog Gain = 16 V peak, RL = 3 Ω  
Rev. 0| Page 24 of 59  
Data Sheet  
SSM3582  
THEORY OF OPERATION  
OVERVIEW  
POWER SUPPLIES  
PVDD  
The SSM3582 is a stereo, Class-D audio amplifier with a filterless  
modulation scheme that greatly reduces external component count,  
conserving board space and reducing system cost. The SSM3582  
does not require an output filter; it relies on the inherent induc-  
tance of the speaker coil and the natural filtering of the speaker  
and human ear to recover the audio component of the square  
wave output. Most Class-D amplifiers use some variation of pulse-  
width modulation (PWM) to generate the output switching  
pattern, whereas the SSM3582 uses Σ-Δ modulation, resulting  
in important benefits. Σ-Δ modulators do not produce a sharp  
peak with many harmonics in the AM broadcast band, as pulse-  
width modulators often do. Σ-Δ modulation reduces the amplitude  
of spectral components at high frequencies, reducing EMI emission  
that may otherwise radiate from speakers and long cable traces.  
Due to the inherent spread spectrum nature of Σ-Δ modulation,  
the need for oscillator synchronization is eliminated for designs  
incorporating multiple SSM3582 amplifiers. The SSM3582 uses  
less power in quiescent conditions, which helps conserve the power  
drawn from the battery or power supply.  
PVDD supplies the output power stages, as well as the low  
dropout (LDO) regulator for AVDD and DVDD.  
AVDD  
AVDD is the analog supply used for the modulator, power stage  
driver, and other analog blocks.  
When the AVDD_EN pin = PVDD, the internal regulator  
generates 5 V and the AVDD pin is used for decoupling only.  
When the AVDD_EN pin = AGND, 5 V must be provided to  
the AVDD pin from an external system source, minimizing  
power losses.  
DVDD  
DVDD supplies the digital circuitry. The current in this node is  
very low, below 1 mA.  
When the DVDD_EN pin = AVDD, the internal regulator  
generates 1.8 V and the DVDD pin is used for decoupling only.  
When the DVDD_EN pin = AGND, 1.8 V must be provided to  
the DVDD pin from an external system source, minimizing  
power losses.  
The SSM3582 integrates overcurrent and temperature protection  
and a thermal warning with optional programmable automatic  
gain reduction.  
Table 12 summarizes the power dissipation in various supply  
configurations, operating modes, and load characteristics.  
Table 12. Typical Power Supply Current Consumption for fS = 48 kHz1  
PVDD (V)  
5
12  
16  
Total  
Power  
(mW)  
Total  
Power  
(mW)  
AVDD_  
EN Pin  
Test  
Conditions  
AVDD  
Pin  
IAVDD  
(mA)  
IDVDD  
(mA)  
Total Power  
(mW)  
Load  
IPVDD (mA)  
IPVDD (mA)  
0.000065  
0.000065  
IPVDD (mA)  
0.000065  
0.000065  
Low  
No load  
SPWDN = 1  
External 0.007542 0.00268 0.000065  
External 0.007542 0.04372 0.000065  
0.042859  
0.116731  
0.043314  
0.117186  
0.043574  
0.117446  
Automatic  
power-down  
Dither input  
SPWDN = 1  
External 6.335  
0.945  
N/A  
2.54  
46.076  
0.000325  
1.045  
4.94  
92.656  
0.00078  
3.432  
6.25  
133.376  
0.00104  
5.264  
PVDD  
Low  
No load  
Internal  
Internal  
N/A  
N/A  
0.000065  
0.209  
0.000065  
0.286  
0.000065  
0.329  
Automatic  
power-down  
N/A  
Dither input  
SPWDN = 1  
Internal  
N/A  
N/A  
9.78  
48.9  
12.38  
148.56  
14.05  
224.8  
8 Ω + 33 ꢀH  
8 Ω + 33 ꢀH  
External 0.007542 0.00268 0.000065  
External 0.007542 0.04372 0.000065  
0.042859  
0.116731  
0.000065  
0.000065  
0.043314  
0.117186  
0.000065  
0.000065  
0.043574  
0.117446  
Automatic  
power-down  
Dither input  
SPWDN = 1  
External 6.432  
0.942  
N/A  
2.59  
46.8056  
0.000325  
1.045  
5.02  
94.0956  
0.00078  
3.432  
6.31  
134.8156  
0.00104  
5.264  
PVDD  
Internal  
Internal  
N/A  
N/A  
0.000065  
0.209  
0.000065  
0.286  
0.000065  
0.329  
Automatic  
N/A  
power-down  
Dither input  
Internal  
N/A  
N/A  
9.82  
49.1  
12.39  
148.68  
13.73  
219.68  
1 N/A means not applicable.  
Rev. 0| Page 25 of 59  
 
 
 
 
SSM3582  
Data Sheet  
POWER-UP SEQUENCE  
CLOCKING  
Using Only PVDD as a Source  
A BCLK signal must be provided to the SSM3582 for correct  
operation. The BCLK signal must have a minimum frequency  
of 2.048 MHz. The BCLK rate is autodetected, but the sampling  
frequency must be indicated. The BCLK rates supported at  
32 kHz to 48 kHz are 50, 64, 100, 128, 192, 200, 256, 384, 400,  
512, 768, 800, and 1024 times the sample rate.  
When SSM3582 is used in single-supply mode, all internal rails are  
generated from PVDD. The internal AVDD (5 V) and DVDD  
(1.8 V) regulators can be enabled by pulling the AVDD_EN and  
DVDD_EN pins high. AVDD_EN is pulled to PVDD, and  
DVDD_EN is pulled to AVDD. The amplifier is operational and  
responds to I2C writes 10 ms after applying PVDD ≥ 5 V.  
DIGITAL AUDIO SERIAL INTERFACE  
Using PVDD and External AVDD  
The SSM3582 includes a standard serial audio interface that is  
slave only. The interface is capable of receiving I2S, left justified,  
PCM, or TDM formatted data.  
Take care when an external 5 V is supplied to AVDD. The internal  
5 V LDO must be disabled by pulling the AVDD_EN pin low. In  
this case, DVDD (1.8 V) is generated from PVDD. It is important  
to maintain PVDD > AVDD to prevent the back powering of  
PVDD.  
The serial interfaces have three main operating modes. The  
stereo modes, typically I2S or left justified, are used when there  
is a single chip on the interface bus. TDM mode is more flexible  
and offers the ability to have multiple chips on the bus.  
Using PVDD and External AVDD and DVDD  
Stereo Operating Modes—I2S, Left Justified  
If using an external AVDD and DVDD source, both the  
AVDD_EN and DVDD_EN pins must be pulled low. It is  
important to maintain PVDD > AVDD/DVDD to prevent  
back powering PVDD.  
DVDD must be present for the device to respond to I2C  
commands. The device becomes operational ~10 ms after  
DVDD is present. PVDD must be at least 5 V for the output  
stage to turn on, and must be 6 V for optimal performance.  
Stereo modes use both edges of FSYNC to determine the  
placement of data. Stereo mode is enabled when SAI_MODE = 0,  
and the I2S or left justified format is determined by the SDATA_  
FMT register setting.  
The I2S or left justified interface formats supports various  
BCLK/FSYNC ratios (see Table 13). Sample rates from 8 kHz to  
192 kHz are accepted.  
POWER-DOWN OPERATION  
TDM Operating Mode  
The SSM3582 offers several power-down options via the I2C.  
Register 0x04 provides multiple options for setting the various  
power-down modes.  
The TDM operating mode allows multiple chips to connect to a  
single serial interface.  
The FSYNC signal operates at the desired sample rate. A rising  
edge of the FSYNC signal indicates the start of a new frame. For  
proper operation, this signal must be one BCLK cycle wide, trans-  
itioning on a falling BCLK edge. The MSB of data is present on the  
SDATA signal one BCLK cycle later. The SDATA signal is  
latched on a rising edge of BCLK.  
When set to 1, the SPWDN bit fully powers down the device. In  
this case, only the I2C and 1.8 V regulator blocks, if enabled via  
the DVDD_EN pin, are kept active.  
The SSM3582 monitors both the BCLK and FSYNC pins for  
clock presence. When no BCLK is present, the device  
automatically powers down all internal circuitry to its lowest  
power state. When BCLK returns, the device automatically  
powers up following its usual power sequence. To guarantee  
click/pop free shutdown, power down the device via the  
SPDWN control before clock removal.  
Each chip on the TDM bus can occupy 16, 24, 32, 48, or  
64 BCLK cycles, set via the TDM_BCLKS control bits. The  
maximum number of devices connected to a single TDM bus  
depends on the sample rate and number of bits per channel.  
The supported combinations of sample rates and bit depths are  
described in Table 13.  
If enabled, the APWDN_EN bit activates a low power state after  
2048 consecutive zero input samples are received. Only the I2C  
and digital audio input blocks are kept active.  
The maximum bit clock frequency is 49.152 MHz. Using the  
TDM16 format, up to eight devices (16 channels) can be connected  
to a single TDM interface, and can operate at up to a 96k sample  
rate and at 32 bits per channel. See Table 13 for the supported  
options at the 48 kHz, 96 kHz, and 192 kHz sample rates. Note  
that the interface is slave only, with the bit clock, frame sync,  
and data provided to the device.  
Individual channels can be powered down using Bits[3:2] in  
Register 0x04.  
The temperature sense ADC can be powered down using Bit 5  
in Register 0x04.  
ADDRx pin settings dictate the default TDM slots for each  
device, and can be modified using the TDM_SLOT control  
register.  
Rev. 0| Page 26 of 59  
 
 
 
