TMS470R1B512PGET [ADI]

16/32-Bit RISC Flash Microcontroller; 16位/ 32位RISC闪存微控制器
TMS470R1B512PGET
型号: TMS470R1B512PGET
厂家: ADI    ADI
描述:

16/32-Bit RISC Flash Microcontroller
16位/ 32位RISC闪存微控制器

闪存 微控制器 外围集成电路 装置 时钟
文件: 总49页 (文件大小:471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
FEATURES  
External Clock Prescale (ECP) Module  
High-Performance Static CMOS Technology  
– Programmable Low-Frequency External  
Clock (CLK)  
TMS470R1x 16/32-Bit RISC Core  
(ARM7TDMI™)  
Seven Communication Interfaces:  
– Three Serial Peripheral Interfaces (SPIs)  
255 Programmable Baud Rates  
– 24-MHz System Clock (60-MHz Pipeline  
Mode)  
– Independent 16/32-Bit Instruction Set  
– Open Architecture With Third-Party Support  
– Built-In Debug Module  
– Two Serial Communications Interfaces  
(SCIs)  
224 Selectable Baud Rates  
– Utilizes Big-Endian Format  
Asynchronous/Isosynchronous Modes  
Two High-End CAN Controllers (HECCs)  
32-Mailbox Capacity Each  
Integrated Memory  
– 512K-Byte Program Flash  
2 Banks With 14 Contiguous Sectors  
Fully Compliant With CAN Protocol,  
Version 2.0B  
Internal State Machine for Programming  
and Erase  
High-End Timer (HET)  
– 32K-Byte Static RAM (SRAM)  
– 32 Programmable I/O Channels:  
24 High-Resolution Pins  
8 Standard-Resolution Pins  
– High-Resolution Share Feature (XOR)  
– High-End Timer RAM  
27 Dedicated General-Purpose Input/Output  
(GIO) Pins, 1 Input-Only GIO Pin, and 59  
Additional Peripheral I/Os  
Operating Features  
– Core Supply Voltage (VCC): 1.81 V – 2.05 V  
– I/O Supply Voltage (VCCIO): 3.0 V – 3.6 V  
– Low-Power Modes: STANDBY and HALT  
– Extended Industrial Temperature Range  
470+ System Module  
128-Instruction Capacity  
16-Channel 10-Bit Multi-Buffered ADC  
(MibADC)  
– 128-Word FIFO Buffer  
– Single- or Continuous-Conversion Modes  
– 32-Bit Address Space Decoding  
– 1.55 µs Minimum Sample and Conversion  
– Bus Supervision for Memory and  
Peripherals  
Time  
– Calibration Mode and Self-Test Features  
Eight External Interrupts  
– Analog Watchdog (AWD) Timer  
– Real-Time Interrupt (RTI)  
Flexible Interrupt Handling  
– System Integrity and Failure Detection  
– Interrupt Expansion Module (IEM)  
Direct Memory Access (DMA) Controller  
– 32 Control Packets and 16 Channels  
On-Chip Scan-Base Emulation Logic, IEEE  
Standard 1149.1(1) (JTAG) Test-Access Port  
144-Pin Plastic Low-Profile Quad Flatpack  
(PGE Suffix)  
(1)  
The test-access port is compatible with the IEEE Standard  
1149.1-1990, IEEE Standard Test-Access Port and Boundary  
Scan Architecture specification. Boundary scan is not  
Zero-Pin Phase-Locked Loop (ZPLL)-Based  
Clock Module With Prescaler  
– Multiply-by-4 or -8 Internal ZPLL Option  
– ZPLL Bypass Mode  
supported on this device.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM).  
All other trademarks are the property of their respective owners.  
ADVANCE INFORMATION concerns new products in the sampling  
or preproduction phase of development. Characteristic data and  
other specifications are subject to change without notice.  
Copyright © 2005–2006, Texas Instruments Incorporated  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
TMS470R1B512 144-Pin PGE Package (Top View)  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
ADIN[11]  
ADIN[14]  
ADIN[10]  
ADIN[13]  
ADIN[9]  
AWD  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
SPI2SCS  
SPI2ENA  
SPI2SOMI  
SPI2SIMO  
SPI2CLK  
GIOB[4]  
GIOB[3]  
GIOB[2]  
GIOB[1]  
CAN2HRX  
CAN2HTX  
ADIN[12]  
ADIN[8]  
AD  
REFHI  
AD  
REFLO  
V
CCAD  
V
SSAD  
TMS  
TMS2  
GIOC[0]  
HET[23]  
HET[25]  
HET[26]  
HET[27]  
V
V
V
V
CC  
V
V
SS  
SS  
CC  
CCIO  
HET[0]  
HET[1]  
SSIO  
HET[24]  
HET[31]  
HET[30]  
HET[29]  
HET[28]  
GIOB[0]  
SCI2CLK  
SCI2TX  
V
V
SS  
CC  
FLTP2  
FLTP1  
V
CCP  
V
SS  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
GIOC[1]  
GIOC[2]  
SCI2RX  
GIOA[3]/INT[3]  
GIOA[2]/INT[2]  
GIOA[1]/INT[1]/ECLK  
GIOA[0]/INT[0]  
TEST  
(A)  
TRST  
A. GIOA[0]/INT0 (pin 39) is an input-only GIO pin.  
2
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
DESCRIPTION  
The TMS470R1B512(1) device is  
a
member of the Texas Instruments (TI) TMS470R1x family of  
general-purpose16/32-bit reduced instruction set computer (RISC) microcontrollers. The B512 microcontroller  
offers high performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU),  
resulting in a high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit  
RISC CPU views memory as a linear collection of bytes numbered upwards from zero. The B512 utilizes the  
big-endian format, where the most significant byte of a word is stored at the lowest numbered byte and the least  
significant byte at the highest numbered byte.  
High-end embedded control applications demand more performance from their controllers while maintaining low  
costs. The B512 RISC core architecture offers solutions to these performance and cost demands while  
maintaining low power consumption.  
The B512 device contains the following:  
ARM7TDMI 16/32-Bit RISC CPU  
TMS470R1x system module (SYS) with 470+ enhancements [including an interrupt expansion module (IEM)  
and a 16-channel direct-memory access (DMA) controller]  
512K-byte flash  
32K-byte SRAM  
Zero-pin phase-locked loop (ZPLL) clock module  
Analog watchdog (AWD) timer  
Real-time interrupt ( RTI) module  
Three serial peripheral interface (SPI) modules  
Two serial communications interface (SCI) modules  
Two high-end CAN controller (HECC) modules  
10-bit multi-buffered analog-to-digital converter (MibADC) with 16 input channels  
High-end timer (HET) controlling 32 I/Os  
External clock prescale (ECP) module  
Up to 86 I/O pins and 1 input-only pin  
The functions performed by the 470+ system module (SYS) include:  
Address decoding  
Memory protection  
Memory and peripherals bus supervision  
Reset and abort exception management  
Expanded interrupt capability with prioritization for all internal interrupt sources  
Device clock control  
Direct-memory access (DMA) and control  
Parallel signature analysis (PSA).  
This data sheet includes device-specific information such as memory and peripheral select assignment, interrupt  
priority, and a device memory map. For a more detailed functional description of the SYS module, see the  
TMS470R1x System Module Reference Guide (literature number SPNU189). For a more detailed functional  
description of the IEM module, see the TMS470R1x Interrupt Expansion Module (IEM) Reference Guide  
(literature number SPNU211). For a more detailed functional description of the DMA module, see the  
TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194).  
The B512 memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,  
half-word, and word modes.  
(1) The TMS470R1B512 device name will be referred to as either the full device name or as B512 throughout the remainder of this  
document.  
3
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented  
with a 32-bit-wide data bus interface. The flash operates with a system clock frequency of up to 24 MHz. When  
in pipeline mode, the flash operates with a system clock frequency of up to 60 MHz. For more detailed  
information on the F05 devices flash, see the F05 Flash section of this data sheet and the TMS470R1x F05  
Flash Reference Guide (literature number SPNU213).  
The B512 device has seven communication interfaces: three SPIs, two SCIs, and two HECCs. The SPI provides  
a convenient method of serial interaction for high-speed communications between similar shift-register type  
devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between the  
CPU and other peripherals using the standard non-return-to-zero (NRZ) format. The HECC uses a serial,  
multimaster communication protocol that efficiently supports distributed real-time control with robust  
communication rates of up to 1 megabit per second (Mbps). The HECC is ideal for applications operating in  
noisy and harsh environments (e.g., industrial fields) that require reliable serial communication or multiplexed  
wiring. For more detailed functional information on the SPI, SCI, and HECC peripherals, see the specific  
reference guides (literature numbers SPNU195, SPNU196, and SPNU197, respectively).  
The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications.  
The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an  
attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited  
for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses.  
For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference  
Guide (literature number SPNU199).  
The B512 HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high-  
resolution channels to be XORed together, making it possible to output smaller pulses than a standard HET. For  
more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET)  
Reference Guide (literature number SPNU199).  
