AMS4123 [ADMOS]

Dual Threshold Enable;
AMS4123
型号: AMS4123
厂家: ADVANCED MONOLITHIC SYSTEMS    ADVANCED MONOLITHIC SYSTEMS
描述:

Dual Threshold Enable

文件: 总18页 (文件大小:590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
General Description  
Features  
The AMS4123 combines a 3A Step-Down converter  
with a 1A LDO in a single SO-8 exposed paddle  
package. Both the LDO and Step-Down converter  
are low ESR, ceramic capacitor output, stable. The  
Step-Down converter is internally compensated with  
internal soft-start to minimize the number of external  
components. An Enable pin provides built-in  
externally programmable power-up sequencing. The  
Step-Down converter enable threshold is 2.0V and  
the LDO enable threshold is 2.5V. It also has hiccup  
current limit and thermal protection. Thermal  
protection shuts down both the Step-Down converter  
and LDO when the die temperature exceeds 135°C.  
Step-Down Converter + LDO in SO-8EP  
Internally Compensated  
Up to 95% Efficiency  
Low ESR Ceramic Output Capacitor Stable  
Soft Start  
Under-Voltage Lockout  
Dual Threshold Enable  
300 kHz Switching Frequency  
Hiccup Current Limit  
Over-Temperature Shutdown  
Ultra-Low Dropout LDO 350mV @ 1A  
Up to 3A Step-Down Output Current  
Up to 1A LDO Output Current  
Excellent Light Load Efficiency  
Both regulators are adjustable using  
a 0.6V  
reference for low output voltage settings. The LDO  
has options for fixed output voltages from 0.6V to 5V  
in 100mV steps. The LDO external input can be  
powered from the Step-Down converter output, for  
improved efficiency, or from any voltage source that  
is less than or equal to the device supply voltage  
(Vin). With a dropout voltage of less than 350mV at  
1A, the AMS4123 LDO makes the perfect solution  
for a low noise 1.8V power source developed from  
2.5V Step-Down converter output. The AMS4123 is  
a complete solution for LCD TV power requirements  
when combined with the AMS4122 (2A Dual  
Switching Regulator in SO-8).  
Applications  
Audio Power Amplifiers  
Portable (Notebook) Computers  
Point of Regulation for High Performance  
Electronics  
Consumer Electronics  
DVD, Blue-ray DVD writers  
LCD TVs and LCD monitors  
Distributed Power Systems  
Battery Chargers  
Pre-Regulator for Linear Regulation  
Typical Application  
Vin 4.5V to 20V  
C5  
220nF  
L1  
10uH  
U1  
AMS4123  
SW  
2.5V at 2A  
3
7
8
6
1
2
5
4
SW out  
Vin  
2.5V  
LDOin  
BST  
C2  
22uF  
C9  
100uF  
C1  
10uF  
1.8V at1A  
R1  
D1  
B340LB  
LDOout FB SW  
20.0k  
FB LDO  
EN  
C3  
2.2uF  
R2  
10.0k  
R3  
10.0k  
R4  
31.6k  
R1 and R4 Voltage Options  
1.8V 20.0k  
Enable  
2.5V 31.6k  
3.3V 45.3k  
C8  
4.7nF  
5.0V 73.2k  
3/5/2010  
www.advanced-monolithic.com  
1
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Pin Description  
Pin #  
1
Symbol  
Description  
Step-Down converter switching node that connects the internal power switch to the  
output inductor.  
SW  
The bootstrap capacitor tied to this pin is used as the bias source for the drive to the  
internal power switch. Use a 220nF or greater capacitor from the BST to the SW  
pin.  
Input Power. Supplies bias to the IC and is also the power input to the step-down  
converter main power switch. Bypass Vin with low impedance ceramic with  
sufficient capacitance to minimize switching frequency ripple as well as high  
frequency noise.  
2
3
BST  
Vin  
Enable. A voltage greater than 2V at this pin enables the switching regulator. 2.5V  
enables the LDO section.  
4
5
EN  
Step-Down Converter Feedback input. A resistor network of two resistors is used to  
set-up the output voltage connected between VSW out and GND. The node between  
the two resistors is connected to Feedback Switch pin.  
LDO Feedback input. A resistive voltage divider is used to set the output voltage  
connected between the LDO output and GND. The node between the two resistors  
is connected to FB LDO pin.  
FB SW  
6
FB LDO  
LDO Input. Connect to the output of the Step-Down converter. LDO IN can also be  
powered from any power supply as long as it is 2V less than Vin.  