 
Data Sheet  
SSM3582  
Table 13. Supported BCLK Rates in MHz1  
BCLK/FSYNC Ratio  
50  
64  
100  
128  
192  
200 256  
384  
512  
768  
800 1024  
2048  
4096  
Sample  
Rate (kHz)  
BCLK (MHz)2  
8 to 12  
N/A  
N/A  
Yes  
Yes  
Yes  
N/A  
N/A  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
N/A  
N/A  
Yes  
Yes  
Yes  
N/A N/A  
N/A N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
N/A  
N/A  
Yes  
16 to 24  
32 to 48  
64 to 96  
128 to 192  
Yes  
Yes  
Yes  
Yes  
N/A  
N/A  
N/A  
N/A  
1 Yes means that the specified rate is supported and N/A means not applicable.  
2 BCLK = (BCLK/FSYNC ratio) × sample rate.  
I2C Control  
is encountered. A stop condition occurs when SDA transitions  
from low to high while SCL is held high. The timing for the I2C  
port is shown in Figure 71.  
The SSM3582 supports an I2C-compatible, 2-wire serial bus,  
shared across multiple peripherals. Two signals, serial data  
(SDA) and serial clock (SCL), carry information between the  
SSM3582 and the system I2C master controller. The SSM3582 is  
always a slave on the bus, and cannot initiate a data transfer.  
Each slave device is identified by a unique address. The address  
byte format is shown in Table 14. The address resides in the first  
seven bits of the I2C write. The LSB of this byte sets either a read  
or write operation. Logic Level 1 corresponds to a read operation,  
and Logic Level 0 corresponds to a write operation. For device  
address settings, see Table 16.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, the SSM3582 immediately  
jumps to the idle condition. During a given SCL high period,  
issue only one start condition, one stop condition, or a single stop  
condition followed by a single start condition. If an invalid sub-  
address is issued, the SSM3582 does not issue an acknowledge and  
returns to the idle condition. If the user exceeds the highest sub-  
address while in automatic-increment mode, one of two actions is  
taken.  
Table 14. I2C Device Address Byte Format  
In read mode, the SSM3582 outputs the highest subaddress register  
contents until the master device issues a no acknowledge,  
indicating the end of a read. A no acknowledge condition is a  
condition in which the SDA line is not pulled low on the ninth  
clock pulse on SCL. If the highest subaddress location is reached  
while in write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by the  
SSM3582, and the device returns to the idle condition.  
Bit 7 Bit 6 Bit 5 Bit 4 Bit3  
Bit 2  
Bit 1  
Bit 0  
0
0
1
Bit 3 Bit 2 ADDR0 ADDR1 R/W  
Both SDA and SCL are open drain, and require pull-up resistors to  
the input/output voltage. The SSM3582 operates within the I2C  
voltage range of 1.6 V to 3.6 V.  
Addressing  
Initially, each device on the I2C bus is in an idle state, monitoring  
the SDA and SCL lines for a start condition and the proper  
address. The I2C master initiates a data transfer by establishing a  
start condition, defined by a high to low transition on SDA while  
SCL remains high. This start condition indicates that an address/  
data stream follows. All devices on the bus respond to the start  
condition and shift the next eight bits (the 7-bit address plus the  
Device Address Setting  
The device can be set at 16 different I2C addresses using the  
ADDR1 and ADDR0 pins, as well as 16 hardware modes.  
ADDR1 and ADDR0 are sampled during the start-up procedure.  
These pins set the appropriate operating mode, the I2C address,  
and the default TDM slots. The ADDRx pins can be set to five  
different voltage levels, as defined in Table 15. The ADDRx pins  
are referenced to the DVDD rail of the device; connect pull-up  
resistors to the internally generated DVDD rail if the regulator  
is used.  
W
R/ bit), MSB first. The device that recognizes the transmitted  
address responds by pulling the data line low during the ninth  
clock pulse. This ninth bit is known as an acknowledge bit. All  
other devices withdraw from the bus at this point and return to  
the idle condition. The device address for the SSM3582 is  
determined by the state of the ADDRx pins. See the Device  
Address Setting section for more details.  
Table 15. ADDRx Pin Input Level Mapping  
ADDRx State  
Level (V)  
0
Connected to Ground  
W
The R/ bit determines the direction of the data. A Logic 0 on  
Connected to Ground Using a 47 kΩ Resistor  
Left Floating  
Connected to DVDD Using a 47 kΩ Resistor  
Connected to DVDD  
0.45  
0.9  
1.35  
1.8  
the LSB of the first byte means the master writes information to the  
peripheral, whereas a Logic 1 means the master reads information  
from the peripheral after writing the subaddress and repeating  
the start address. A data transfer takes place until a stop condition  
Rev. 0| Page 27 of 59  
 
 
 
 
SSM3582  
Data Sheet  
Table 16. ADDRx Pins to I2C Device Address and TDM Slot Mapping  
ADDRx Pin State1  
Default TDM Slot  
MONO = 1  
ADDR0  
ADDR1  
Device Address  
0x10  
MONO = 0  
1, 2  
0
0
1
0
1
0x11  
3, 4  
2
1
0
0x12  
5, 6  
3
1
1
0x13  
7, 8  
4
0
0
1
1
Pull-down  
Pull-up  
Pull-down  
Pull-up  
0
1
0
1
Pull-down  
Pull-up  
Pull-down  
Pull-up  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
9, 10  
5
6
7
8
11, 12  
13, 15  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
29, 30  
31, 32  
Pull-down  
Pull-down  
Pull-up  
Pull-up  
Pull-down  
Pull-down  
Pull-up  
Pull-up  
9
10  
11  
12  
13  
14  
15  
16  
0x1D  
0x1E  
0x1F  
1 0 = connect to ground, 1 = connect to DVDD. In the case of a pull-down state, connect to ground via a 47 kΩ resistor. In the case of a pull-up state, connect to DVDD  
via a 47 kΩ resistor.  
I2C Read and Write Operations  
W
command, followed by the chip address byte with the R/ set  
to 1 (read). This repeated command causes the SSM3582 SDA  
to reverse and to begin driving data back to the master. The master  
then responds every ninth pulse with an acknowledge pulse to  
the SSM3582. Refer to Table 17 for a list of abbreviations in  
Figure 72 through Figure 75.  
Figure 72 shows the timing of a single-word write operation.  
Every ninth clock, the SSM3582 issues an acknowledge by  
pulling SDA low.  
Figure 73 shows the timing of a burst mode write sequence.  
This figure shows an example where the target destination  
registers are two bytes. The SSM3582 knows to increment its  
subaddress register every byte because the requested subaddress  
corresponds to a register or memory area with a byte word  
length.  
Table 17. Abbreviations for Figure 72 Through Figure 75  
Symbol  
Meaning  
Start bit  
Stop bit  
S
P
AM  
Acknowledge (ACK used in Figure 72 through  
Figure 75) by master  
Acknowledge (ACK used in Figure 72 through  
Figure 75) by slave  
The timing of a single-word read operation is shown in  
W
Figure 74. Note that the first R/ bit is 0, indicating a write  
AS  
operation, because the subaddress must still be written to set up  
the internal address. After the SSM3582 acknowledges the  
receipt of the subaddress, the master must issue a repeated start  
Rev. 0| Page 28 of 59  
 
 
Data Sheet  
SSM3582  
SCL  
ACK  
ACK  
SDA  
R/W  
START BY  
MASTER  
FRAME 2  
FRAME1  
SUBADDRESS BYTE  
CHIP ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
ACK  
ACK  
STOP BY  
MASTER  
FRAME 3  
FRAME 4  
DATA BYTE 1  
DATA BYTE 2  
Figure 71. I2C Read/Write Timing  
START  
BIT  
IC ADDRESS  
(7 BITS)  
R/W  
= 0  
ACK BY  
SLAVE  
SUBADDRESS  
(8 BITS)  
ACK BY  
SLAVE  
DATA BYTE 1  
(8 BITS)  
STOP  
BIT  
Figure 72. Single-Word I2C Write Format  
S
CHIP ADDRESS,  
R/W = 0  
A
SUBADDRESS  
A
DATA-  
WORD 1  
A
DATA-  
WORD 2  
A
S
P
S
S
S
Figure 73. Burst Mode I2C Write Format  
CHIP  
ADDRESS,  
R/W = 0  
CHIP  
ADDRESS,  
R/W = 1  
S
S
A
SUBADDRESS  
SUBADDRESS  
A
S
A
DATA  
BYTE 1  
A
M
DATA  
BYTE N  
P
S
S
S
Figure 74. Single-Word I2C Read Format  
CHIP  
ADDRESS,  
R/W = 0  
CHIP  
ADDRESS,  
R/W = 1  
A
A
S
A
DATA-  
WORD 1  
A
M
...  
P
S
S
S
Figure 75. Burst Mode I2C Read Format  
Rev. 0| Page 29 of 59  
 
 
 
 
 
SSM3582  
Data Sheet  
slot/sample rate of the device (see Table 18). In this case, the  
ANA_GAIN bits are set to 11 and SPWDN is set to 0 by default.  
STANDALONE OPERATION  
The SSM3582 can be operated in a standalone hardware control  
mode without any I2C control. The same ADDRx pins used to  
set the I2C device address are used to set the functionality of the  
device. In standalone mode, the I2C pins (SCL and SDA) are  
inputs and are shorted to DVDD or AGND to set the TDM  
In standalone mode, TDM slot selection, mono mode operation,  
and sample rate are selected via different pin settings. The  
device looks at the FSYNC signal and, if it is a 50% duty cycle,  
uses I2S settings. If the FYSNC signal is a pulse, the device uses  
TDM settings.  
Table 18. Standalone Mode Pin Settings and Functionality  
Pin States  
Sample Rate  
ADDR0  
0
1
ADDR1  
SDA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SCL  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
TDM Slot(s)  
MONO  
32 kHz to 48 kHz  
Open  
Open  
Open  
Open  
0
1, 2  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 14  
15, 16  
1, 2  
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
8 kHz to 12 kHz  
32 kHz to 48 kHz  
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
8 kHz to 12 kHz  
64 kHz to 96 kHz  
1, 2  
1, 2  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 14  
15, 16  
1, 2  
1
2
3
4
5
6
7
8
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
0
16 kHz to 24 kHz  
64 kHz to 96 kHz  
1
Pull-down  
Pull-up  
Open  
Open  
Open  
Open  
Open  
1
Pull-down  
Pull-up  
Open  
128 kHz to 192 kHz  
1, 2  
Rev. 0| Page 30 of 59  
 
 
Data Sheet  
SSM3582  
MONO MODE  
Table 19. Analog Gain Settings and Drive Characteristics  
ANA_GAIN[1:0] VOUT  
The SSM3582 can be operated in mono mode for driving low  
impedance loads. In mono mode, the left and right power stages  
can be connected in parallel, as shown in Figure 87. Use caution  
when setting up mono mode. For proper operation, any hardware  
changes are required along with setting the register. For mono  
mode operation, set MONO (Register 0x04, Bit 4) to 1. By default,  
this bit is set to 0 for stereo mode. After the bit is set for mono  
mode, only the left channel modulator is active and it feeds both  
the left and right channel power stages. The OUTL+ and OUTR+  
pins are in phase. The OUTL− and OUTR− pins are also in phase.  
For mono mode, OUTL+ must be shorted to OUTR+; similarly,  
OUTL− must be shorted to OUTR−.  
1
0
Gain,  
1 V rms (dB)  
RMS  
(V rms)  
Peak-to-Peak (V)  
0
0
1
1
0
1
0
1
13  
16  
19  
21  
4.47  
6.31  
8.91  
11.20  
6.32  
8.92  
12.60  
15.87  
POP AND CLICK SUPPRESSION  
Pops and clicks are undesirable audible transients generated by  
the amplifier system that do not come from the system input  
signal. Voltage transients as small as 10 mV can be heard as an  
audible pop in the speaker. Voltage transients at the output of audio  
amplifiers often occur when shutdown is activated or deactivated.  
The SSM3582 has a pop and click suppression architecture that  
reduces these output transients, resulting in noiseless activation  
and deactivation. Set either mute or power-down before BCLK  
is removed to ensure a pop free experience.  
In standalone mode, the ADDR0, ADDR1, SCL, and SDA pins  
determine the TDM slot. See the Table 18 for the possible TDM  
slot configurations in mono mode.  
ANALOG AND DIGITAL GAIN  
Four different gain settings are available to optimize the dynamic  
range of the amplifier in relation to the PVDD supply voltage.  
In software mode, the initial 19 dB gain setting can be updated  
through the control interface. In standalone mode, the I2C interface  
pins set the gain of the device. Table 19 summarizes the gain  
settings and load drive characteristics of the amplifier.  
TEMPERATURE SENSOR  
The SSM3582 contains an 8-bit ADC that measures the die  
temperature of the device and is enabled via the TEMP_PWDN bit  
in Register 0x04. After the sensor is enabled, the temperature  
can be read via the I2C in the TEMP register, Register 0x1B. The  
temperature information is stored in Register 0x1B in an 8-bit,  
unsigned format. The ADC input range is fixed internally from  
−60°C to +195°C. To convert the hexadecimal value to the  
temperature (Celsius) value, use the following steps:  
The amplifier analog gain is set prior to enabling the device  
outputs and must not be changed during operation; a proper  
mute/unmute sequence is required to prevent audible transients  
between gain settings.  
Finer level control is available in the digital domain, with a very  
flexible −70 dB to +24 dB, 0.375 dB/step ramp volume control  
and selectable nonaliasing clipping point. The digital volume  
control also includes a playback level limiter that can be set in  
tandem with the battery voltage monitor to prevent the amplifier  
from browning out the system when battery level is critically low.  
1. Convert the hexadecimal value to decimal and then  
subtract 60. For example, if the hexadecimal value is 0x54,  
the decimal value is 84.  
2. Calculate the temperature using the following equation:  
Temperature = Decimal Value − 60  
With a decimal value of 84,  
Temperature = 84 − 60 = 24°C  
Rev. 0| Page 31 of 59  
 