The B512 device has a 10-bit-resolution, 16-channel sample-and-hold MibADC. The MibADC channels can be  
converted individually or can be grouped by software for sequential conversion sequences. There are three  
separate groupings, two of which can be triggered by an external event. Each sequence can be converted once  
when triggered or configured for continuous conversion mode. For more detailed functional information on the  
MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature  
number SPNU206).  
The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a  
clock-enable circuit, and a prescaler (with prescale values of 1-8). The function of the ZPLL is to multiply the  
external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system  
(SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock  
(RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other B512 device modules. For more  
detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock  
Module Reference Guide (literature number SPNU212).  
NOTE:  
ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the  
continuous system clock from an external resonator/crystal reference.  
The B512 device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous  
external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the  
peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the  
TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202).  
4
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Device Characteristics  
The B512 device is a derivative of the F05 system emulation device SE470R1VB8AD. Table 1 identifies all the  
characteristics of the B512 device except the SYSTEM and CPU, which are generic.  
Table 1. Device Characteristics  
DEVICE DESCRIPTION  
CHARACTERISTICS  
COMMENTS  
TMS470R1B512  
MEMORY  
For the number of memory selects on this device, see Table 3, Memory Selection Assignment.  
Pipeline/Non-Pipeline  
Flash is pipeline-capable.  
INTERNAL MEMORY  
512K-Byte flash  
32K-Byte SRAM  
The B512 RAM is implemented in one 32K array selected by two  
memory-select signals (see Table 3, Memory Selection Assignment).  
PERIPHERALS  
For the device-specific interrupt priority configurations, see Table 7, Interrupt Priority (IEM and CIM). And for the 1K peripheral address  
ranges and their peripheral selects, see Table 5, A512 Peripherals, System Module, and Flash Base Addresses.  
CLOCK  
ZPLL  
Zero-pin PLL has no external loop filter pins.  
27 I/O  
1 Input only  
Ports A, B, and C each have eight (8) external pins.  
Port D has four (4) external pins.  
GENERAL-PURPOSE I/Os  
ECP  
SCI  
YES  
2 (3-pin)  
2 HECCs  
SCI1 and SCI2  
CAN  
Two high-end CAN controller modules (HECC1 and HECC2)  
(HECC and/or SCC)  
SPI  
3 (5-pin)  
SPI1, SPI2, and SPI3  
(5-pin, 4-pin or 3-pin)  
The B512 device has both the logic and registers for a full 32-I/O HET  
implemented and all 32 pins are available externally.  
The high-resolution (HR) SHARE feature allows even HR pins to share  
the next higher odd HR pin structures. This HR sharing is independent  
of whether or not the odd pin is available externally. If an odd pin is  
available externally and shared, then the odd pin can only be used as a  
general-purpose I/O. For more information on HR SHARE, see the  
TMS470R1x High-End Timer (HET) Reference Guide (literature number  
SPNU199).  
HET with XOR Share  
32 I/O  
HET RAM  
MibADC  
128-Instruction Capacity  
10-bit, 16-channel 128-word  
FIFO  
The B512 device has both the logic and registers for a full 16-channel  
MibADC implemented and all 16 pins are available externally.  
CORE VOLTAGE  
I/O VOLTAGE  
PINS  
1.81 – 2.05 V  
3.0 – 3.6 V  
144  
PACKAGE  
PGE  
5
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Functional Block Diagram  
External  
Pins  
External Pins  
OSCIN  
ZPLL  
OSCOUT  
PLLDIS  
V
CCP  
FLASH  
(512K Bytes)  
14 Sectors  
RAM  
(32K Bytes)  
FLTP1  
FLTP2  
ADIN[15:0]  
ADEVT  
MibADC  
with  
128−Word  
AD  
AD  
REFHI  
CPU Address/Data Bus  
REFLO  
FIFO  
V
CCAD  
V
SSAD  
HET with  
XOR Share  
(128−Word)  
HET [31:24]  
HET[23:0]  
TRST  
TCK  
TMS470R1x  
CPU  
TDI  
TDO  
TMS  
TMS2  
RST  
CAN1HTX  
CAN1HRX  
HECC1  
HECC2  
CAN2HTX  
CAN2HRX  
TMS470R1x System Module  
SCI1CLK  
SCI1TX  
SCI1RX  
AWD  
SCI1  
SCI2  
TEST  
PORRST  
CLKOUT  
Interrupt  
Expansion  
Module (IEM)  
DMA Controller  
16 Channels  
SCI2CLK  
SCI2TX  
SCI2RX  
ECP  
GIO  
SPI3  
SPI2  
SPI1  
A. GIOA[0]/INT0 is an input-only pin.  
6
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
HIGH-END TIMER (HET)  
HET[0]  
129  
130  
137  
138  
139  
140  
141  
142  
79  
HET[1]  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
HET[8]  
HET[9]  
80  
HET[10]  
HET[11]  
HET[12]  
HET[13]  
HET[14]  
HET[15]  
HET[16]  
HET[17]  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
HET[23]  
HET[24]  
HET[25]  
HET[26]  
HET[27]  
HET[28]  
HET[29]  
HET[30]  
HET[31]  
29  
28  
The B512 device has both the logic and registers for a full 32-I/O HET  
implemented and all 32 pins are available externally.  
27  
26  
Timer input capture or output compare. The HET[31:0] applicable pins can  
be programmed as general-purpose input/output (GIO) pins. HET[23:0] are  
high-resolution pins and HET[31:24] are standard-resolution pins.  
25  
24  
The high-resolution (HR) SHARE feature allows even HR pins to share the  
next higher odd HR pin structures. This HR sharing is independent of  
whether or not the odd pin is available externally. If an odd pin is available  
externally and shared, then the odd pin can only be used as a  
general-purpose I/O. For more information on HR SHARE, see the  
TMS470R1x High-End Timer (HET) Reference Guide (literature number  
SPNU199).  
3.3-V I/O  
IPD (20 µA)  
23  
22  
71  
70  
69  
68  
67  
123  
51  
124  
125  
126  
47  
48  
49  
50  
HIGH-END CAN CONTROLLER 1 (HECC1)  
CAN1HTX  
CAN1HRX  
88  
87  
3.3-V I/O  
3.3-V I/O  
IPU (20 µA)  
HECC1 transmit pin or GIO pin  
HECC1 receive pin or GIO pin  
HIGH-END CAN CONTROLLER 2 (HECC2)  
CAN2HTX  
CAN2HRX  
56  
57  
3.3-V I/O  
3.3-V I/O  
IPU (20 µA)  
HECC2 transmit pin or GIO pin  
HECC2 receive pin or GIO pin  
(1) I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
(2) All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
(3) IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST  
state.)  
7
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
GENERAL-PURPOSE I/O (GIO)  
GIOA[0]/INT0  
39  
40  
3.3-V I  
GIOA[1]/INT1/  
ECLK  
GIOA[2]/INT2  
GIOA[3]/INT3  
GIOA[4]/INT4  
GIOA[5]/INT5  
GIOA[6]/INT6  
GIOA[7]/INT7  
GIOB[0]  
41  
42  
36  
35  
34  
33  
46  
58  
59  
60  
61  
77  
78  
84  
122  
143  
144  
6
GIOB[1]  
GIOB[2]  
GIOB[3]  
General-purpose input/output pins.  
GIOB[4]  
GIOA[0]/INT[0] is an input-only pin. GIOA[7:0]/INT[7:0] are  
interrupt-capable pins.  
GIOB[5]  
IPD (20 µA)  
3.3-V I/O  
GIOB[6]  
The GIOA[1]/INT[1]/ECLK pin is multiplexed with the external clock-out  
function of the external clock prescale (ECP) module.  
GIOB[7]  
GIOC[0]  
GIOC[1]  
GIOC[2]  
GIOC[3]  
GIOC[4]  
7
GIOC[5]  
8
GIOC[6]  
9
GIOC[7]  
10  
21  
20  
19  
18  
GIOD[0]  
GIOD[1]  
GIOD[2]  
GIOD[3]  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC)  
3.3-V I/O IPD (20 µA) MibADC event input. ADEVT can be programmed as a GIO pin.  
ADEVT  
ADIN[0]  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADIN[12]  
99  
108  
107  
106  
105  
104  
102  
101  
100  
115  
113  
111  
109  
114  
3.3-V I  
MibADC analog input pins  
8
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC) (CONTINUED)  
ADIN[13]  
112  
110  
103  
116  
117  
118  
119  
ADIN[14]  
ADIN[15]  
ADREFHI  
ADREFLO  
VCCAD  
3.3-V I  
MibADC analog input pins  
3.3-V REF I  
GND REF I  
3.3-V PWR  
GND  
MibADC module high-voltage reference input  
MibADC module low-voltage reference input  
MibADC analog supply voltage  
VSSAD  
MibADC analog ground reference  
SERIAL PERIPHERAL INTERFACE 1 (SPI1)  
SPI1CLK  
SPI1ENA  
SPI1SCS  
5
1
2
SPI1 clock. SPI1CLK can be programmed as a GIO pin.  
SPI1 chip enable. SPI1ENA can be programmed as a GIO pin.  
SPI1 slave chip select. SPI1SCS can be programmed as a GIO pin.  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
SPI1 data stream. Slave in/master out. SPI1SIMO can be programmed as  
a GIO pin.  
SPI1SIMO  
SPI1SOMI  
3
4
SPI1 data stream. Slave out/master in. SPI1SOMI can be programmed as  
a GIO pin.  
SERIAL PERIPHERAL INTERFACE 2 (SPI2)  
SPI2 clock. SPI2CLK can be programmed as a GIO pin.  
SPI2CLK  
SPI2ENA  
SPI2SCS  
62  
65  
66  
SPI2 chip enable. SPI2ENA can be programmed as a GIO pin.  
SPI2 slave chip select. SPI2SCS can be programmed as a GIO pin.  
IPD (20 µA)  
SPI2 data stream. Slave in/master out. SPI2SIMO can be programmed as  
a GIO pin.  
SPI2SIMO  
SPI2SOMI  
63  
64  
SPI2 data stream. Slave out/master in. SPI2SOMI can be programmed as  
a GIO pin.  