LDO Output pin.  
Ground paddle to be connected to PCB ground plane. This is also the ground for  
internal voltage reference.  
7
8
9
LDO in  
LDO out  
GND (PADDLE)  
Pin Configuration  
8L SOIC  
SO Package (S)  
Top View  
3/5/2010  
www.advanced-monolithic.com  
2
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Absolute Maximum Ratings (1)  
Recommended Operating Conditions (2)  
VIN Supply Voltage………………...………..….-0.3V to 23V  
LDOIN Supply Voltage…………………..……...-0.3V to 20V  
LDOOUT Output Voltage………………….….....-0.3V to 20V  
BST Boot Strap Voltage………………....…. -0.3V to 27V  
FBLDO,FBSW feedback pins………....……-0.3V to +12V  
EN Enable Voltage………………………..….-0.3V to +20V  
Storage Temperature Range……………...-65C to 150C  
Lead Temperature…………………..……….….…… 260C  
Junction Temperature………...………………..…… 150C  
Input Voltage………………………………….………..4.5V to 20V  
Ambient Operating Temperature…… …………….-40C to 85C  
Thermal Information  
(3)  
8L SOIC EP θJA  
…………………………………….…...45C/W  
θJC ...........................................................10C/W  
Maximum Power Dissipation…………………………...….…….2W  
Electrical Characteristics TA= 25 °C and VIN=12V (unless otherwise noted).  
Parameter  
Symbol  
Vin  
VFBLDO  
VFBSW  
Conditions  
Min.  
Typ.  
12  
Max.  
20  
Units  
Vin  
4.5  
V
V
V
LDO Feedback Voltage  
ILDO=0A  
Isw=0A  
tbd  
0.586  
0.596  
tbd  
tbd  
Switcher Feedback Voltage  
tbd  
VLDO out=0.6V to 5V in  
100mV increments  
LDO Output Voltage tolerance  
VLDO Out  
-1.5  
1
1.5  
%
Step-Down Converter Bias  
Current  
VLDOin =VEN =5V  
VFBSW= 1.5V  
VLDOin =VEN =5V  
IQSW  
1.4  
1.3  
1.9  
2.0  
mA  
mA  
LDO+SW Bias Current  
IQSW+LDO  
VFBLDO =VFBSW= 1.5V  
LDO Bias Current  
IQLDO  
IVinsd  
VEN= 5V; VFBLDO = 1.5V  
VEN =0V  
400  
90  
μA  
nA  
V
Shutdown Supply Current  
SW NPN Saturation Voltage  
Converter Current Limit  
VSAT  
ILIMSW  
ILIMLDO  
VDO  
ISW out=1A  
0.66  
4.2  
VSW out=5V  
A
LDO Current Limit  
1.1  
A
VLDO in=5V; Co=2.2μF  
LDO Dropout Voltage  
VLDOin=VLDOout-0.1V, Io=1A  
350  
mV  
ΔVLDO Out  
VLDO Out  
/
/
LDO Load Regulation  
LDO Line Regulation  
ILDO = 0 to1A  
0.5  
0.1  
%
%
ΔVLDO Out  
VLDO Out  
VLDOin = VLDOout+0.5V to 20V,  
Vin=20V  
Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Converter Enable Threshold  
Enable Hysteresis  
FOSC  
260  
300  
95  
340  
99  
kHz  
%
DMAX  
DMIN  
VFB=0V  
VFB=1.5V  
0
%
VEN SW  
VENHYS  
VEN LDO  
IEN  
2.0  
100  
2.5  
0.7  
4.2  
2.1  
V
mV  
V
LDO Enable Threshold  
Enable Pull-up Current  
Under Voltage Lockout  
2.55  
VEN = 0V  
Vin rising  
μA  
V
VUVLO  
Under Voltage Lockout  
Hysteresis  
VUVLO HYS  
200  
mV  
Total Power dissipation  
Thermal Shutdown  
PD  
Note (4)  
2.5  
W
TSD  
145  
°C  
3/5/2010  
www.advanced-monolithic.com  
3
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Notes:  
1.  
Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device.  
2.  
3.  
4.  
Operation outside of the recommended operating conditions is not guaranteed.  
Measured on approximately 1” square of 1 oz. copper.  
The total power dissipation for SO-8 EDP package is recommended to 2.5W rated at 25C ambient temperature. The thermal resistance Junction to Case  
is 45C/W. Total power dissipation for the switching regulator and the LDO should be taken in consideration when calculating the output current capability  
of each regulator.  