 
 
 
 
SSM3582  
Data Sheet  
Table 20. Fault Reporting Registers  
Fault Type  
Flag Set Condition  
Status Reported Register  
PVDD Undervoltage (UV)  
5 V Regulator UV  
Limiter/Gain Reduction Engage  
PVDD below <3.6 V  
Register 0x18, Bit 7, UVLO_PVDD  
Register 0x18, Bit 6, UVLO_VREG  
Register 0x19, Bit 3, LIM_EG_L  
Register 0x19, Bit 7, LIM_EG_R  
Register 0x19, Bit 2, CLIP_L  
5 V regulator voltage at AVDD < 3.6 V  
Left channel limiter engaged  
Right channel limiter engaged  
Left channel DAC clipping  
Right channel DAC clipping  
Left channel output current > 6 A peak  
Right channel output current > 6 A peak  
Die temperature > 145°C  
Clipping, Left Channel  
Clipping, Right Channel  
Output Overcurrent (OC)  
Register 0x19, Bit 6, CLIP_R  
Register 0x19, Bit 1, AMP_OC_L  
Register 0x19, Bit 5, AMP_OC_R  
Register 0x18, Bit 1, OTF  
Die Overtemperature (OT)  
Die Overtemperature Warning (OTW)  
Battery Voltage > VBAT_INF_x  
Die temperature > 117°C  
Battery voltage PVDD > VBAT_INF_L  
Battery voltage PVDD > VBAT_INF_R  
Register 0x18, Bit 0, OTW  
Register 0x19, Bit 0, BAT_WARN_L  
Register 0x19, Bit 4, BAT_WARN_R  
When the manual recovery mode is used, the device shuts down  
and the recovery must be attempted using the system micro-  
controller.  
FAULTS AND LIMITER STATUS REPORTING  
The SSM3582 offers comprehensive protections against the  
faults at the outputs and reporting to help with system design.  
The faults listed in Table 20 are reported using the status registers.  
VBAT (PVDD) SENSING  
The faults listed in Table 20 are reported in Register 0x18 and  
Register 0x19 and can be read via I2C by the microcontroller in  
the system.  
The SSM3582 contains an 8-bit ADC that measures the voltage  
of the battery voltage (VBAT/PVDD) supply. The battery voltage  
information is stored in Register 0x1A as an 8-bit unsigned  
format. The ADC input range is fixed internally at 3.8 V to  
16.2 V. To convert the hexadecimal value to the voltage value,  
use the following steps:  
In the event of a fault occurrence, use Register 0x0B to control  
how the device reacts to the faults.  
Table 21. Register 0x16, Register 0x17, Fault Recovery  
Convert the hexadecimal value to decimal. For example, if the  
hexadecimal value is 0xA9, the decimal value is 169.  
Status Reported  
Register  
Fault Type  
Flag Set Condition  
Calculate the voltage using the following equation:  
OTW  
The amount of gain  
reduction applied if there  
is an OTW for left channel  
Register 0x16,  
Bits[1:0], OTW_  
GAIN_L  
Voltage = 3.8 V + 12.4 V × Decimal Value/255  
With a decimal value of 169,  
The amount of gain  
reduction applied if there  
is an OTW for the right  
channel  
Register 0x16,  
Bits[5:4], OTW_  
GAIN_R  
Voltage = 3.8 V + 12.4 V × 169/255 = 12.02 V  
LIMITER AND BATTERY TRACKING THRESHOLD  
CONTROL  
Manual  
Recovery  
Use to attempt manual  
recovery in case of a fault  
event  
Register 0x17,  
Bit 7, MRCV  
The SSM3582 contains an output limiter that can be used to  
limit the peak output voltage of the amplifier. The limiter works  
on the rms and peak value of the signal. The limiter threshold,  
slope, attack rate, and release rate are programmable using  
Register 0x0E, Register 0x0F, and Register 0x10 for the left  
channel and Register 0x11, Register 0x12, Register 0x13 for the  
right channel. The limiter can be enabled or disabled using  
LIM_EN_L, Bits[1:0] in Register 0x0E, Bits[1:0] for the left  
channel and the LIM_EN_R bits, Bits[1:0] in Register 0x11, for  
the right channel.  
Autorecovery  
Attempts  
When autorecovery from  
faults is used, set the  
number of attempts using  
this bit  
Register 0x17,  
Bits[5:4], MAX_AR  
UV  
Recovery can be automatic Register 0x17,  
or manual Bit 2, ARCV_UV  
Recovery can be automatic Register 0x17,  
or manual Bit 1, ARCV_OT  
Recovery can be automatic Register 0x17,  
or manual Bit 0, ARCV_OC  
Die OT  
OC  
The threshold at which the output is limited is determined by  
the LIM_THRES_L bits setting, Bits[7:3] in Register 0x0F for  
the left channel, and the LIM_THRES_R bits setting, Bits[7:3]  
in Register 0x12 for the right channel. When the ouput signal  
level exceeds the set threshold level, the limiter activates and  
limits the signal level to the set limit. Below the set threshold,  
the output level is not affected.  
When the automatic recovery mode is set, the device attempts  
to recover itself after the fault event and, in case the fault  
persists, then the device sets the fault again. This process  
repeats until the fault is resolved.  
Rev. 0| Page 32 of 59  
 
 
 
 
Data Sheet  
SSM3582  
The limiter threshold can be set above the maximum output  
voltage of the amplifier. In this case, the limiter allows maximum  
peak output; in other words, the output may clip depending on  
the power supply voltage and not the limiter.  
The limiter offers various active modes that can be set using the  
LIM_EN_x bits (Register 0x0E and Register 0x11, Bits[1:0]) and  
the VBAT_TRACK_x bit, as shown in Table 22.  
When LIM_EN_x = 01, the limiter is enabled. When LIM_EN_x =  
10, the limiter mutes the output if VBAT falls below VBAT_INF_x.  
When LIM_EN_x = 11, the limiter engages only when the battery  
voltage is lower than VBAT_INF_x. When VBAT is greater than  
VBAT_INF_x, no limiting occurs. Note that there is hysteresis on  
VBAT_INF_x for the limiter disengaging.  
The limiter threshold can be set as fixed or to vary with the  
battery voltage via the VBAT_TRACK_L bit (Register 0x0E, Bit 2)  
for the left channel and VBAT_TRACK_R bit (Register 0x11, Bit 2)  
for right channel. When set to fixed, the limiter threshold is fixed  
and does not vary with battery voltage. The threshold can be set  
from 2 V peak to 16 V peak using the LIM_THRES_x bit (see  
Figure 77).  
The limiter, when active, reduces the gain of the amplifier. The rate  
of gain reduction or attack rate is determined by the LIM_ATR_  
x bits (Register 0x0E and Register 0x11, Bits[5:4]). Similarly, when  
the signal level drops below the limiter threshold, the gain is  
restored. The gain release rate is determined by the LIM_RRT bits  
(Register 0x0E and Register 0x11, Bits[7:6]).  
When set to a variable threshold, the SSM3582 monitors the  
VBAT supply and automatically adjusts the limiter threshold  
based on the VBAT supply voltage.  
The VBAT supply voltage at which the limiter begins to decrease  
the output level is determined by the VBAT inflection point (the  
VBAT_INF _L bits (Register 0x10, Bits[7:0]) for the left channel  
and VBAT_INF_R bits (Register 0x13, Bits[7:0]) for the right  
channel).  
LIM_EN_x = 00  
VBAT_TRACK_x = 0  
AMPLIFIER CLIPPING LEVEL  
The VBAT_INF_x point is defined as the battery voltage at  
which the limiter either activates or deactivates depending on  
the LIM_EN_x mode (see Table 22). When the battery voltage  
is greater than VBAT_INF_x, the limiter is not active. When the  
battery voltage is less than VBAT_INF_X, the limiter is activated.  
The VBAT_INF_x bits can be set from 3.8 V to 16.2 V. The 8-bit  
value for the voltage can be calculated using the following  
equation:  
INPUT LEVEL  
Voltage = 3.8 + 12.4 × Decimal Value/255  
Figure 76. Limiter Example (LIM_EN_x = 0b0, VBAT_TRACK_x = 0bX)  
Convert the decimal value to an 8-bit hexadecimal value and  
use it to set the VBAT_INF_x bits.  
LIMITER THRESHOLD FIXEDAT SET VALUE  
AND DOES NOT TRACK VBAT  
The slope bits (Register 0x0F and Register 0x12, Bits[1:0])  
determine the rate at which the limiter threshold is lowered  
relative to the amount of change in VBAT below the  
VBAT_INF_x point.  
LIM_THRES_x  
The slope is the ratio of the limiter threshold reduction to the  
VBAT voltage reduction.  
Slope = ꢂLimiter Threshold/ꢂVBAT  
The slope ratio can be set from 1:1 to 4:1. This function is useful  
to prevent early shutdown under low battery conditions. As the  
VBAT voltage falls, the limiter threshold is lowered. This lower  
threshold results in the lower output level and therefore helps to  
reduce the current drawn from the battery and in turn helps  
prevent early shutdown due to low VBAT.  
VBAT  
Figure 77. Limiter Fixed (LIM_EN_x = 0b01, VBAT_TRACK_x = 0b0)  
Table 22. Limiter Modes  
LIM_EN_x  
VBAT_TRACK_x  
Limiter  
No  
VBAT < VBAT_INF_x  
Not applicable  
VBAT > VBAT_INF_x  
Not applicable  
Comments  
00  
01  
01  
10  
11  
11  
0 or 1  
See Figure 76  
0
Fixed  
Use the set threshold  
Lowers the threshold  
Mutes the output  
Use the set threshold  
Use the set threshold  
Use the set threshold  
No limiting  
See Figure 77  
1
Variable  
Fixed  
See Figure 78 and Figure 79  
Not shown  
0 or 1  
0
1
Fixed  
Use the set threshold  
Lowers the threshold  
See Figure 80 and Figure 81  
See Figure 82 and Figure 83  
Variable  
No limiting  
Rev. 0| Page 33 of 59  
 