SERIAL PERIPHERAL INTERFACE 3 (SPI3)  
SPI3 clock. SPI3CLK can be programmed as a GIO pin.  
SPI3CLK  
SPI3ENA  
SPI3SCS  
94  
98  
97  
SPI3 chip enable. SPI3ENA can be programmed as a GIO pin.  
SPI3 slave chip select. SPI3SCS can be programmed as a GIO pin.  
IPD (20 µA)  
SPI3 data stream. Slave in/master out. SPI3SIMO can be programmed as  
a GIO pin.  
SPI3SIMO  
SPI3SOMI  
96  
95  
SPI3 data stream. Slave out/master in. SPI3SOMI can be programmed as  
a GIO pin.  
ZERO-PIN PHASE-LOCKED LOOP (ZPLL)  
Crystal connection pin or external clock input  
OSCIN  
13  
12  
1.8-V I  
OSCOUT  
1.8-V O  
External crystal connection pin  
Enable/disable the ZPLL. The ZPLL can be bypassed and the oscillator  
becomes the system clock. If not in bypass mode, TI recommends that this  
pin be connected to ground or pulled down to ground by an external  
resistor.  
PLLDIS  
73  
3.3-V I  
IPD (20 µA)  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1)  
SCI1CLK  
SCI1RX  
SCI1TX  
89  
91  
90  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
SCI1 clock. SCI1CLK can be programmed as a GIO pin.  
SCI1 data receive. SCI1RX can be programmed as a GIO pin.  
SCI1 data transmit. SCI1TX can be programmed as a GIO pin.  
SERIAL COMMUNICATIONS INTERFACE 2 (SCI2)  
SCI2CLK  
SCI2RX  
SCI2TX  
45  
43  
44  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
SCI2 clock. SCI2CLK can be programmed as a GIO pin.  
SCI2 data receive. SCI2RX can be programmed as a GIO pin.  
SCI2 data transmit. SCI2TX can be programmed as a GIO pin.  
9
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
SYSTEM MODULE (SYS)  
Bidirectional pin. CLKOUT can be programmed as a GIO pin or the output  
of SYSCLK, ICLK, or MCLK.  
CLKOUT  
83  
32  
3.3-V I/O  
3.3-V I  
IPD (20 µA)  
IPD (20 µA)  
Input master chip power-up reset. External VCC monitor circuitry must  
assert a power-on reset.  
PORRST  
Bidirectional reset. The internal circuitry can assert a reset, and an external  
system reset can assert a device reset.  
On this pin, the output buffer is implemented as an open drain (drives low  
only).  
RST  
15  
3.3-V I/O  
IPU (20 µA)  
To ensure an external reset is not arbitrarily generated, TI recommends  
that an external pullup resistor be connected to this pin.  
WATCHDOG/REAL-TIME INTERRUPT (WD/RTI)  
Analog watchdog reset. The AWD pin provides a system reset if the WD  
KEY is not written in time by the system, providing an external RC network  
circuit is connected.  
AWD  
72  
3.3-V I/O  
IPD (20 µA)  
If the user is not using AWD, TI recommends that this pin be connected to  
ground or pulled down to ground by an external resistor.  
For more details on the external RC network circuit, see the TMS470R1x  
System Module Reference Guide (literature number SPNU189).  
TEST/DEBUG (T/D)  
TCK  
TDI  
76  
74  
3.3-V I  
3.3-V I  
IPD (20 µA)  
IPU (20 µA)  
Test clock. TCK controls the test hardware (JTAG).  
Test data in. TDI inputs serial data to the test instruction register, test data  
register, and programmable test address (JTAG).  
Test data out. TDO outputs serial data from the test instruction register,  
test data register, identification register, and programmable test address  
(JTAG).  
TDO  
75  
3.3-V O  
IPD (20 µA)  
Test enable. Reserved for internal use only. TI recommends that this pin  
be connected to ground or pulled down to ground by an external resistor.  
TEST  
TMS  
38  
3.3-V I  
3.3-V I  
3.3-V I  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
Serial input for controlling the state of the CPU test access port (TAP)  
controller (JTAG)  
120  
121  
Serial input for controlling the second TAP. TI recommends that this pin be  
connected to VCCIO or pulled up to VCCIO by an external resistor.  
TMS2  
Test hardware reset to TAP1 and TAP2. IEEE Standard 1149-1 (JTAG)  
Boundary-Scan Logic. TI recommends that this pin be pulled down to  
ground by an external resistor.  
TRST  
37  
3.3-V I  
IPD (20 µA)  
FLASH  
Flash test pad 1. For proper operation, this pin must not be connected  
[no connect (NC)].  
FLTP1  
FLTP2  
VCCP  
134  
133  
135  
NC  
NC  
Flash test pad 2. For proper operation, this pin must not be connected  
[no connect (NC)].  
Flash external pump voltage (3.3 V). This pin is required for both flash  
read and flash program and erase operations.  
3.3-V PWR  
SUPPLY VOLTAGE CORE (1.8 V)  
14  
31  
55  
VCC  
86  
1.8-V PWR  
Core logic supply voltage  
93  
128  
132  
10  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
SUPPLY VOLTAGE DIGITAL I/O (3.3 V)  
17  
53  
82  
VCCIO  
3.3-V PWR  
Digital I/O supply voltage  
SUPPLY GROUND CORE  
11  
30  
54  
85  
VSS  
GND  
Core supply ground reference  
92  
127  
131  
136  
SUPPLY GROUND DIGITAL I/O  
16  
52  
81  
VSSIO  
GND  
Digital I/O supply ground reference  
11  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
B512 Device-Specific Information  
Memory  
Figure 1 shows the memory map of the B512 device.  
Memory (4G Bytes)  
0xFFFF_FFFF  
0xFFFF_FFFF  
0xFFFF_FD00  
SYSTEM with PSA, CIM,  
RTI, DEC, DMA, MMC  
System Module  
Control Registers  
(512K Bytes)  
IEM  
0xFFF8_0000  
0xFFF7_FFFF  
0xFFFF_FC00  
0xFFF8_0000  
Reserved  
Peripheral Control Registers  
(512K Bytes)  
0xFFF0_0000  
0xFFEF_FFFF  
HET  
SPI1  
SCI2  
0xFFF7_FC00  
Reserved  
0xFFE8_C000  
0xFFE8_BFFF  
0xFFF7_F800  
0xFFF7_F500  
Flash Control Registers  
0xFFE8_8000  
0xFFE8_7FFF  
Reserved  
0xFFE8_4024  
0xFFE8_4023  
SCI1  
0xFFF7_F400  
0xFFF7_F000  
0xFFF7_EC00  
MPU Control Registers  
0xFFE8_4000  
0xFFE8_3FFF  
MibADC  
GIO/ECP  
Reserved  
0xFFE0_0000  
HECC1/HECC2  
HECC1/2 RAM  
0xFFF7_E800  
0xFFF7_E400  
0xFFF7_D800  
Reserved  
SPI2/SPI3  
Reserved  
Reserved  
RAM  
(32K Bytes)  
0xFFF7_D400  
0xFFF7_C000  
FLASH  
(512K Bytes)  
14 Sectors  
Program  
and  
Data Area  
0xFFF0_0000  
0x0000_001F  
0x0000_001C  
0x0000_0018  
HET RAM  
(1.5K Bytes)  
FIQ  
IRQ  
Reserved  
0x0000_0014  
0x0000_0010  
0x0000_000C  
0x0000_0008  
0x0000_0004  
Data Abort  
Prefetch Abort  
Software Interrupt  
Undefined Instruction  
Reset  
0x0000_0020  
0x0000_001F  
Exception, Interrupt, and  
Reset Vectors  
0x0000_0000  
0x0000_0000  
A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000.  
B. The CPU registers are not a part of the memory map.  
Figure 1. Memory Map  
12  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Memory Selects  
Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined  
addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx  
and MFBALRx) that, together, define the array's starting (base) address, block size, and protection.  
The base address of each memory select is configurable to any memory address boundary that is a multiple of  
the decoded block size. For more information on how to control and configure these memory select registers,  
see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature  
number SPNU189).  
For the memory selection assignments and the memory selected, see Table 3.  
Table 3. Memory Selection Assignment  
MEMORY  
SELECT  
MEMORY SELECTED  
(ALL INTERNAL)  
MEMORY  
SIZE  
MEMORY BASE ADDRESS  
REGISTER  
STATIC MEM  
CTL REGISTER  
MPU  
0 (fine)  
1 (fine)  
2 (fine)  
3 (fine)  
4 (fine)  
FLASH  
FLASH  
RAM  
NO  
NO  
MFBAHR0 and MFBALR0  
MFBAHR1 and MFBALR1  
MFBAHR2 and MFBALR2  
MFBAHR3 and MFBALR3  
MFBAHR4 and MFBALR4  
512K  
YES  
YES  
32K(1)  
1.5K  
RAM  
HET RAM  
SMCR1  
(1) The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block  
size in the memory-base address register.  
RAM  
The B512 device contains 32K bytes of internal static RAM configurable by the SYS module to be addressed  
within the range of 0x0000_0000 to 0xFFE0_0000. This B512 RAM is implemented in one 32K array selected by  
two memory-select signals. This B512 configuration imposes an additional constraint on the memory map for  
RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the multiples of  
the size of the physical RAM (i.e., 32K for the B512 device). The B512 RAM is addressed through memory  
selects 2 and 3.  
The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user  
finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an  
operating system while allowing access to the current task. For more detailed information on the MPU portion of  
the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference  
Guide (literature number SPNU189).  
F05 Flash  
The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a  
32-bit-wide data bus interface. The F05 flash has an external state machine for program and erase functions.  
See the flash read and flash program and erase sections below. For more detailed functional information on the  
F05 flash module, see the TMS470R1x F05 Flash Reference Guide (literature number SPNU213).  
Flash Protection Keys  
The B512 device provides flash protection keys. These four 32-bit protection keys prevent  
program/erase/compaction operations from occurring until after the four protection keys have been matched by  
the CPU loading the correct user keys into the FMPKEY control register. The protection keys on the B512 are  
located in the last 4 words of the first 16K sector. For more detailed information on the flash protection keys and  
the FMPKEY control register, see the "Optional Quadruple Protection Keys" and "Programming the Protection  
Keys" portions of the TMS470R1x F05 Flash Reference Guide (literature number SPNU213).  
13  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Flash Read  
The B512 flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to  
0xFFE0_0000. The flash is addressed through memory selects 0 and 1.  
NOTE:  
The flash external pump voltage (VCCP) is required for all operations (program, erase,  
and read).  
Flash Pipeline Mode  
When in pipeline mode, the flash operates with a system clock frequency of up to 60 MHz. In normal mode, the  
flash operates with a system clock frequency in normal mode of up to 24 MHz. Flash in pipeline mode is capable  
of accessing 64-bit words and provides two 32-bit pipelined words to the CPU. Also in pipeline mode, the flash  
can be read with no wait states when memory addresses are contiguous (after the initial 1-or 2-wait-state reads).  
NOTE:  
After a system reset, pipeline mode is disabled (FMREGOPT[0] = 0). In other words,  
the B512 device powers up and comes out of reset in non-pipeline mode.  
Furthermore, setting the flash configuration mode bit (GBLCTRL[4]) will override  
pipeline mode.  
Flash Program and Erase  
The B512 device flash contains two 256K-byte memory arrays (or banks) for a total of 512K bytes of flash and  
consists of fourteen sectors. These fourteen sectors are sized as follows:  
Table 4. B512 Flash Memory Banks and Sectors  
MEMORY ARRAYS  
SECTOR NO.  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
(OR BANKS)  
0
1
2
3
4
5
6
7
8
9
16K Bytes  
16K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
16K Bytes  
16K Bytes  
0x00000000  
0x00004000  
0x00008000  
0x00010000  
0x00018000  
0x00020000  
0x00028000  
0x00030000  
0x00038000  
0x0003C000  
0x00003FFF  
0x00007FFF  
0x0000FFFF  
0x00017FFF  
0x0001FFFF  
0x00027FFF  
0x0002FFFF  
0x00037FFF  
0x0003BFFF  
0x0003FFFF  
BANK0  
(256K Bytes)  
0
1
2
3
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
0x00040000  
0x00050000  
0x00060000  
0x00070000  
0x0004FFFF  
0x0005FFFF  
0x0006FFFF  
0x0007FFFF  
BANK1  
(256K Bytes)  
The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit  
word.  
NOTE:  
The flash external pump voltage (VCCP) is required for all operations (program, erase,  
and read).  
For more detailed information on flash program and erase operations, see the TMS470R1x F05 Flash Reference  
Guide (literature number SPNU213).  
14  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
HET RAM  
The B512 device contains HET RAM. The HET RAM has a 128-instruction capability. The HET RAM is  
configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET  
RAM is addressed through memory select 4.  
Peripheral Selects and Base Addresses  
The B512 device uses 8 of the 16 peripheral selects to decode the base addresses of the peripherals. These  
peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used by the  
SYS module. Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in  
Table 5.  
Table 5. B512 Peripherals, System Module, and Flash Base Addresses  
ADDRESS RANGE  
CONNECTING MODULE  
PERIPHERAL SELECTS  
BASE ADDRESS  
0 x FFFF_FFD0  
0 x FFFF_FF60  
0 x FFFF_FF40  
0 x FFFF_FF20  
0 x FFFF_FF00  
0 x FFFF_FE80  
0 x FFFF_FE00  
0 x FFFF_FD00  
0 x FFFF_FC00  
0 x FFFF_FB00  
0 x FFFF_FA00  
0 x FFFF_F800  
0 x FFF8_0000  
0 x FFF7_FD00  
0 x FFF7_FC00  
0 x FFF7_F900  
0 x FFF7_F800  
0 x FFF7_F600  
0 x FFF7_F500  
0 x FFF7_F400  
0 x FFF7_F100  
0 x FFF7_F000  
0 x FFF7_EF00  
0 x FFF7_ED00  
0 x FFF7_EC00  
0 x FFF7_EA00  
0 x FFF7_E800  
0 x FFF7_E600  
0 x FFF7_E400  
0 x FFF7_E000  
0 x FFF7_DC00  
0 x FFF7_D800  
0 x FFF7_D600  
0 x FFF7_D500  
0 x FFF7_D400  
0 x FFF7_C000  
ENDING ADDRESS  
0 x FFFF_FFFF  
0 x FFFF_FFCF  
0 x FFFF_FF5F  
0 x FFFF_FF3F  
0 x FFFF_FF1F  
0 x FFFF_FEFF  
0 x FFFF_FE7F  
0 x FFFF_FD7F  
0 x FFFF_FCFF  
0 X FFFF_FBFF  
0 X FFFF_FAFF  
0 x FFFF_F9FF  
0 x FFFF_F7FF  
0 x FFF7_FFFF  
0 x FFF7_FCFF  
0 x FFF7_FBFF  
0 x FFF7_F8FF  
0 x FFF7_F7FF  
0 X FFF7_F5FF  
0 x FFF7_F4FF  
0 x FFF7_F3FF  
0 x FFF7_F0FF  
0 x FFF7_EFFF  
0 x FFF7_EEFF  
0 x FFF7_ECFF  
0 x FFF7_EBFF  
0 x FFF7_E9FF  
0 x FFF7_E7FF  
0 x FFF7_E5FF  
0 x FFF7_E3FF  
0 x FFF7_DFFF  
0 x FFF7_DBFF  
0 x FFF7_D7FF  
0 x FFF7_D5FF  
0 x FFF7_D4FF  
0 x FFF7_D3FF  
SYSTEM  
RESERVED  
PSA  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
CIM  
RTI  
DMA  
DEC  
MMC  
IEM  
RESERVED  
RESERVED  
DMA CMD BUFFER  
RESERVED  
RESERVED  
HET  
PS[0]  
PS[1]  
RESERVED  
SPI1  
RESERVED  
SCI2  
PS[2]  
PS[3]  
PS[4]  
SCI1  
RESERVED  
MibADC  
ECP  
RESERVED  
GIO  
HECC2  
PS[5]  
PS[6]  
HECC1  
HECC2 RAM  
HECC1 RAM  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SPI3  
PS[7]  
PS[8]  
PS[9]  
PS[10]  
SPI2  
RESERVED  
PS[11] – PS[15]  
15  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 5. B512 Peripherals, System Module, and Flash Base Addresses (continued)  
ADDRESS RANGE  
BASE ADDRESS  
CONNECTING MODULE  
PERIPHERAL SELECTS  
ENDING ADDRESS  
0 x FFF7_BFFF  
0 x FFE8_BFFF  
0 x FFE8_4023  
RESERVED  
0 x FFF0_0000  
0 x FFE8_8000  
0 x FFE8_4000  
N/A  
N/A  
N/A  
FLASH CONTROL REGISTERS  
MPU CONTROL REGISTERS  
Direct-Memory Access (DMA)  
The direct-memory access (DMA) controller transfers data to and from any specified location in the B512  
memory map (except for restricted memory locations like the system control registers area). The DMA manages  
up to 16 channels, and supports data transfer for both on-chip and off-chip memories and peripherals. The DMA  
controller is connected to both the CPU and Peripheral busses, enabling these data transfers to occur in parallel  
with CPU activity and thus, maximizing overall system performance.  
Although the DMA controller has two possible configurations, for the B512 device, the DMA controller  
configuration is 32 control packets and 16 channels. For the B512 DMA request hardwired configuration, see  
Table 6. For a more detailed functional description of the DMA module, see the TMS470R1x Direct Memory  
Access (DMA) Controller Reference Guide (literature number SPNU194).  
Table 6. DMA Request Lines Connections  
MODULES  
RESERVED  
SPI1  
DMA REQUEST INTERRUPT SOURCES  
DMA CHANNEL  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[14]  
DMAREQ[15]  
SPI1 end-receive  
SPI1 end-transmit  
MibADC event  
SPI1DMA0  
SPI1  
SPI1DMA1  
MibADC(1)  
MibADC(1)/SCI1  
MibADC(1)/SCI1  
RESERVED  
SPI2  
MibADCDMA0  
MibADC G1/SCI1 end-receive  
MibADC G2/SCI1 end-transmit  
MibADCDMA1/SCI1DMA0  
MibADCDMA2/SCI1DMA1  
SPI2 end-receive  
SPI2 end-transmit  
SPI2DMA0  
SPI2DMA1  
SPI2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SCI2/SPI3  
SCI2/SPI3  
SCI2 end-receive/SPI3 end-receive  
SCI2DMA0/SPI3DMA0  
SCI2 end-transmit/SPI3 end-transmit SCI2DMA1/SPI3DMA1  
(1) The MibADC is capable of being serviced by the DMA when the device is in buffered mode. For more information on buffered mode,  
see the MibADC section of this data sheet and the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide  
(literature number SPNU206).  
Each channel has two control packets attached to it, allowing the DMA to continuously load RAM and generate  
periodic interrupts so that the data can be read by the CPU. The control packets allow for the interrupt enable,  
and the channels determine the priority level of the interrupt.  
DMA transfers occur in one of two modes:  
Non-request mode (used when transferring from memory to memory)  
Request mode (used when transferring from memory to peripheral)  
For more detailed functional information on the DMA controller, see the TMS470R1x Direct Memory Access  
(DMA) Controller Reference Guide (literature number SPNU194).  
16  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Interrupt Priority (IEM to CIM)  
Interrupt requests originating from the B512 peripheral modules (i.e., SPI1, SPI2, or SPI3; SCI1 or SCI2; HECC1  
or HECC2; RTI; etc.) are assigned to channels within the 48-channel interrupt expansion module (IEM) where,  
via programmable register mapping, these channels are then mapped to the 32-channel central interrupt  
manager (CIM) portion of the SYS module.  
Programming multiple interrupt sources in the IEM to the same CIM channel effectively shares the CIM channel  
between sources.  
The CIM request channels are maskable so that individual channels can be selectively disabled. All interrupt  
requests can be programmed in the CIM to be of either type:  
Fast interrupt request (FIQ)  