 
 
SSM3582  
Data Sheet  
LIM_EN_x = 01  
VBAT_TRACK_x = 1  
LIMITER THRESHOLD FIXEDAT SET VALUE  
AND DOES NOT TRACK VBAT  
LIM_THRES_x  
VBAT > VBAT_INF_x LIMITER  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF_x  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF_x – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BITS IN REG 0x0F, REG 0x12  
VBAT  
INPUT LEVEL  
Figure 81. Limiter Fixed (LIM_EN_x = 0b11, VBAT_TRACK_x = 0b0)  
Figure 78. Limiter Fixed (LIM_EN_x = 0b01, VBAT_TRACK_x = 0b1)  
LIM_EN_x = 11  
VBAT_TRACK_x = 1  
LIMITER THRESHOLD STAYS AT  
THE SET VALUE FOR VBAT > VBAT_INF_x  
VBAT > VBAT_INF_x LIMITER IS NOT ACTIVE  
AMPLIFIER CLIPPING LEVEL  
VBAT_INF_x  
LIM_THRES_x  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF_x  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF_x – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BIT IN REG 0x0F, REG 0x12  
INPUT LEVEL  
VBAT  
Figure 82. Limiter Example (LIM_EN_x = 0b11, VBAT_TRACK_x = 0b1)  
Figure 79. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN_x = 0b01,  
VBAT_TRACK_x = 0b1)  
LIMITER THRESHOLD INACTIVE FOR VBAT > VBAT_INF_x  
LIM_EN_x = 11  
VBAT_TRACK_x = 0  
VBAT_INF_x  
SET LIM_THRES_x  
AMPLIFIER CLIPPING LEVEL  
LIMITER THRESHOLD SETTING  
NO CHANGE IN LIM THRESHOLD PER VBAT  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF_x  
VBAT  
Figure 83. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN_x = 0b11,  
VBAT_TRACK_x = 0b1)  
INPUT LEVEL  
Figure 80. Limiter Example (LIM_EN_x = 0b11, VBAT_TRACK_x = 0)  
Rev. 0| Page 34 of 59  
 
 
 
 
 
 
Data Sheet  
SSM3582  
HIGH FREQUENCY CLIPPER  
OUTPUT MODULATION DESCRIPTION  
The SSM3582 uses three level, Σ-Δ output modulation. Each  
output can swing from ground to PVDD, and vice versa. Ideally,  
when no input signal is present, the output differential voltage is  
0 V because there is no need to generate a pulse. In a real-world  
situation, noise sources are always present.  
The high frequency clipper can be controlled via the  
DAC_CLIP_L bits (Register 0x14, Bits[7:0]) and the  
DACL_CLIP_R bits (Register 0x15, Bits[7:0]).  
These bits determine the clipper threshold, relative to full scale.  
When enabled, the clipper digitally clips the signal after the  
DAC interpolation.  
Due to this constant presence of noise, a differential pulse is  
occasionally generated in response to this stimulus. A small  
amount of current flows into the inductive load when the  
differential pulse is generated. However, typically, the output  
differential voltage is 0 V. This feature ensures that the current  
flowing through the inductive load is small.  
EMI NOISE  
The SSM3582 uses a proprietary modulation and spread  
spectrum technology to minimize EMI emissions from the  
device. The SSM3582 passes FCC Class-B emissions testing  
with an unshielded 20 inch cable using ferrite bead-based  
filtering. For applications that have difficulty passing FCC  
Class-B emission tests, the SSM3582 includes an ultralow EMI  
emissions mode that significantly reduces the radiated emissions at  
the Class-D outputs, particularly above 100 MHz. Note that  
reducing the supply voltage greatly reduces radiated emissions.  
When the user sends an input signal, an output pulse is generated  
to follow the input voltage. The differential pulse density is  
increased by raising the input signal level. Figure 84 depicts  
three-level, Σ-Δ output modulation with and without input  
stimulus.  
OUTPUT = 0V  
OUTx+  
+5V  
0V  
+5V  
OUTx–  
0V  
+5V  
V
0V  
OUT  
–5V  
OUTPUT > 0V  
+5V  
OUTx+  
OUTx–  
0V  
+5V  
0V  
+5V  
V
OUT  
0V  
OUTPUT < 0V  
+5V  
OUTx+  
OUTx–  
0V  
+5V  
0V  
0V  
V
OUT  
–5V  
Figure 84. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Rev. 0| Page 35 of 59  
 
 
 
 
SSM3582  
Data Sheet  
BOOTSTRAP CAPACITORS  
OUTPUT EMI FILTERING  
The output stage of the SSM3582 uses a high-side NMOS driver,  
rather than a PMOS driver. To generate the gate drive voltage for  
the high-side NMOS, a bootstrap capacitor for each output  
terminal acts as a floating power supply for the switching cycle. Use  
0.22 μF capacitors to connect the appropriate output pin (OUTx )  
to the bootstrap pin (BSTx ). For example, connect a 0.22 μF  
capacitor between OUTL+ (a left channel, noninverting output)  
and BSTL+ for bootstrapping the left channel. Similarly, connect  
another 0.22 μF capacitor between the OUTL− and BSTL− pins  
for the left channel inverting output.  
Additional EMI filtering may be required when the speaker  
traces and cables are long and present a significant capacitive  
load that can create additional draw from the amplifier. Typical  
power ferrites present a significant magnetic hysteresis cycle  
that affects THD performance and are not recommended for  
high performance designs. The NFZ filter series from Murata,  
designed in close collaboration with Analog Devices, Inc.,  
provides a closed hysteresis loop similar to an air coil with  
minimum impact on performance. Products are available at  
upwards of 4 A rms, well suited to this application. A small  
capacitor can be added between the output of the filter and  
ground to further attenuate very high frequencies. Take care to  
ensure the capacitor is properly sized so as not to affect idle  
power consumption or efficiency.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low THD, and high PSRR, proper  
power supply decoupling is necessary. Noise transients on the  
power supply lines are short duration voltage spikes. These spikes  
can contain frequency components that extend into the hundreds  
of megahertz. The power supply input must be decoupled with  
a good quality, low ESL, low ESR bulk capacitor larger than 220 ꢀF.  
This capacitor bypasses low frequency noise to the ground  
plane. For high frequency decoupling, place 1 ꢀF capacitors  
as close as possible to the PVDD pins of the device.  
PCB PLACEMENT  
Component selection and placement have great influence on  
system performance, both measured and subjective. Proper  
PVDD layout and decoupling is necessary to reach the specified  
level of performance, particularly at the highest power levels.  
The placement shown in Figure 85 ensures proper output stage  
decoupling for each channel, for minimum supply noise and  
maximum separation between channels. Additional bulk  
decoupling is necessary to reduce current ripple at low  
frequencies, and can be shared between several amplifiers  
in a multichannel solution.  
BSTL+  
0.22µF CAPACITOR  
BSTL–  
0.22µF CAPACITOR  
PVDD DECOUPLING  
0.1µF CAPACITOR  
DVDD DECOUPLING  
0.1µF CAPACITOR  
AVDD DECOUPLING  
0.1µF CAPACITOR  
BSTR+  
BSTR–  
0.22µF CAPACITOR  
0.22µF CAPACITOR  
PVDD DECOUPLING  
0.1µF CAPACITOR  
Figure 85. Recommended Component Placement  
Rev. 0| Page 36 of 59  
 
 
 
 
 
Data Sheet  
SSM3582  
the amount of noise the amplifier bridges inject in the circuit,  
particularly if common ground impedance is significant. Proper  
grounding guidelines help improve audio performance, minimize  
crosstalk between channels, and prevent switching noise from  
coupling into the audio signal.  
LAYOUT  
As output power increases, care must be taken to lay out PCB  
traces and wires properly among the amplifier, load, and power  
supply; a poor layout increases voltage drops, consequently  
decreasing efficiency. A good practice is to use short, wide PCB  
tracks to decrease voltage drops and minimize inductance. For  
the lowest dc resistance (DCR) and minimum inductance,  
ensure that track widths for the outputs are at least 200 mil for  
every inch of length and use 1 oz. or 2 oz. copper.  
Properly designed multilayer PCBs can reduce EMI emission  
and increase immunity to the RF field by a factor of 10 or more,  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
To maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins must be as wide as possible; this also maintains the minimum  
trace resistances. In addition, good PCB layout isolates critical  
analog paths from sources of high interference. Separate high  
frequency circuits (analog and digital) from low frequency circuits.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane must be directly beneath the  
analog power plane, and, similarly, the digital ground plane must  
be directly beneath the digital power plane. There must be no  
overlap between the analog and digital ground planes or between  
the analog and digital power planes.  
PVDD and PGND carry most of the device current, and must  
be properly decoupled with multiple capacitors at the device  
pins. To minimize ground bounce, use independent large traces  
to carry PVDD and PGND to the power supply, thus reducing  
Rev. 0| Page 37 of 59  
 