Normal interrupt request (IRQ)  
The CIM prioritizes interrupts. The precedence of request channels decrease with ascending channel order in  
the CIM (0 [highest] and 31 [lowest] priority). For IEM-to-CIM default mapping, channel priorities, and their  
associated modules, see Table 7.  
Table 7. Interrupt Priority (IEM and CIM)  
DEFAULT CIM INTERRUPT  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
LEVEL/CHANNEL  
SPI1  
RTI  
SPI1 end-transfer/overrun  
0
0
COMP2 interrupt  
COMP1 interrupt  
TAP interrupt  
1
1
RTI  
2
2
RTI  
3
3
SPI2  
SPI2 end-transfer/overrun  
GIO interrupt A  
4
4
GIO  
5
5
RESERVED  
HET  
6
6
HET interrupt 1  
7
7
RESERVED  
SCI1/SCI2  
SCI1  
8
8
SCI1 or SCI2 error interrupt  
SCI1 receive interrupt  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RESERVED  
RESERVED  
HECC1  
RESERVED  
SPI3  
HECC1 interrupt A  
SPI3 end-transfer/overrun  
MibADC end event conversion  
SCI2 receive interrupt  
DMA interrupt 0  
MibADC  
SCI2  
DMA  
RESERVED  
SCI1  
SCI1 transmit interrupt  
SW interrupt (SSI)  
System  
RESERVED  
HET  
HET interrupt 2  
HECC1  
RESERVED  
SCI2  
HECC1 interrupt B  
SCI2 transmit interrupt  
MibADC end Group 1 conversion  
DMA interrupt 1  
MibADC  
DMA  
GIO  
GIO interrupt B  
MibADC  
RESERVED  
MibADC end Group 2 conversion  
17  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Table 7. Interrupt Priority (IEM and CIM) (continued)  
DEFAULT CIM INTERRUPT  
LEVEL/CHANNEL  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
HECC2  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
HECC2 interrupt A  
HECC2 interrupt B  
HECC2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
For more detailed functional information on the IEM, see the TMS470R1x Interrupt Expansion Module (IEM)  
Reference Guide (literature number SPNU211). For more detailed functional information on the CIM, see the  
TMS470R1x System Module Reference Guide (literature number SPNU189).  
18  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
MibADC  
The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a  
10-bit digital value.  
The B512 MibADC module can function in two modes: compatibility mode, where its programmer's model is  
compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in  
buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion  
group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by  
interrupts or by the DMA.  
MibADC Event Trigger Enhancements  
The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC.  
Both group1 and the event group can be configured for event-triggered operation, providing up to two  
event-triggered groups.  
The trigger source and polarity can be selected individually for both group 1 and the event group from the  
three options identified in Table 8.  
Table 8. MibADC Event Hookup Configuration  
SOURCE SELECT BITS FOR G1 OR EVENT  
EVENT NO.  
SIGNAL PIN NAME  
(G1SRC[1:0] OR EVSRC[1:0])  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
00  
01  
10  
11  
ADEVT  
HET18  
HET19  
RESERVED  
For group 1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0]) in  
the AD event source register (ADEVTSRC[5:4]). For the event group, these event-triggered selections are  
configured via the event group source select bits (EVSRC[1:0]) in the AD event source register  
(ADEVTSRC[1:0]).  
For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital  
Converter (MibADC) Reference Guide (literature number SPNU206).  
19  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Documentation Support  
Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of  
documentation available include: data sheets with design specifications; complete user's guides for all devices  
and development support tools; and hardware and software applications. Useful reference documentation  
includes:  
Bulletin  
TMS470 Microcontroller Family Product Bulletin (literature number SPNB086)  
User's Guides  
TMS470R1x System Module Reference Guide (literature number SPNU189)  
TMS470R1x General Purpose Input/Output (GIO) Reference Guide (literature number SPNU192)  
TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194)  
TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number) SPNU195  
TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196)  
TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197)  
TMS470R1x High End Timer (HET) Reference Guide (literature number SPNU199)  
TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202)  
TMS470R1x MultiBuffered Analog to Digital (MibADC) Reference Guide (literature number SPNU206)  
TMS470R1x ZeroPin Phase Locked Loop (ZPLL) Clock Module Reference Guide (literature number  
SPNU212)  
TMS470R1x F05 Flash Reference Guide (literature number SPNU213)  
TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214)  
TMS470R1x Class II Serial Interface A (C2SIa) Reference Guide (literature number SPNU218)  
TMS470R1x JTAG Security Module (JSM) Reference Guide (literature number SPNU245)  
TMS470R1x Memory Security Module (MSM) Reference Guide (literature number SPNU246)  
TMS470 Peripherals Overview Reference Guide (literature number SPNU248)  
Errata Sheet  
TMS470R1B512 TMS470 Microcontrollers Silicon Errata (literature number SPNZ141)  
20  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Device Numbering Conventions  
Figure 2 illustrates the numbering and symbol nomenclature for the TMS470R1x family.  
TMS 470 R1  
B
PGE  
T
512  
OPTIONS  
PREFIX  
TMS = Fully Qualified Device  
FAMILY  
470 = TMS470 RISC − Embedded  
Microcontroller Family  
TEMPERATURE  
T = –40°C to 105°C  
Q= –40°C to 125°C  
PACKAGE TYPE  
PGE = 144-pin Low-Profile Quad Flatpack (LQFP)  
ARCHITECTURE  
R1 = ARM7TDM1 CPU  
DEVICE TYPE B  
With 512K−Bytes Flash Memory:  
60-MHz Frequency  
REVISION CHANGE  
Blank = Original  
1.8-V Core, 3.3-V I/O  
Flash Program Memory  
ZPLL Clock  
FLASH MEMORY  
512 = 512K-Bytes Flash Memory  
32-Byte Static RAM  
1.5K-Byte HET RAM (128 Instructions)  
Analog Watchdog (AWD)  
Real-Time Interrupt (RTI)  
10-Bit, 12-Input MibADC  
Three SPI Modules  
Three SCI Modules  
Two CAN [HECC] modules  
HET, 32 Channels  
ECP  
DMA  
Figure 2. TMS470R1x Family Nomenclature  
21  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Device Identification Code Register  
The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash  
device, and an assigned device-specific part number (see Figure 3). The B512 device identification code register  
value is 0xn92Fh.  
Figure 3. TMS470 Device ID Bit Allocation Register [offset = FFFF_FFF0h]  
31  
15  
16  
0
Reserved  
12  
11  
10  
9
3
2
1
VERSION  
R-K  
TF  
R/F  
R-K  
PART NUMBER  
R-K  
1
1
1
R-K  
R-1  
R-1  
R-1  
LEGEND:  
R = Read only, -K = Value constant after RST; -n = Value after RST  
Table 9. TMS470 Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value Description  
31-16 Reserved  
15-12 VERSION  
Reads are undefined and writes have no effect.  
Silicon version (revision) bits. These bits identify the silicon version of the device. Initial device  
version numbers start at 0000. The current revision for the B512 device is 0010.  
11  
TF  
Technology family bit. This bit distinguishes the technology family core power supply:  
0
1
3.3 V for F10/C10 devices  
1.8 V for F05/C05 devices  
10  
R/F  
ROM/flash bit. This bit distinguishes between ROM and flash devices:  
0
1
Flash device  
ROM device  
9-3  
2-0  
PART NUMBER  
1
Device-specific part number bits. These bits identify the assigned device-specific part number. The  
assigned device-specific part number for the B512 device is 0100101.  
Mandatory High.  
Bits 2, 1, and 0 are tied high by default.  
22  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Device Electrical Specifications and Timing Parameters  
Absolute Maximum Ratings  
over operating free-air temperature range, T version (unless otherwise noted)(1)  
(2)  
Supply voltage range:  
Supply voltage range:  
Input voltage range:  
Input clamp current:  
VCC  
–0.3 V to 2.5 V  
–0.3 V to 4.1V  
–0.3 V to 4.1V  
VCCIO, VCCAD, VCCP (flash pump)(2)  
All input pins  
IIK (VI < 0 or VI > VCCIO  
)
All pins except ADIN[0:11], PORRST, TRST ,  
TEST, and TCK  
±20 mA  
IIK (VI < 0 or VI > VCCAD  
)
ADIN[0:15]  
±10 mA  
–40°C to 105°C  
–40°C to 125°C  
–40°C to 150°C  
–65°C to 150°C  
Operating free-air temperature range,  
TA:  
T version  
Q version  
Operating junction temperature ranges, TJ  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated grounds.  
Device Recommended Operating Conditions(1)  
MIN  
1.81  
NOM  
MAX  
2.05  
UNIT  
V
VCC  
Digital logic supply voltage (Core)  
Digital logic supply voltage (I/O)  
MibADC supply voltage  
VCCIO  
VCCAD  
VCCP  
VSS  
3
3
3
3.3  
3.6  
3.6  
3.6  
V
3.3  
3.3  
0
V
Flash pump supply voltage  
Digital logic supply ground  
MibADC supply ground  
V
V
VSSAD  
TA  
–0.1  
–40  
–40  
–40  
0.1  
V
Operating free-air temperature  
T version  