SSM3582  
Data Sheet  
REGISTER SUMMARY  
Table 23. Register Summary  
Reg Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
VENDOR  
DEVICE1  
DEVICE2  
REV  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 VENDOR_ID  
0x01 DEVICE_ID1  
0x02 DEVICE_ID2  
0x03 REVISION  
[7:0]  
0x41  
0x35  
0x82  
0x01  
R
R
R
R
[7:0]  
[7:0]  
[7:0]  
0x04 POWER_CTRL  
0x05 AMP_DAC_CTRL  
0x06 DAC_CTRL  
0x07 VOL_LEFT_CTRL  
[7:0] APWDN_EN  
[7:0] DAC_LPM  
[7:0] DAC_HV  
[7:0]  
RESERVED  
RESERVED  
TEMP_PWDN MONO  
DAC_POL_R DAC_POL_L  
R_PWDN  
L_PWDN  
RESERVED  
SPWDN  
0xA1 R/W  
0x8A R/W  
0x02 R/W  
0x40 R/W  
0x40 R/W  
0x11 R/W  
0x07 R/W  
0x00 R/W  
0x01 R/W  
0xA0 R/W  
0x51 R/W  
0x22 R/W  
0xA8 R/W  
0x51 R/W  
0x22 R/W  
0xFF R/W  
0xFF R/W  
0x00 R/W  
0x30 R/W  
EDGE  
RESERVED  
ANA_GAIN  
DAC_FS  
DAC_MUTE_R DAC_MUTE_L DAC_HPF  
RESERVED  
VOL_L  
VOL_R  
TDM_BCLKS  
0x08 VOL_RIGHT_CTRL [7:0]  
0x09 SAI_CTRL1  
[7:0] RESERVED  
BCLK_POL  
RESERVED  
FSYNC_MODE  
SDATA_FMT SAI_MODE  
VOL_LINK AUTO_SLOT  
0x0A SAI_CTRL2  
[7:0] SDATA_EDGE  
[7:0]  
DATA_WIDTH VOL_ZC_ONLY CLIP_LINK  
TDM_SLOT_L  
0x0B SLOT_LEFT_CTRL  
RESERVED  
RESERVED  
0x0C SLOT_RIGHT_CTRL [7:0]  
TDM_SLOT_R  
0x0E LIM_LEFT_CTRL1  
0x0F LIM_LEFT_CTRL2  
0x10 LIM_LEFT_CTRL3  
[7:0]  
[7:0]  
[7:0]  
LIM_RRT_L  
LIM_ATR_L  
LIM_THRES_L  
RESERVED  
VBAT_TRACK_L  
RESERVED  
LIM_EN_L  
SLOPE_L  
VBAT_INF_L  
LIM_LINK  
0x11 LIM_RIGHT_CTRL1 [7:0]  
0x12 LIM_RIGHT_CTRL2 [7:0]  
0x13 LIM_RIGHT_CTRL3 [7:0]  
LIM_RRT_R  
LIM_ATR_R  
LIM_THRES_R  
VBAT_TRACK_R  
RESERVED  
LIM_EN_R  
SLOPE_R  
VBAT_INF_R  
0x14 CLIP_LEFT_CTRL  
[7:0]  
DAC_CLIP_L  
DAC_CLIP_R  
0x15 CLIP_RIGHT_CTRL [7:0]  
0x16 FAULT_CTRL1  
0x17 FAULT_CTRL2  
0x18 STATUS1  
0x19 STATUS2  
0x1A VBAT  
[7:0]  
RESERVED  
OTW_GAIN_R  
MAX_AR  
RESERVED  
OTW_GAIN_L  
[7:0] MRCV  
RESERVED  
RESERVED  
RESERVED  
ARCV_UV  
ARCV_OT  
ARCV_OC  
OTW  
[7:0] UVLO_PVDD UVLO_VREG  
OTF  
0x00  
R
R
R
R
[7:0] LIM_EG_R  
CLIP_R  
AMP_OC_R  
BAT_WARN_R LIM_EG_L  
CLIP_L  
AMP_OC_L  
BAT_WARN_L 0x00  
[7:0]  
[7:0]  
[7:0]  
VBAT  
TEMP  
0x00  
0x00  
0x1B TEMP  
0x1C SOFT_RESET  
RESERVED  
S_RST  
0x00 R/W  
Rev. 0| Page 38 of 59  
 
Data Sheet  
SSM3582  
REGISTER DETAILS  
Address: 0x00, Reset: 0x41, Name: VENDOR_ID  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
1
[7:0] VENDOR (R)  
Vendor ID  
Table 24. Bit Descriptions for VENDOR_ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR  
Vendor ID  
0x41  
R
Address: 0x01, Reset: 0x35, Name: DEVICE_ID1  
7
6
5
4
3
2
1
0
0
0
1
1
0
1
0
1
[7:0] DEVICE1 (R)  
Device ID 1  
Table 25. Bit Descriptions for DEVICE_ID1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DEVICE1  
Device ID 1  
0x35  
R
Address: 0x02, Reset: 0x82, Name: DEVICE_ID2  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
1
0
[7:0] DEVICE2 (R)  
Device ID 2  
Table 26. Bit Descriptions for DEVICE_ID2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DEVICE2  
Device ID 2  
0x82  
R
Address: 0x03, Reset: 0x01, Name: REVISION  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] REV (R)  
Revision Code  
Table 27. Bit Descriptions for REVISION  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
REV  
Revision Code  
0x1  
R
Rev. 0| Page 39 of 59  
 
SSM3582  
Data Sheet  
Address: 0x04, Reset: 0xA1, Name: POWER_CTRL  
7
6
5
4
3
2
1
0
1
0
1
0
0
0
0
1
[7] APWDN_EN (R/W)  
[0] SPWDN (R/W)  
Auto Power-Down Enable  
0: Auto Power-Down Feature Disabled.  
1: Auto Power-Down Feature Enabled.  
Software Master Power-Down  
0: Normal Operation.  
1: Software Master Power-Down.  
[6] RESERVED  
[1] RESERVED  
[5] TEMP_PWDN (R/W)  
[2] L_PWDN (R/W)  
Temperature Sensor Power-down  
0: Temperature Sensor On.  
1: Temperature Sensor Powered Down.  
Left Channel Power-Down  
0: Left Channel Powered on.  
1: Left Channel Powered Down.  
[4] MONO (R/W)  
[3] R_PWDN (R/W)  
Mono Mode Selection  
0: Mono Mode Enabled.  
1: Stereo Mode Enabled.  
Right Channel Power-Down  
0: Right Channel Powered On.  
1: Right Channel Powered Down.  
Table 28. Bit Descriptions for POWER_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
APWDN_EN  
Automatic Power-Down Enable.  
0x1  
R/W  
0
1
Automatic power-down feature disabled.  
Automatic power-down feature enabled.  
Reserved.  
6
5
RESERVED  
0x0  
0x1  
R
TEMP_PWDN  
Temperature Sensor Power-Down.  
Temperature sensor on.  
R/W  
0
1
Temperature sensor powered down.  
Mono Mode Selection.  
4
3
2
MONO  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Mono mode enabled.  
Stereo mode enabled.  
R_PWDN  
L_PWDN  
Left Channel Power-Down.  
Right channel powered on.  
Right channel powered down.  
Left Channel Power-Down.  
Left channel powered on.  
Left channel powered down.  
Reserved.  
0
1
0
1
1
0
RESERVED  
SPWDN  
0x0  
0x1  
R
Software Master Power-Down  
Normal operation.  
R/W  
0
1
Software master power-down.  
Rev. 0| Page 40 of 59  
Data Sheet  
SSM3582  
Address: 0x05, Reset: 0x8A, Name: AMP_DAC_CTRL  
7
6
5
4
3
2
1
0
1
0
0
0
1
0
1
0
[7] DAC_LPM (R/W)  
DAC low power mode  
0: DAC Low Power Mode Disabled.  
1: DAC Low Power Mode Enabled.  
[1:0] ANA_GAIN (R/W)  
Amplifier analog gain select  
0: +13dB (6.3 V peak)  
1: +16 dB (8.9 V peak)  
10: +19 dB (12.6 V peak)  
11: +21 dB (16 V peak)  
[6] RESERVED  
[5] DAC_POL_R (R/W)  
Right Channel DAC output polarity  
control  
[2] RESERVED  
[3] EDGE (R/W)  
0: Normal behavior.  
1: Invert the DAC output.  
Edge rate control  
0: Normal operation.  
1: Low EMI mode operation.  
[4] DAC_POL_L (R/W)  
Left Channel DAC output polarity  
control  
0: Normal behavior.  
1: Invert the DAC output.  
Table 29. Bit Descriptions for AMP_DAC_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_LPM  
DAC Low Power Mode.  
0x1  
R/W  
0
1
DAC low power mode disabled.  
DAC low power mode enabled.  
Reserved.  
6
5
RESERVED  
0x0  
0x0  
R
DAC_POL_R  
Right Channel DAC Output Polarity Control.  
Normal behavior.  
R/W  
0
1
Invert the DAC output.  
Left Channel DAC Output Polarity Control.  
Normal behavior.  
4
3
DAC_POL_L  
EDGE  
0x0  
0x1  
R/W  
R/W  
0
1
Invert the DAC output.  
Edge Rate Control.  
0
1
Normal operation.  
Low EMI mode operation.  
Reserved.  
2
RESERVED  
ANA_GAIN  
0x0  
0x2  
R
[1:0]  
Amplifier Analog Gain Select.  
+13 dB (6.3 V peak).  
R/W  
0
1
+16 dB (8.9 V peak).  
10 +19 dB (12.6 V peak).  
11 +21 dB (16 V peak).  
Rev. 0| Page 41 of 59  
SSM3582  
Data Sheet  
Address: 0x06, Reset: 0x02, Name: DAC_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7] DAC_HV (R/W)  
[2:0] DAC_FS (R/W)  
Hard volume control  
0: Soft volume ramping.  
1: No volume ramping.  
DAC sample rate select  
0: 8kHz to 12 kHz.  
1: 16kHz to 24 kHz.  
10: 32kHz to 48 kHz.  
11: 64kHz to 96 kHz.  
100: 128kHz to 192 kHz.  
101: 48kHz to 72 kHz.  
[6] DAC_MUTE_R (R/W)  
DAC right channel mute  
0: Right channel unmuted.  
1: Right channel muted.  
[3] RESERVED  
[5] DAC_MUTE_L (R/W)  
DAC left channel mute  
0: Left channel unmuted.  
1: Left channel muted.  
[4] DAC_HPF (R/W)  
DAC high pass filter  
0: DAC high pass filter disabled.  
1: DAC high pass filter enabled.  
Table 30. Bit Descriptions for DAC_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_HV  
Hard Volume Control.  
Soft Volume Ramping.  
No Volume Ramping.  
0x0  
0x0  
0x0  
0x0  
R/W  
0
1
6
5
4
DAC_MUTE_R  
DAC_MUTE_L  
DAC_HPF  
DAC Right Channel Mute.  
Right Channel Unmuted.  
Right Channel Muted.  
DAC Left Channel Mute.  
Left Channel Unmuted.  
Left Channel Muted.  
R/W  
R/W  
R/W  
0
1
0
1
DAC High-Pass Filter.  
0
1
DAC High-Pass Filter Disabled.  
DAC High-Pass Filter Enabled.  
Reserved.  
3
RESERVED  
DAC_FS  
0x0  
0x2  
R
[2:0]  
DAC Sample Rate Select.  
8 kHz to 12 kHz.  
R/W  
0
1
16 kHz to 24 kHz.  
10 32 kHz to 48 kHz.  
11 64 kHz to 96 kHz.  
100 128 kHz to 192 kHz.  
101 48 kHz to 72 kHz.  
Rev. 0| Page 42 of 59  
Data Sheet  
SSM3582  
Address: 0x07, Reset: 0x40, Name: VOL_LEFT_CTRL  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7:0] VOL_L (R/W)  
Left channel volume  
0x00: +24 dB.  
0x01: +23.625 dB.  
0x02: ...  
...  
0xFD: -70.875 dB.  
0xFE: -71.25 dB.  
0xFF: Mute.  
Table 31. Bit Descriptions for VOL_LEFT_CTRL  
Bits  
Bit Name  
Settings  
Description  
Left Channel Volume  
0x00 +24 dB  
0x01 +23.625 dB  
0x02  
Reset  
Access  
[7:0]  
VOL_L  
0x40  
R/W  
0x3F +0.375 dB  
0x40 0 dB  
0x41 −0.375 dB  
0x42  
0xFD −70.875 dB  
0xFE −71.25 dB  
0xFF Mute  
Address: 0x08, Reset: 0x40, Name: VOL_RIGHT_CTRL  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7:0] VOL_R (R/W)  
Right channel volume  
0x00: +24 dB.  
0x01: +23.625 dB.  
0x02: ...  
...  
0xFD: -70.875 dB.  
0xFE: -71.25 dB.  
0xFF: Mute.  
Table 32. Bit Descriptions for VOL_RIGHT_CTRL  
Bits  
Bit Name  
Settings  
Description  
Right Channel Volume  
0x00 +24 dB  
0x01 +23.625 dB  
0x02  
Reset  
Access  
[7:0]  
VOL_R  
0x40  
R/W  
0x3F +0.375 dB  
0x40 0 dB  
0x41 −0.375 dB  
0x42  
0xFD −70.875 dB  
0xFE −71.25 dB  
0xFF Mute  
Rev. 0| Page 43 of 59  
SSM3582  
Data Sheet  
Address: 0x09, Reset: 0x11, Name: SAI_CTRL1  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
1
[7] RESERVED  
[0] SAI_MODE (R/W)  
Serial interface mode select  
0: Stereo modes.  
[6] BCLK_POL (R/W)  
BCLK polarity control  
0: Use rising edge to capture SDATA.  
1: Use falling edge to capture SDATA.  
1: TDM modes.  
[1] SDATA_FMT (R/W)  
Serial data format  
0: I2S (delay by 1) Format.  
1: Left Justified Format.  
[5:3] TDM_BCLKS (R/W)  
TDM slot width select  
0: 16 bits.  
1: 24 bits.  
[2] FSYNC_MODE (R/W)  
10: 32 bits.  
FSYNC mode  
11: 48 bits.  
100: 64 bits.  
0: Stereo: low FSYNC is left channel;  
TDM: Frame start on falling edge.  
1: Stereo: high FSYNC is left channel;  
TDM: Frame start on rising edge.  
Table 33. Bit Descriptions for SAI_CTRL1  
Bits  
Bit Name  
RESERVED  
BCLK_POL  
Settings  
Description  
Reset  
Access  
R
7
Reserved.  
0x0  
0x0  
6
BCLK Polarity Control  
R/W  
0
1
Use Rising Edge to Capture SDATA  
Use Falling Edge to Capture SDATA  
TDM Slot Width Select  
16 Bits  
[5:3]  
TDM_BCLKS  
0x2  
R/W  
0
1
24 Bits  
10 32 Bits  
11 48 Bits  
100 64 Bits  
2
1
0
FSYNC_MODE  
SDATA_FMT  
SAI_MODE  
FSYNC Mode  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
0
1
Stereo: Low FSYNC is Left Channel; TDM: Frame Start on Falling Edge  
Stereo: High FSYNC is Left Channel; TDM: Frame Start on Rising Edge  
Serial Data Format  
I2S (Delay by 1) Format  
Left Justified Format  
Serial Interface Mode Select  
Stereo Modes  
0
1
0
1
TDM Modes  
Rev. 0| Page 44 of 59  
Data Sheet  
SSM3582  
Address: 0x0A, Reset: 0x07, Name: SAI_CTRL2  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
[7] SDATA_EDGE (R/W)  
SDATA edge delay mode  
0: Normal operation.  
[0] AUTO_SLOT (R/W)  
Automatic TDM slot selection  
0: Set TDM slots using TDM_SLOTx  
Bits.  
1: Half cycle delay of SDATA.  
1: Set TDM slots automatically using  
ADDRx pin settings.  
[6:5] RESERVED  
[4] DATA_WIDTH (R/W)  
Audio input data width  
0: 24 bits.  
[1] VOL_LINK (R/W)  
Channel volume link  
0: Use independent VOL_L and VOL_R  
controls.  
1: 16 bits.  
1: Link both channels to VOL_L control.  
[3] VOL_ZC_ONLY (R/W)  
Volume control zero-crossing detection  
0: Allow volume to change at all times.  
1: Only change volume when zero-crossing  
is detected (may be different per-channel)  
[2] CLIP_LINK (R/W)  
High frequency clipper link  
0: Use Independent Left and Right DAC_CLIP_x  
Bits.  
1: Link Both Channels to DAC_CLIP_L  
Bits.  
Table 34. Bit Descriptions for SAI_CTRL2  
Bits Bit Name Settings Description  
SDATA Edge Delay Mode  
Reset  
Access  
7
SDATA_EDGE  
0x0  
R/W  
0
1
Normal Operation  
Half Cycle Delay of SDATA  
Reserved  
[6:5] RESERVED  
0x0  
0x0  
R
4
DATA_WIDTH  
Audio Input Data Width  
24 Bits  
R/W  
0
1
16 Bits  
3
VOL_ZC_ONLY  
Volume Control Zero-Crossing Detection  
Allow Volume to Change at All Times  
0x0  
R/W  
0
1
Only Change Volume When Zero-Crossing is Detected (May Be Different Per  
Channel)  
2
1
0
CLIP_LINK  
VOL_LINK  
AUTO_SLOT  
High Frequency Clipper Link  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
0
1
Use Independent Left and Right DAC_CLIP_x Bits  
Link Both Channels to DAC_CLIP_L Bits  
Channel Volume Link  
0
1
Use Independent VOL_L and VOL_R Controls  
Link Both Channels to VOL_L Control  
Automatic TDM Slot Selection  
0
1
Set TDM Slots Using TDM_SLOT_x Bits  
Set TDM Slots Automatically Using the ADDRx Pin Settings  
Rev. 0| Page 45 of 59  
SSM3582  
Data Sheet  
Address: 0x0B, Reset: 0x00, Name: SLOT_LEFT_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[4:0] TDM_SLOT_L (R/W)  
Left channel slot selection  
Table 35. Bit Descriptions for SLOT_LEFT_CTRL  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
Access  
R
RESERVED  
TDM_SLOT_L  
Reserved  
0x0  
0x0  
Left Channel Slot Selection  
R/W  
Address: 0x0C, Reset: 0x01, Name: SLOT_RIGHT_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:5] RESERVED  
[4:0] TDM_SLOT_R (R/W)  
Right channel slot selection  
Table 36. Bit Descriptions for SLOT_RIGHT_CTRL  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
RESERVED  
TDM_SLOT_R  
Reserved  
Right Channel Slot Selection  
0x1  
R/W  
Address: 0x0E, Reset: 0xA0, Name: LIM_LEFT_CTRL1  
7
6
5
4
3
2
1
0
1
0
1
0
0
0
0
0
[7:6] LIM_RRT_L (R/W)  
Left limiter release rate  
0: 3200 ms/dB.  
[1:0] LIM_EN_L (R/W)  
Left limiter mode  
0: Limiter off.  
1: 1600 ms/dB.  
1: Limiter on.  
10: 1200 ms/dB.  
11: 800 ms/dB.  
10: Mute output if VBAT<VBAT_INF_L.  
11: Limiter on only if VBAT<VBAT_INF_L.  
[5:4] LIM_ATR_L (R/W)  
Left limiter attack rate  
0: 120 us/dB.  
[2] VBAT_TRACK_L (R/W)  
Left threshold battery tracking  
0: Fixed Limiter Threshold Set by LIM_THRES_L  
Bits in Register0x0F.  
1: 60 us/dB.  
10: 30 us/dB.  
11: 20 us/dB.  
1: Ramp Down Limiter Threshold when  
VBAT<VBAT_INF_L using SLOPE_x  
bits in Register 0x0F.  
[3] RESERVED  
Table 37. Bit Descriptions for LIM_LEFT_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
LIM_RRT_L  
Left Limiter Release Rate  
3200 ms/dB  
0x2  
R/W  
0
1
1600 ms/dB  
10 1200 ms/dB  
11 800 ms/dB  
[5:4]  
LIM_ATR_L  
RESERVED  
Left Limiter Attack Rate  
120 ꢀs/dB  
60 ꢀs/dB  
0x2  
0x0  
R/W  
0
1
10 30 ꢀs/dB  
11 20 ꢀs/dB  
Reserved  
3
R
Rev. 0| Page 46 of 59  
Data Sheet  
SSM3582  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
VBAT_TRACK_L  
Left Threshold Battery Tracking  
0x0  
R/W  
0
Fixed Limiter Threshold Set by LIM_THRES Bits in Register 0x0F  
1
Ramp Down Limiter Threshold when VBAT < VBAT_INF_L using SLOPE_x bits  
in Register 0x0F.  
[1:0]  
LIM_EN_L  
Left Limiter Mode  
Limiter Off  
0x0  
R/W  
0
1
Limiter On  
10 Mute output if VBAT < VBAT_INF_L.  
11 Limiter on only if VBAT < VBAT_INF_L.  
Address: 0x0F, Reset: 0x51, Name: LIM_LEFT_CTRL2  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
[7:3] LIM_THRES_L (R/W)  
Left Limiter Threshold  
0: 16 V peak.  
1: 15.5 V peak.  
2: 15 V peak.  
...  
29: 3 V peak.  
30: 2.5 V peak.  
31: 2 V peak.  
[1:0] SLOPE_L (R/W)  
Left Limiter Threshold Reduction  
Slope  
0: 1:1 Threshold:VBAT reduction.  
1: 2:1 Threshold:VBAT reduction.  
10: 3:1 Threshold:VBAT reduction.  
11: 4:1 Threshold:VBAT reduction.  
[2] RESERVED  
Table 38. Bit Descriptions for LIM_LEFT_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:3]  
LIM_THRES_L  
Left Limiter Threshold  
16 V peak  
0xA  
R/W  
0
1
2
3
4
5
6
7
8
9
15.5 V peak  
15 V peak  
14.5 V peak  
14 V peak  
13.5 V peak  
13 V peak  
12.5 V peak  
12 V peak  
11.5 V peak  
10 11 V peak  
11 10.5 V peak  
12 10 V peak  
13 9.5 V peak  
14 9.25 V peak  
15 9 V peak  
16 8.75 V peak  
17 8.5 V peak  
18 8.25 V peak  
19 8 V peak  
20 7.5 V peak  
Rev. 0| Page 47 of 59  
SSM3582  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
21 7 V peak  
22 6.5 V peak  
23 6 V peak  
24 5.5 V peak  
25 5 V peak  
26 4.5 V peak  
27 4 V peak  
28 3.5 V peak  
29 3 V peak  
30 2.5 V peak  
31 2 V peak  
Reserved  
2
RESERVED  
SLOPE_L  
0x0  
0x1  
R
[1:0]  
Left Limiter Threshold Reduction Slope  
R/W  
0
1
1:1 Threshold: VBAT Reduction  
2:1 Threshold: VBAT Reduction  
10 3:1 Threshold: VBAT Reduction  
11 4:1 Threshold: VBAT Reduction  
Address: 0x10, Reset: 0x22, Name: LIM_LEFT_CTRL3  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7:0] VBAT_INF_L (R/W)  
Left limiter battery voltage inflection  
point  
Table 39. Bit Descriptions for LIM_LEFT_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VBAT_INF_L  
Left Limiter Battery Voltage Inflection Point  
0x22  
R/W  
Rev. 0| Page 48 of 59  
Data Sheet  
SSM3582  
Address: 0x11, Reset: 0xA8, Name: LIM_RIGHT_CTRL1  
7
6
5
4
3
2
1
0
1
0
1
0
1
0
0
0
[7:6] LIM_RRT_R (R/W)  
Right limiter release rate  
0: 3200 ms/dB.  
[1:0] LIM_EN_R (R/W)  
Right limiter mode  
0: Limiter off.  
1: 1600 ms/dB.  
1: Limiter on.  
10: 1200 ms/dB.  
11: 800 ms/dB.  
10: Mute output if VBAT<VBAT_INF_R.  
11: Limiter on only if VBAT<VBAT_INF_R.  
[5:4] LIM_ATR_R (R/W)  
Right limiter attack rate  
0: 120 us/dB.  
[2] VBAT_TRACK_R (R/W)  
Right threshold battery tracking  
0: Fixed Limiter Threshold set by LIM_THRES_R  
Bits in Register 0x12.  
1: 60 us/dB.  
10: 30 us/dB.  
11: 20 us/dB.  
1: Ramp down limiter threshold when  
VBAT<VBAT_INF_R using SLOPE_R  
Bits in Register 0x12.  
[3] LIM_LINK (R/W)  
Channel limiter link  
0: Use independent left and right channel  
limiters.  
1: Link both channels to one limiter  
(use left limiter controls)  
Table 40. Bit Descriptions for LIM_RIGHT_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
LIM_RRT_R  
Right Limiter Release Rate  
3200 ms/dB  
0x2  
R/W  
0
1
1600 ms/dB  
10 1200 ms/dB  
11 800 ms/dB  
[5:4]  
LIM_ATR_R  
Right Limiter Attack Rate  
120 ꢀs/dB  
60 ꢀs/dB  
0x2  
R/W  
0
1
10 30 ꢀs/dB  
11 20 ꢀs/dB  
3
2
LIM_LINK  
Channel Limiter Link  
0x1  
0x0  
R/W  
R/W  
0
1
Use Independent Left and Right Channel Limiters  
Link Both Channels to one Limiter (Use Left Limiter Controls)  
Right Threshold Battery Tracking  
VBAT_TRACK_R  
0
1
Fixed Limiter Threshold set by LIM_THRES_R Bits in Register 0x12  
Ramp down limiter threshold when VBAT < VBAT_INF_R using SLOPE_R Bits  
in Register 0x12.  
[1:0]  
LIM_EN_R  
Right Limiter Mode  
Limiter Off  
0x0  
R/W  
0
1
Limiter On  
10 Mute output if VBAT < VBAT_INF_R.  
11 Limiter on only if VBAT < VBAT_INF_R.  
Rev. 0| Page 49 of 59  
SSM3582  
Data Sheet  
Address: 0x12, Reset: 0x51, Name: LIM_RIGHT_CTRL2  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
[7:3] LIM_THRES_R (R/W)  
Right limiter threshold  
0: 16 Vp.  
1: 15.5 Vp.  
2: 15 Vp.  
[1:0] SLOPE_R (R/W)  
Right limiter threshold reduction slope  
0: 1:1 Threshold:VBAT reduction.  
1: 2:1 Threshold:VBAT reduction.  
10: 3:1 Threshold:VBAT reduction.  
11: 4:1 Threshold:VBAT reduction.  
...  
29: 3 Vp.  
30: 2.5 Vp.  
31: 2 Vp.  
[2] RESERVED  
Table 41. Bit Descriptions for LIM_RIGHT_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0xA  
Access  
[7:3]  
LIM_THRES_R  
Right Limiter Threshold  
16 V p-p  
R/W  
0
1
2
3
4
5
6
7
8
9
15.5 V p-p  
15 V p-p  
14.5 V p-p  
14 V p-p  
13.5 V p-p  
13 V p-p  
12.5 V p-p  
12 V p-p  
11.5 V p-p  
10 11 V p-p  
11 10.5 V p-p  
12 10 V p-p  
13 9.5 V p-p  
14 9.25 V p-p  
15 9 V p-p  
16 8.75 V p-p  
17 8.5 V p-p  
18 8.25 V p-p  
19 8 V p-p  
20 7.5 V p-p  
21 7 V p-p  
22 6.5 V p-p  
23 6 V p-p  
24 5.5 V p-p  
25 5 V p-p  
26 4.5 V p-p  
27 4 V p-p  
28 3.5 V p-p  
29 3 V p-p  
30 2.5 V p-p  
31 2 V p-p  
Rev. 0| Page 50 of 59  
Data Sheet  
SSM3582  
Bits  
2
Bit Name  
RESERVED  
SLOPE_R  
Settings  
Description  
Reset  
Access  
R
Reserved  
0x0  
0x1  
[1:0]  
Right Limiter Threshold Reduction Slope  
1:1 Threshold: VBAT Reduction  
2:1 Threshold: VBAT Reduction  
R/W  
0
1
10 3:1 Threshold: VBAT Reduction  
11 4:1 Threshold: VBAT Reduction  
Address: 0x13, Reset: 0x22, Name: LIM_RIGHT_CTRL3  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7:0] VBAT_INF_R (R/W)  
Right limiter battery voltage inflection  
point  
Table 42. Bit Descriptions for LIM_RIGHT_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VBAT_INF_R  
Right Limiter Battery Voltage Inflection Point  
0x22  
R/W  
Address: 0x14, Reset: 0xFF, Name: CLIP_LEFT_CTRL  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
[7:0] DAC_CLIP_L (R/W)  
Left DAC high frequency clip value  
0xFF: Clip to 0 dB.  
0xFE: Clip to 255/256.  
0xFD: Clip to 254/256.  
0xFC: ...  
0x00: Clip to 1/256.  
Table 43. Bit Descriptions for CLIP_LEFT_CTRL  
Bits  
Bit Name  
Settings  
Description  
Left DAC High Frequency Clip Value  
0xFF Clip to 0 dB  
Reset  
Access  
[7:0]  
DAC_CLIP_L  
0xFF  
R/W  
0xFE Clip to 255/256  
0xFD Clip to 254/256  
0xFC  
0x00 Clip to 1/256  
Rev. 0| Page 51 of 59  
SSM3582  
Data Sheet  
Address: 0x15, Reset: 0xFF, Name: CLIP_RIGHT_CTRL  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
[7:0] DAC_CLIP_R (R/W)  
Right DAC high frequency clip value  
0xFF: Clip to 0 dB.  
0xFE: Clip to 255/256.  
0xFD: Clip to 254/256.  
0xFC: ...  
0x00: Clip to 1/256.  
Table 44. Bit Descriptions for CLIP_RIGHT_CTRL  
Bits  
Bit Name  
Settings  
Description  
Right DAC High Frequency Clip Value  
0xFF Clip to 0 dB  
Reset  
Access  
[7:0]  
DAC_CLIP_R  
0xFF  
R/W  
0xFE Clip to 255/256  
0xFD Clip to 254/256  
0xFC  
0x00 Clip to 1/256  
Address: 0x16, Reset: 0x00, Name: FAULT_CTRL1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[1:0] OTW_GAIN_L (R/W)  
Left channel over temperature warning  
gain reduction  
[5:4] OTW_GAIN_R (R/W)  
Right channel over temperature warning  
gain reduction  
0: No gain reduction.  
1: 1.5 dB gain reduction.  
10: 3 dB gain reduction.  
11: 5.625 dB gain reduction.  
0: No gain reduction.  
1: 1.5 dB gain reduction.  
10: 3 dB gain reduction.  
11: 5.625 dB gain reduction.  
[3:2] RESERVED  
Table 45. Bit Descriptions for FAULT_CTRL1  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
RESERVED  
OTW_GAIN_R  
Reserved  
Right Channel Over Temperature Warning Gain Reduction  
No Gain Reduction  
0x0  
R/W  
0
1
1.5 dB Gain Reduction  
10 3 dB Gain Reduction  
11 5.625 dB Gain Reduction  
Reserved  
[3:2]  
[1:0]  
RESERVED  
0x0  
0x0  
R
OTW_GAIN_L  
Left Channel Over Temperature Warning Gain Reduction  
R/W  
0
1
No Gain Reduction  
1.5 dB Gain Reduction  
10 3 dB Gain Reduction  
11 5.625 dB Gain Reduction  
Rev. 0| Page 52 of 59  
Data Sheet  
SSM3582  
Address: 0x17, Reset: 0x30, Name: FAULT_CTRL2  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
0
[7] MRCV (W)  
[0] ARCV_OC (R/W)  
Engage manual fault recovery attempt  
0: No manual recovery attempt.  
1: One manual recovery attempt.  
Overcurrent fault auto recovery control  
0: Auto Recovery Enabled.  
1: Manual recovery using MRCV Bit.  
[6] RESERVED  
[1] ARCV_OT (R/W)  
Over temperature fault auto recovery  
control  
0: Auto Recovery Enabled.  
1: Manual recovery using MRCV Bit.  
[5:4] MAX_AR (R/W)  
Maximum Automatic Recovery Attempts  
0: 1 attempt.  
1: 3 attempts.  
10: 7 attempts.  
[2] ARCV_UV (R/W)  
11: Unlimited attempts.  
Undervoltage Fault Auto Recovery  
Control  
0: Auto Recovery Enabled.  
1: Manual recovery using MRCV Bit.  
[3] RESERVED  
Table 46. Bit Descriptions for FAULT_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
W
7
MRCV  
Engage Manual Fault Recovery Attempt  
0x0  
0x0  
0x3  
6
RESERVED  
MAX_AR  
Reserved  
R
[5:4]  
Maximum Automatic Recovery Attempts  
R/W  
0
1
1 Attempt  
3 Attempts  
10 7 Attempts  
11 Unlimited Attempts  
Reserved  
3
2
RESERVED  
ARCV_UV  
0x0  
0x0  
R
Undervoltage Fault Automatic Recovery Control  
Automatic Recovery Enabled  
R/W  
0
1
Manual Recovery Using MRCV Register  
Over Temperature Fault Automatic Recovery Control  
Automatic Recovery Enabled  
1
0
ARCV_OT  
ARCV_OC  
0x0  
0x0  
R/W  
R/W  
0
1
Manual Recovery Using MRCV Bit  
Over Current Fault Automatic Recovery Control  
Automatic Recovery Enabled  
0
1
Manual Recovery Using MRCV Bit  
Rev. 0| Page 53 of 59  
SSM3582  
Data Sheet  
Address: 0x18, Reset: 0x00, Name: STATUS1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] UVLO_PVDD (R)  
[0] OTW (R)  
PVDD under-voltage fault condition  
0: PVDD OK.  
1: PVDD undervoltage fault condition.  
Over temperature warning condition  
0: No over temperature warning.  
1: Over temperature warning.  
[6] UVLO_VREG(R)  
[1] OTF(R)  
Regulator under-voltage fault condition  
0: No undervoltage fault for AVDD regulator.  
1: Undervoltage fault for AVDD regulator.  
Over temperature fault condition  
0: No over temperature fault.  
1: Over temperature fault.  
[5:2] RESERVED  
Table 47. Bit Descriptions for STATUS1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
UVLO_PVDD  
PVDD Undervoltage Fault Condition  
PVDD OK  
0x0  
R
0
1
PVDD undervoltage fault condition  
6
UVLO_VREG  
Regulator Undervoltage Fault Condition  
No undervoltage fault for AVDD regulator  
Undervoltage fault for AVDD regulator  
Reserved  
0x0  
R
0
1
[5:2]  
1
RESERVED  
OTF  
0x0  
0x0  
R
R
Over Temperature Fault Condition  
No overtemperature fault  
0
1
Overtemperature fault  
0
OTW  
Over Temperature Warning Condition  
No overtemperature warning  
Overtemperature warning  
0x0  
R
0
1
Address: 0x19, Reset: 0x00, Name: STATUS2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] LIM_EG_R (R)  
[0] BAT_WARN_L (R)  
Right limiter gain reduction engaged  
0: Limiter Gain Reduction Right Off.  
1: Limiter Gain Reduction Right On.  
Battery voltage warning for left channel  
(VBAT<VBAT_INF_x)  
0: VBAT > VBAT_INF_L left channel.  
1: VBAT < VBAT_INF_L left channel.  
[6] CLIP_R (R)  
Right channel DAC clipping detected  
0: No clipping right channel.  
1: Clipping right channel.  
[1] AMP_OC_L (R)  
Left channel amplifier overcurrent  
condition  
0: No over current left channel.  
1: Over current left channel.  
[5] AMP_OC_R (R)  
Right channel amplifier overcurrent  
condition  
[2] CLIP_L (R)  
0: No over current right channel.  
1: Over current right channel.  
Left channel DAC clipping detected  
0: No clipping left channel.  
1: Clipping left channel.  
[4] BAT_WARN_R (R)  
Battery voltage warning for right channel  
(VBAT<VBAT_INF_x)  
0: VBAT > VBAT_INF_R right channel.  
1: VBAT < VBAT_INF_R right channel.  
[3] LIM_EG_L (R)  
Left limiter gain reduction engaged  
0: Limiter Gain Reduction Left Off.  
1: Limiter Gain Reduction Left On.  
Table 48. Bit Descriptions for STATUS2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
LIM_EG_R  
Right limiter gain reduction engaged  
Limiter Gain Reduction Right Off.  
Limiter Gain Reduction Right On.  
0x0  
R
0
1
Rev. 0| Page 54 of 59  
Data Sheet  
SSM3582  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
CLIP_R  
Right channel DAC clipping detected  
No clipping right channel.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
0
1
Clipping right channel.  
5
4
3
2
1
0
AMP_OC_R  
BAT_WARN_R  
LIM_EG_L  
Right channel amplifier overcurrent condition  
No overcurrent right channel.  
R
R
R
R
R
R
0
1
Overcurrent right channel.  
Battery voltage warning for right channel (VBAT < VBAT_INF_x)  
VBAT > VBAT_INF_R right channel.  
VBAT < VBAT_INF_R right channel.  
Left limiter gain reduction engaged  
Limiter Gain Reduction Left Off.  
Limiter Gain Reduction Left On.  
Left channel DAC clipping detected  
No clipping left channel.  
0
1
0
1
CLIP_L  
0
1
Clipping left channel.  
AMP_OC_L  
BAT_WARN_L  
Left channel amplifier overcurrent condition  
No over current left channel.  
0
1
Over current left channel.  
Battery voltage warning for left channel (VBAT < VBAT_INF_x)  
VBAT > VBAT_INF_L left channel.  
VBAT < VBAT_INF_L left channel.  
0
1
Address: 0x1A, Reset: 0x00, Name: VBAT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VBAT (R)  
Battery voltage readback  
Table 49. Bit Descriptions for VBAT  
Bits  
Bit Name  
Settings  
Description  
Battery Voltage Readback  
Reset  
Access  
[7:0]  
VBAT  
0x0  
R
Address: 0x1B, Reset: 0x00, Name: TEMP  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] TEMP (R)  
Temperature Sensor Readout  
Table 50. Bit Descriptions for TEMP  
Bits Bit Name Settings Description  
Reset  
0x0  
Access  
[7:0] TEMP  
Temperature Sensor Readout. The actual temperature in degrees Celsius is TEMP –  
60 decimal.  
R
Rev. 0| Page 55 of 59  
SSM3582  
Data Sheet  
Address: 0x1C, Reset: 0x00, Name: SOFT_RESET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] S_RST (W)  
Full software reset  
0: Normal operation.  
1: Perform full software reset.  
Table 51. Bit Descriptions for SOFT_RESET  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
S_RST  
Settings  
Description  
Reset  
Access  
Reserved  
0x0  
0x0  
R
Full Software Reset  
Normal Operation  
W
0
1
Perform Full Software Reset  
Rev. 0| Page 56 of 59  
Data Sheet  
SSM3582  
TYPICAL APPLICATION CIRCUIT  
Figure 86 shows a typical application circuit for a stereo output. Figure 87 shows a typical application circuit for a mono output.  
+1.8V  
(DVDD)  
PVDD  
+4.5V TO +16V  
SEE DEVICE ADDRESS  
SETTING SECTION  
C9  
470µF  
C4  
0.1µF  
C5  
C6  
C7  
C8  
10µF 0.1µF  
10µF 470µF  
+1.8V  
C1  
0.1uF  
C2  
10µF  
C3  
10µF  
PVDD  
R2  
2.2k  
R1  
2.2kꢀ  
SCL  
2
I C  
REG  
AVDD  
REG  
DVDD  
2
PVDD  
I C  
SDA  
BSTL+  
OPTIONAL  
C10  
0.22µF  
FB1  
FB2  
BCLK  
FSYNC  
SDATA  
FULL  
Σ-∆  
2
TDM  
I S/TDM  
OUTL+  
OUTL–  
BRIDGE  
POWER  
STAGE  
2
VOLUME  
4/8ꢀ  
DAC  
CLASS-D  
I S  
MODULATOR  
INPUT  
C14  
220pF  
C15  
220pF  
C11  
0.22µF  
BSTL–  
BSTR+  
PVDD  
FB1/FB2: MURATA FERRITE BEAD NFZ2MSM181  
OPTIONAL  
FB3  
C12  
0.22µF  
FULL  
Σ-∆  
OUTR+  
OUTR–  
BRIDGE  
POWER  
STAGE  
FB4  
4/8ꢀ  
VOLUME  
DAC  
CLASS-D  
MODULATOR  
C16  
220pF  
C17  
220pF  
C13  
0.22µF  
BSTR–  
SSM3582  
FB3/FB3: MURATA FERRITE BEAD NFZ2MSM181  
AGND  
PGND  
ADDRx PIN SETUP OPTIONS  
DVDD_EN PIN SETUP OPTIONS  
DVDD_EN  
OPEN  
GND  
ADDRx  
ADDRx  
DVDD_EN  
AVDD  
ADDRx  
ADDRx  
DVDD  
DVDD  
AVDD_EN PIN SETUP OPTIONS  
AVDD_EN  
47kTO GND  
47kTO DVDD DVDD  
47kꢀ  
ADDRx  
AVDD_EN  
PVDD  
47kꢀ  
Figure 86. Typical Application Circuit for Stereo Output  
Rev. 0| Page 57 of 59  
 