Q version  
105 ° C  
125  
TJ  
Operating junction temperature  
150 ° C  
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
.
23  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Electrical Characteristics  
over recommended operating free-air temperature range, T version (unless otherwise noted)(1)  
PARAMETER  
Input hysteresis  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vhys  
VIL  
0.15  
V
All inputs(2)  
except OSCIN  
–0.3  
–0.3  
2
0.8  
Low-level input voltage  
V
OSCIN only  
0.35 VCC  
VCCIO + 0.3  
All inputs except  
OSCIN  
VIH  
High-level input voltage  
Input threshold voltage  
V
OSCIN only  
AWD only  
0.65 VCC  
1.35  
VCC + 0.3  
1.8  
Vth  
V
Drain to source on  
resistance  
RDSON  
AWD only(3)  
VOL = 0.35 V at IOL = 8 mA  
45  
IOL = IOL MAX  
IOL = 50 µA  
0.2 VCCIO  
0.2  
VOL  
Low-level output voltage(4)  
High-level output voltage(4)  
V
IOH = IOH MIN  
IOH = 50 µA  
0.8 VCCIO  
VOH  
IIC  
V
VCCIO – 0.2  
VI < VSSIO – 0.3 or  
VI > VCCIO + 0.3  
Input clamp current (I/O pins)(5)  
IIL Pulldown  
–2  
2
mA  
VI = VSS  
–1  
5
1
40  
–5  
1
IIH Pulldown  
IIL Pullup  
VI = VCCIO  
II  
Input current (I/O pins)  
Low-level output current  
VI = VSS  
–40  
–1  
–1  
µA  
IIH Pullup  
VI = VCCIO  
All other pins  
No pullup or pulldown  
1
CLKOUT, AWD,  
TDO  
8
4
2
RST, SPInCLK,  
SPInSOMI,  
SPInSIMO  
IOL  
VOL = VOL MAX  
mA  
All other output  
pins(6)  
CLKOUT, TDO  
–8  
–4  
RST, SPInCLK,  
SPInSOMI,  
IOH  
High-level output current  
SPInSIMO  
VOH = VOH MIN  
mA  
All other output  
pins except  
RST(6)  
–2  
SYSCLK = 60 MHz,  
ICLK = 20 MHz, VCC = 2.05 V  
125  
85  
mA  
mA  
VCC Digital supply current (operating mode)  
SYSCLK = 24 MHz,  
ICLK = 12 MHz, VCC = 2.05 V  
ICC  
VCC Digital supply current (standby mode)(7)  
VCC Digital supply current (halt mode)(7)  
OSCIN = 6 MHz, VCC = 2.05 V  
All frequencies, VCC = 2.05 V  
4
mA  
mA  
2.0  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section.  
(3) These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
(4) VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.  
(5) Parameter does not apply to input-only or output-only pins.  
(6) The 2 mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a  
low level and the other is outputting a high level, the resulting value will always be low.  
(7) For flash pumps/banks in sleep mode.  
24  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range, T version (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
10  
UNIT  
mA  
µA  
VCCIO Digital supply current (operating mode) No DC load, VCCIO = 3.6 V(8)  
ICCIO  
VCCIO Digital supply current (standby mode)  
VCCIO Digital supply current (halt mode)  
VCCAD supply current (operating mode)  
VCCAD supply current (standby mode)  
VCCAD supply current (halt mode)  
No DC load, VCCIO = 3.6 V(8)  
No DC load, VCCIO = 3.6 V(8)  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
VCCP = 3.6 V read operation  
VCCP = 3.6 V program and erase  
300  
300  
15  
µA  
mA  
µA  
ICCAD  
20  
20  
µA  
55  
mA  
mA  
70  
VCCP = 3.6 V standby mode  
operation(7)  
ICCP  
VCCP pump supply current  
20  
20  
µA  
µA  
VCCP = 3.6 V halt mode  
operation(7)  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
(8) I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO – 0.2 V.  
Parameter Measurement Information  
IOL  
Tester Pin  
Electronics  
Output  
50  
VLOAD  
Under  
Test  
CL  
IOH  
(A)  
Where:  
I
I
= I MAX for the respective pin  
OL  
= I MIN for the respective pin  
OH  
OL  
(A)  
OH  
V
C
= 1.5 V  
LOAD  
(B)  
= 150-pF typical load-circuit capacitance  
L
A. For these values, see the "Electrical Characteristics over Recommended Operating Free-Air Temperature Range"  
table.  
B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted.  
Figure 4. Test Load Circuit  
25  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Timing Parameter Symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
CM  
CO  
ER  
ICLK  
M
Compaction, CMPCT  
CLKOUT  
RD  
Read  
RST  
RX  
Reset, RST  
SCInRX  
Erase  
Interface clock  
Master mode  
S
Slave mode  
SCInCLK  
SPInSIMO  
SPInSOMI  
SPInCLK  
System clock  
SCInTX  
SCC  
SIMO  
SOMI  
SPC  
SYS  
TX  
OSC, OSCI OSCIN  
OSCO  
P
OSCOUT  
Program, PROG  
R
Ready  
R0  
R1  
Read margin 0, RDMRGN0  
Read margin 1, RDMRGN1  
Lowercase subscripts and their meanings are:  
a
c
d
f
access time  
cycle time (period)  
delay time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
fall time  
v
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
X
Z
Unknown, changing, or don't care level  
High impedance  
V
Valid  
26  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
External Reference Resonator/Crystal Oscillator Clock Option  
The oscillator is enabled by connecting the appropriate fundamental 4–20 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in Figure 5a. The oscillator is a single-stage  
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement  
and HALT mode. TI strongly encourages each customer to submit samples of the device to the  
resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will  
best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 1.8-V clock signal to the OSCIN pin and leaving the  
OSCOUT pin unconnected (open) as shown in Figure 5b.  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
External  
Clock Signal  
(toggling 0-1.8 V)  
(A)  
(A)  
C1  
C2  
Crystal  
(a)  
(b)  
A. The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Figure 5. Crystal/Clock Connection  
27  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
ZPLL AND CLOCK SPECIFICATIONS  
Timing Requirements for ZPLL Circuits Enabled or Disabled  
MIN  
4
MAX UNIT  
f(OSC)  
Input clock frequency  
20 MHz  
tc(OSC)  
Cycle time, OSCIN  
50  
15  
15  
ns  
ns  
tw(OSCIL)  
tw(OSCIH)  
f(OSCRST)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
OSC FAIL frequency(1)  
ns  
53 kHz  
(1) Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1)  
bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
Switching Characteristics Over Recommended Operating Conditions for Clocks(1)(2)  
PARAMETER  
TEST CONDITIONS(3)  
Pipeline mode enabled  
Pipeline mode disabled  
Flash config mode  
MIN  
MAX UNIT  
60 MHz  
24 MHz  
24 MHz  
25 MHz  
25 MHz  
24 MHz  
ns  
f(SYS)  
System clock frequency(4)  
f(CONFIG)  
f(ICLK)  
System clock frequency  
Interface clock frequency  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
Flash config mode  
f(ECLK)  
External clock output frequency for ECP module  
Cycle time, system clock  
16.7  
41.6  
41.6  
40  
tc(SYS)  
ns  
tc(CONFIG)  
tc(ICLK)  
Cycle time, system clock  
Cycle time, interface clock  
ns  
ns  
Pipeline mode enabled  
Pipeline mode disabled  
40  
ns  
tc(ECLK)  
Cycle time, ECP module external clock output  
41.6  
ns  
(1) When PLLDIS = 0, f(SYS) = M × f(OSC)/R, where M = {4 or 8}, R = {1,2,3,4,5,6,7,8}. R is the system-clock divider determined by the  
CLKDIVPRE [2:0] bits in the global control register (GLBCTRL[2:0]) and M is the PLL multiplier determined by the MULT4 bit  
(GLBCTRL.3).  
When PLLDIS = 1, f(SYS) = f(OSC)/R, where R = {1,2,3,4,5,6,7,8}.  
f(ICLK) = f(SYS)/X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1]  
bits in the SYS module.  
(2) f(ECLK) = f(ICLK)/N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0).  
(4) Flash Vread must be set to 5 V to achieve maximum system clock frequency.  
28  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Switching Characteristics Over Recommended Operating Conditions for External Clocks(1)(2)(3)  
(see Figure 6 and Figure 7)  
PARAMETER  
TEST CONDITIONS  
SYSCLK or MCLK(4)  
MIN  
MAX  
UNIT  
0.5tc(SYS) – tf  
tw(COL)  
tw(COH)  
tw(EOL)  
tw(EOH)  
Pulse duration, CLKOUT low  
ICLK: X is even or 1(5)  
ICLK: X is odd and not 1(5)  
SYSCLK or MCLK(4)  
0.5tc(ICLK) – tf  
ns  
0.5tc(ICLK) + 0.5tc(SYS) – tf  
0.5tc(SYS) – tr  
Pulse duration, CLKOUT high  
Pulse duration, ECLK low  
Pulse duration, ECLK high  
ICLK: X is even or 1(5)  
0.5tc(ICLK) – tr  
ns  
ns  
ns  
ICLK: X is odd and not 1(5)  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ICLK) – 0.5tc(SYS) – tr  
0.5tc(ECLK) – tf  
0.5tc(ECLK) – tf  
N is odd and X is odd and not 1  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ECLK) + 0.5tc(SYS) – tf  
0.5tc(ECLK) – tr  
0.5tc(ECLK) – tr  
N is odd and X is odd and not 1  
0.5tc(ECLK) – 0.5tc(SYS) – tr  
(1) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module.  
(2) N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active.  
(4) Clock source bits are selected as either SYSCLK (CLKCNTL[6:5] = 11 binary) or MCLK (CLKCNTL[6:5] = 10 binary).  
(5) Clock source bits are selected as ICLK (CLKCNTL[6:5] = 01 binary).  
t
w(COH)  
CLKOUT  
t
w(COL)  
Figure 6. CLKOUT Timing Diagram  
t
w(EOH)  
ECLK  
t
w(EOL)  
Figure 7. ECLK Timing Diagram  
29  
Submit Documentation Feedback  
 
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
RST AND PORRST TIMINGS  
Timing Requirements for PORRST  
(see Figure 8)  
MIN  
MAX UNIT  
VCCPORL  
VCC low supply level when PORRST must be active during power up  
0.6  
V
V
V
V
VCC high supply level when PORRST must remain active during power up and become  
active during power down  
VCCPORH  
VCCIOPORL  
VCCIOPORH  
1.5  
VCCIO low supply level when PORRST must be active during power up  
1.1  
VCCIO high supply level when PORRST must remain active during power up and become  
active during power down  
2.75  
VIL  
Low-level input voltage after VCCIO > VCCIOPORH  
0.2 VCCIO  
0.5  
V
VIL(PORRST)  
tsu(PORRST)r  
tsu(VCCIO)r  
th(PORRST)r  
tsu(PORRST)f  
th(PORRST)rio  
th(PORRST)d  
Low-level input voltage of PORRST before VCCIO > VCCIOPORL  
Setup time, PORRST active before VCCIO > VCCIOPORL during power up  
Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL  
Hold time, PORRST active after VCC > VCCPORH  
V
0
0
1
8
1
0
0
0
ms  
ms  
ms  
µs  
ms  
ms  
ns  
ns  
Setup time, PORRST active before VCC VCCPORH during power down  
Hold time, PORRST active after VCC > VCCIOPORH  
Hold time, PORRST active after VCC < VCCPORL  
tsu(PORRST)fio Setup time, PORRST active before VCC VCCIOPORH during power down  
tsu(VCCIO)f  
Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL  
VCCP /VCCIO  
VCCIOPORH  
VCCIOPORH  
VCCIO  
t
h(PORRST)rio  
t
su(VCCIO)f  
VCC  
VCC  
VCCPORH  
VCCPORH  
t
su(PORRST)f  
t
h(PORRST)r  
t
su(PORRST)fio  
t
VCCIOPORL  
VCCIOPORL  
su(PORRST)f  
VCCPORL  
VCCPORL  
t
h(PORRST)r  
VCC  
t
su(VCCIO)r  
V /V  
CCP CCIO  
t
h(PORRST)d  
t
su(PORRST)r  
VIL(PORRST)  
VIL  
VIL  
VIL  
VIL  
VIL(PORRST)  
PORRST  
NOTE: VCCIO > 1.1 V before VCC > 0.6 V  
Figure 8. PORRST Timing Diagram  
Switching Characteristics Over Recommended Operating Conditions for RST(1)  
PARAMETER  
MIN  
MAX UNIT  
Valid time, RST active after PORRST inactive  
Valid time, RST active (all others)  
4112tc(OSC)  
8tc(SYS)  
tv(RST)  
tfsu  
ns  
Flash start up time, from RST inactive to fetch of first instruction from flash (flash pump  
stabilization time)  
716tc(OSC)  
ns  
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see the "Switching Characteristics for Output Timings versus  
Load Capacitance" table.  
30  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
JTAG SCAN INTERFACE TIMING  
(JTAG Clock Specification 10-MHz and 50-pF Load on TDO Output)  
MIN  
50  
MAX UNIT  
tc(JTAG)  
Cycle time, JTAG low and high period  
Setup time, TDI, TMS before TCK rise (TCKr)  
Hold time, TDI, TMS after TCKr  
ns  
ns  
ns  
ns  
tsu(TDI/TMS - TCKr)  
th(TCKr -TDI/TMS)  
th(TCKf -TDO)  
td(TCKf -TDO)  
15  
15  
Hold time, TDO after TCKf  
10  
Delay time, TDO valid after TCK fall (TCKf)  
45  
ns  
T CK  
t
c(J TAG )  
t
c
(
J
T
A
G
)
T M S  
T DI  
t
su(TDI /TMS Ć TCKr)  
t
h(TCKr Ć TDI /TMS)  
T DO  
t
h(TCKf Ć TDO )  
t
d(TCKf Ć TDO )  
Figure 9. JTAG Scan Timings  
31  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
OUTPUT TIMINGS  
Switching Characteristics for Output Timings versus Load Capacitance (CL)  
(see Figure 10)  
PARAMETER  
CL = 15 pF  
CL = 50 pF  
MIN  
0.5  
1.5  
3
MAX UNIT  
2.5  
5
tr  
tf  
tr  
tf  
tr  
tf  
Rise time, CLKOUT, AWD, TDO  
ns  
9
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
4.5  
0.5  
1.5  
3
12.5  
2.5  
5
Fall time, CLKOUT, AWD, TDO  
ns  
9
4.5  
2.5  
5
12.5  
8
14  
ns  
23  
Rise time, SPInCLK, SPInSOMI, SPInSIMO(1)  
Fall time, RST, SPInCLK, SPInSOMI, SPInSIMO(1)  
Rise time, all other output pins  
9
13  
2.5  
5
32  
8
14  
ns  
23  
9
13  
2.5  
6.0  
12  
18  
3
32  
12  
28  
ns  
50  
73  
12  
8.5  
16  
23  
28  
ns  
50  
Fall time, all other output pins  
73  
(1) Where n = 1–3.  
tr  
tf  
VCC  
80%  
80%  
Output  
20%  
20%  
0
Figure 10. CMOS-Level Outputs  
32  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
INPUT TIMINGS  
Timing Requirements for Input Timings(1)  
(see Figure 11)  
MIN  
MAX UNIT  
tpw  
Input minimum pulse width  
tc(ICLK) + 10  
ns  
(1) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
tpw  
VCC  
Input  
80%  
80%  
20%  
20%  
0
Figure 11. CMOS-Level Inputs  
FLASH TIMINGS  
Timing Requirements for Program Flash(1)  
MIN  
TYP  
16  
MAX UNIT  
tprog(16-bit)  
tprog(Total)  
terase(sector)  
twec  
Half word (16-bit) programming time  
512K-byte programming time(2)  
4
200  
15  
µs  
s
4
Sector erase time  
1.7  
s
Write/erase cycles at TA = –40°C to 125°C  
Flash pump setting time from RST to SLEEP  
Initial flash pump setting time from SLEEP to STANDBY  
Initial flash pump setting time from STANDBY to ACTIVE  
50000  
cycles  
ns  
tfp(RST)  
143tc(SYS)  
143tc(SYS)  
72tc(SYS)  
tfp(SLEEP)  
tfp(STDBY)  
ns  
ns  
(1) For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet.  
(2) The 512K-byte programming time includes overhead of state machine.  
33  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn MASTER MODE TIMING PARAMETERS  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 12)  
NO.  
MIN  
MAX  
256tc(ICLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr 0.5tc(SPC)M + 5  
2(5)  
3(5)  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(SPC)M – tf 0.5tc(SPC)M + 5  
0.5tc(SPC)M – tf 0.5tc(SPC)M + 5  
0.5tc(SPC)M – tr 0.5tc(SPC)M + 5  
td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0)  
10  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1)  
10  
tc(SPC)M – 5 – tf  
tc(SPC)M – 5 – tr  
tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0)  
tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1)  
6
6
4
4
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2tc(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 0)  
34  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 13)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
256tc(ICLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
2(5)  
3(5)  
ns  
ns  
Valid time, SPInCLK high after SPInSIMO data valid  
(clock polarity = 0)  
tv(SIMO-SPCH)M  
tv(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
0.5tc(SPC)M – 15  
0.5tc(SPC)M – 15  
0.5tc(SPC)M – 5 – tr  
0.5tc(SPC)M – 5 – tf  
4(5)  
ns  
Valid time, SPInCLK low after SPInSIMO data valid  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
5(5)  
6(6)  
7(6)  
ns  
ns  
ns  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 0)  
tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 1)  
6
6
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
tv(SPCH-SOMI)M  
4
4
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
tv(SPCL-SOMI)M  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2tc(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
Data Valid  
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 1)  
35  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn SLAVE MODE TIMING PARAMETERS  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 14)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
3(6)  
ns  
ns  
ns  
td(SPCH-  
SOMI)S  
Delay time, SPInCLK high to SPInSOMI valid  
(clock polarity = 0)  
6 + tr  
4(6)  
5(6)  
6(6)  
7(6)  
td(SPCL-  
SOMI)S  
Delay time, SPInCLK low to SPInSOMI valid  
(clock polarity = 1)  
6 + tf  
tv(SPCH-  
SOMI)S  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
tc(SPC)S – 6 – tr  
ns  
ns  
ns  
tv(SPCL-  
SOMI)S  
Valid time, SPInSOMI data valid after SPInCLK low (clock  
polarity = 1)  
tc(SPC)S – 6 – tf  
tsu(SIMO-  
SPCL)S  
tsu(SIMO-  
SPCH)S  
tv(SPCL-  
SIMO)S  
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low (clock  
polarity = 0)  
tv(SPCH-  
SIMO)S  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2tc(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPISOMI Data Is Valid  
SPInSOMI  
6
7
SPISIMO Data  
Must Be Valid  
SPInSIMO  
Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 0)  
36  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 15)  
NO.  
MIN  
MAX  
UNI  
T
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
ns  
3(6)  
ns  
ns  
Valid time, SPInCLK high after SPInSOMI data valid  
(clock polarity = 0)  
tv(SOMI-SPCH)S  
tv(SOMI-SPCL)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
0.5tc(SPC)S – 6 – tr  
4(6)  
Valid time, SPInCLK low after SPInSOMI data valid  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)S – 6 – tr  
5(6)  
6(6)  
7(6)  
ns  
ns  
ns  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2tc(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
37  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSOMI  
SPISOMI Data Is Valid  
6
Data Valid  
7
SPISIMO Data Must  
Be Valid  
SPInSIMO  
Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 1)  
38  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SCIn ISOSYNCHRONOUS MODE TIMINGS INTERNAL CLOCK  
Timing Requirements for Internal Clock SCIn Isosynchronous Mode(1)(2)(3)  
(see Figure 16)  
(BAUD + 1)  
IS EVEN OR BAUD = 0  
(BAUD + 1)  
IS ODD AND BAUD 0  
UNI  
T
MIN  
MAX  
MIN  
MAX  
Cycle time,  
SCInCLK  
tc(SCC)  
2tc(ICLK)  
224 tc(ICLK)  
3tc(ICLK)  
(224 – 1) tc(ICLK)  
ns  
ns  
ns  
Pulse duration,  
SCInCLK low  
tw(SCCL)  
tw(SCCH)  
0.5tc(SCC) – tf  
0.5tc(SCC) – tr  
0.5tc(SCC) + 5  
0.5tc(SCC) + 5  
0.5tc(SCC) + 0.5tc(ICLK) – tf  
0.5tc(SCC) - 0.5tc(ICLK) – tr  
0.5tc(SCC) + 0.5tc(ICLK)  
0.5tc(SCC) – 0.5tc(ICLK)  
Pulse duration,  
SCInCLK high  
Delay time,  
td(SCCH-TXV)  
SCInCLK high to  
SCInTX valid  
10  
10  
ns  
ns  
ns  
ns  
Valid time,  
SCInTX data  
after SCInCLK  
low  
tv(TX)  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
Setup time,  
SCInRX before  
SCInCLK low  
tsu(RX-SCCL)  
Valid time,  
SCInRX data  
after SCInCLK  
low  
tv(SCCL-RX)  
(1) BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the  
SCICLK falling edge.  
Figure 16. SCIn Isosynchronous Mode Timing Diagram for Internal Clock  
39  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
SCIn ISOSYNCHRONOUS MODE TIMINGS EXTERNAL CLOCK  
Timing Requirements for External Clock SCIn Isosynchronous Mode(1)(2)  
(see Figure 17)  
MIN  
MAX  
UNIT  
tc(SCC)  
Cycle time, SCInCLK(3)  
8tc(ICLK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SCCH)  
tw(SCCL)  
td(SCCH-TXV)  
tv(TX)  
tsu(RX-SCCL)  
tv(SCCL-RX)  
Pulse duration, SCInCLK high  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
2tc(ICLK) + 12 + tr  
Pulse duration, SCInCLK low  
Delay time, SCInCLK high to SCInTX valid  
Valid time, SCInTX data after SCInCLK low  
Setup time, SCInRX before SCInCLK low  
Valid time, SCInRX data after SCInCLK low  
2tc(SCC) – 10  
0
2tc(ICLK) + 10  
(1) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(2) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(3) When driving an external SCInCLK, the following must be true: tc(SCC) 8tc(ICLK)  
.
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission / reception characteristics for isosynchronous mode with external clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the  
SCICLK falling edge.  
Figure 17. SCIn Isosynchronous Mode Timing Diagram for External Clock  
40  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
HIGH-END TIMER (HET) TIMINGS  
Minimum PWM Output Pulse Width:  
This is equal to one high resolution clock period (HRP). The HRP is defined by the 6-bit high resolution prescale  
factor (hr), which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes.  
Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK  
For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns  
Minimum Input Pulses that Can Be Captured:  
The input pulse width must be greater or equal to the low resolution clock period (LRP), i.e., the HET loop (the  
HET program must fit within the LRP). The LRP is defined by the 3-bit loop-resolution prescale factor (lr), which  
is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32.  
Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK  
For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns  
NOTE:  
Once the input pulse width is greater than LRP, the resolution of the measurement is  
still HRP. (That is, the captured value gives the number of HRP clocks inside the  
pulse.)  
Abbreviations:  
hr = HET high resolution divide rate = 1, 2, 3,...63, 64  
lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32  
High resolution clock period = HRP = hr/SYSCLK  
Loop resolution clock period = LRP = hr*lr/SYSCLK  
HIGH-END CAN CONTROLLER (HECCn) MODE TIMINGS  
Dynamic Characteristics for the CANnHTX and CANnHRX Pins  
PARAMETER  
MIN  
MAX UNIT  
td(CANnHTX)  
td(CANnHRX)  
Delay time, transmit shift register to CANnHTX pin(1)  
15  
5
ns  
ns  
Delay time, CANnHRX pin to receive shift register  
(1) These values do not include rise/fall times of the output buffer.  
41  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
MULTI-BUFFERED A-TO-D CONVERTER (MibADC)  
The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances  
the A-to-D performance by preventing digital switching noise on the logic circuitry, which could be present on  
VSS and VCC, from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to  
ADREFLO unless otherwise noted.  
Resolution  
10 bits (1024 values)  
Assured  
Monotonic  
Output conversion code  
00h to 3FFh [00 for VAI ADREFLO; 3FF for VAI ADREFHI  
]
Table 10. MibADC Recommended Operating Conditions(1)  
MIN  
VSSAD  
VSSAD  
MAX  
VCCAD  
UNIT  
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
V
V
V
A-to-D low-voltage reference source  
Analog input voltage  
VCCAD  
VSSAD – 0.3  
VCCAD + 0.3  
Analog input clamp current(2)  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
IAIC  
–2  
2
mA  
(1) For VCCAD and VSSAD recommended operating conditions, see the "device recommended operating conditions" table.  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Table 11. Operating Characteristics Over Full Ranges of Recommended Operating Conditions(1)(2)  
PARAMETER  
DESCRIPTION/CONDITIONS  
See Figure 18.  
MIN  
TYP  
MAX UNIT  
500  
RI  
CI  
Analog input resistance  
250  
Conversion  
Sampling  
10 pF  
30 pF  
Analog input capacitance  
See Figure 18.  
IAIL  
Analog input leakage current  
ADREFHI input current  
See Figure 18.  
–1  
3
1
5
µA  
IADREFHI  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
ADREFHI - ADREFLO  
mA  
Conversion range over which specified  
accuracy is maintained  
CR  
3.6  
V
Difference between the actual step width  
and the ideal value. See Figure 19.  
EDNL  
Differential nonlinearity error  
±1.5 LSB  
±2 LSB  
Maximum deviation from the best straight  
line through the MibADC. MibADC  
transfer characteristics, excluding the  
quantization error. See Figure 20.  
EINL  
Integral nonlinearity error  
Maximum value of the difference  
between an analog value and the ideal  
midstep value. See Figure 21.  
E TOT  
Total error/absolute accuracy  
±2 LSB  
(1) VCCAD = ADREFHI  
(2) 1 LSB = (ADREFHI – ADREFLO)/ 210 for the MibADC  
42  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
External  
MibADC  
Input Pin  
Rs  
Ri  
Sample Switch  
Sample  
Capacitor  
Parasitic  
Capacitance  
Rleak  
Vsrc  
Ci  
Figure 18. MibADC Input Equivalent Circuit  
Multi-Buffer ADC Timing Requirements  
MIN  
0.05  
1
NOM  
MAX UNIT  
tc(ADCLK)  
td(SH)  
Cycle time, MibADC clock  
µs  
µs  
µs  
µs  
Delay time, sample and hold time  
Delay time, conversion time  
td©)  
0.55  
1.55  
(1)  
td(SHC)  
Delay time, total sample/hold and conversion time  
(1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for  
more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206).  
The differential nonlinearity error shown in Figure 19 (sometimes referred to as differential linearity) is the  
difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
DifferentialLinearity  
Error(1/2 LSB)  
1 LSB  
0 ... 010  
DifferentialLinearity  
Error(- 1/2 LSB)  
0 ... 001  
1 LSB  
0 ... 000  
0
1
2
3
4
5
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 19. Differential Nonlinearity (DNL)  
43  
Submit Documentation Feedback  
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
The integral nonlinearity error shown in Figure 20 (sometimes referred to as linearity error) is the deviation of the  
values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
0 ... 101  
Ideal  
Transition  
Actual  
Transition  
0 ... 100  
0 ... 011  
At Transition  
011/100  
(ć 1/2 LSB)  
0 ... 010  
0 ... 001  
End-Point Lin. Error  
At Transition  
001/010 (ć 1/4 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 20. Integral Nonlinearity (INL) Error  
The absolute accuracy or total error of an MibADC as shown in Figure 21 is the maximum value of the  
difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(-1 1/4 LSB)  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Total Error  
At Step 0 ... 001  
(1/2 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 21. Absolute Accuracy (Total) Error  
44  
Submit Documentation Feedback  
 