 
SSM3582  
Data Sheet  
+1.8V  
(DVDD)  
PVDD  
+4.5V TO +16V  
SEE DEVICE ADDRESS  
SETTING SECTION  
C9  
470µF  
C4  
0.1µF  
C5  
C6  
C7  
C8  
+1.8V  
10µF 0.1µF  
10µF 470µF  
C1  
0.1uF  
C2  
10µF  
C3  
10µF  
PVDD  
R2  
2.2k  
R1  
2.2kꢀ  
SCL  
SDA  
2
I C  
REG  
AVDD  
REG  
DVDD  
2
PVDD  
I C  
BSTL+  
OPTIONAL  
C10  
0.22µF  
FB1  
FB2  
BCLK  
FSYNC  
SDATA  
FULL  
Σ-∆  
2
TDM  
I S/TDM  
OUTL+  
OUTL–  
BRIDGE  
POWER  
STAGE  
2
VOLUME  
2/3ꢀ  
DAC  
CLASS-D  
I S  
MODULATOR  
INPUT  
C14  
220pF  
C15  
220pF  
C11  
0.22µF  
BSTL–  
BSTR+  
PVDD  
FB1/FB2: MURATA FERRITE BEAD NFZ2MSM181  
C12  
0.22µF  
FULL  
Σ-∆  
OUTR+  
OUTR–  
BRIDGE  
POWER  
STAGE  
VOLUME  
DAC  
CLASS-D  
MODULATOR  
C13  
0.22µF  
BSTR–  
SSM3582  
AGND  
PGND  
ADDRx PIN SETUP OPTIONS  
DVDD_EN PIN SETUP OPTIONS  
DVDD_EN  
OPEN  
GND  
ADDRx  
ADDRx  
DVDD_EN  
AVDD  
ADDRx  
ADDRx  
DVDD  
DVDD  
AVDD_EN PIN SETUP OPTIONS  
AVDD_EN  
47kTO GND  
47kTO DVDD DVDD  
47kꢀ  
ADDRx  
AVDD_EN  
PVDD  
47kꢀ  
Figure 87. Typical Application Circuit for Mono Output  
Rev. 0| Page 58 of 59  
 
Data Sheet  
SSM3582  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
*
4.70  
EXPOSED  
PAD  
4.60 SQ  
4.50  
10  
21  
11  
20  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 88. 40-Lead Lead Free Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.75 mm Package Height  
(CP-40-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
SSM3582BCPZ  
SSM3582BCPZRL  
SSM3582BCPZR7  
EVAL-SSM3582Z  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
40-Lead Lead Free Chip Scale Package [LFCSP]  
40-Lead Lead Free Chip Scale Package [LFCSP]  
40-Lead Lead Free Chip Scale Package [LFCSP]  
Evaluation Board  
CP-40-7  
CP-40-7  
CP-40-7  
1 Z = RoHs Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13399-0-4/16(0)  
Rev. 0| Page 59 of 59  
 
 

相关型号:

SSM3582BCPZR7

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZRL

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM35PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM360AF

Rectifier Diode,
SURGE

SSM36PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM3J01F

High Speed Switching Applications
TOSHIBA

SSM3J01F(TE85L,F)

SSM3J01F(TE85L,F)
TOSHIBA

SSM3J01T

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA

SSM3J02F

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA

SSM3J02T

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA

SSM3J05FU

Power Management Switch High Speed Switching Applications
TOSHIBA

SSM3J05FU(TE85L)

SSM3J05FU(TE85L)
TOSHIBA