 
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
THERMAL RESISTANCE CHARACTERISTICS  
PARAMETER  
RΘJA  
°C/W  
43  
RΘJC  
6.5  
45  
Submit Documentation Feedback  
TMS470R1B512  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS107ASEPTEMBER 2005REVISED AUGUST 2006  
Revision History  
This revision history highlights the changes made to the device-specific datasheet SPNS107.  
Table 12. Revision History  
SPNS107 to SPNS107A  
Revised the Family Nomenclature drawing to add Q version of the temperature range.  
Revised "Absolute Maximum Ratings" table to add Q version of the temperature range.  
Revised "Device Recommended Operating Conditions" table to add Q version of the temperature range.  
Added note to PORRST Timing Diagram.  
Changed TA range to –40°C to 125°C on twec in "Timing Requirements for Program Flash" table.  
Added twec MIN value of 50000 and deleted MAX value in "Timing Requirements for Program Flash" table.  
Changed terase(sector) TYP value to 1.7 and removed MAX value in "Timing Requirements for Program Flash" table.  
46  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jun-2006  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LQFP  
LQFP  
Drawing  
TMP470R1B512PGE  
TMS470R1B512PGET  
PREVIEW  
ACTIVE  
PGE  
144  
144  
1
TBD  
Call TI  
Call TI  
PGE  
60 Green (RoHS & CU NIPDAU Level-3-260C-168HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TMS470R1B512_06

16/32-Bit RISC Flash Microcontroller
ADI

TMS470R1B768

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGE

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI

TMS470R1B768PGEQ

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGET

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGETR

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI

TMS470R1B768_07

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768_08

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1VC002

16/32-BIT RISC ROM MICROCONTROLLER
TI

TMS470R1VC002PZA

暂无描述
TI

TMS470R1VC002PZQ

32-BIT, FLASH, 20MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, LQFP-100
TI

TMS470R1VC334A

16/32-BIT RISC ROM MICROCONTROLLER
TI