3/5/2010  
www.advanced-monolithic.com  
4
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical Characteristics  
Efficiency VSW out=5V, L=10µH,  
B340LB Schottky  
Load Regulation VSW out =5V, L=10µH  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin =12V  
0.6  
Vin =12V  
0.2  
Vin =23V  
-0.2  
-0.6  
-1.0  
Vin =23V  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Efficiency VSW out=3.3V,  
L=10µH, B340LB Schottky  
Load Regulation VSW out=3.3V, L=10µH  
1.0  
0.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin =12V  
Vin =23V  
Vin =12V  
0.2  
Vin =23V  
-0.2  
-0.6  
-1.0  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Efficiency Vsw out=2.5V, L=10µH,  
B340LB Schottky  
Load Regulation Vsw out=2.5V, L=10 µH  
1.0  
0.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin =12V  
Vin =23V  
0.2  
-0.2  
-0.6  
-1.0  
Vin =23V  
Vin =12V  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
3/5/2010  
www.advanced-monolithic.com  
5
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical Characteristics  
Output Voltage Error vs. Input Voltage  
No Load Input Current vs. Input Voltage  
sw out = 2.5V, VLDO out = 1.8V  
V
SW out = VLDO in = 2.5V, VLDO out =1.8V  
V
0.50  
0.25  
3.2  
2.4  
1.6  
0.8  
0.0  
V LDO out  
0.00  
Vsw out  
-0.25  
-0.50  
ILDO=0.6A  
Isw=1.6A  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Input Voltage (V)  
Input Voltage Vin (V)  
Switching Frequency vs. Input Voltage  
sw out = 2.5V, VLDO out = 1.8V  
LDO Dropout Voltage vs. Load Current  
LDO in = VLDO out - 0.1V  
V
V
308  
304  
300  
296  
292  
0.4  
0.3  
0.2  
0.1  
0
VLDO out programmed for 1.8V  
Vin = 12V  
0
5
10  
15  
20  
25  
0
0.2  
0.4  
0.6  
0.8  
1
Input Voltage (V)  
LDO Output Current (V)  
VLDO Out Load Regulation  
SW out = VLDO in =2.5V, VLDO Out=1.8V  
Feedback Voltage Temperature  
Variation  
V
2
1.5  
1
0.61  
0.60  
0.59  
0.58  
0.57  
FBSW  
Vin=12V  
Vin=15V  
FBLDO  
0.5  
0
ILDO=Isw=0  
VLDO out=1.8V, VSW out=2.5V  
Vin=20V  
0.8 1  
-50  
-10  
30  
70  
110  
150  
0
0.2  
0.4  
0.6  
Output Current (A)  
Ambient Temperature (ºC)  
3/5/2010  
www.advanced-monolithic.com  
6
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical Characteristics  
Step-Down Converter Output Ripple  
VSW out =2.5V, ISW out=1.8A, Vin=12V  
LDO 200mA to 800mA Transient Response,  
VLDO in=3.3V, Co=2.2µF, VLDO out = 1.8V, Vin=12V  
VSW out  
20mVac  
/div  
VLDO out  
100mVac  
/div  
IL  
1A/div  
ILDO out  
500mA  
/div  
VSW  
5V/div  
2 µsec/div  
1 µsec/div  
Step-Down Converter Load Transient  
No Load to 2A,VSW out=2.5V, Vin=12V  
Step-Down Converter Load Transient  
200mA to 2A, Vsw out = 2.5V, Vin=12V  
VSW out  
100mVac  
/div  
VSW out  
100mVac  
/div  
ISW out  
500mA  
/div  
ISW out  
1A/div  
2 msec/div  
40 µsec/div  
LDO Transient Response  
No Load to 1A, VLDO in=Vsw out =2.5V,  
Step-Down Converter Load Transient  
200mA to 1.2A, Vsw out = 2.5V,Vin=12V  
VSW out  
200mVac/  
div  
VSW out  
100mVac  
/div  
VLDO out  
100mVac  
/div  
ISW out  
500mA  
/div  
ILDO out  
1A/div  
20 µsec/div  
20 µsec/div  
3/5/2010  
www.advanced-monolithic.com  
7
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical Characteristics  
Start-Up Response Vin=12V  
Switching Frequency Temperature  
Variation VSW out=2.5V, Vin=12V  
VSW out  
1V /div  
300  
VLDO out  
1V /div  
280  
260  
240  
220  
IL  
2A/div  
Ven  
5V /div  
-45  
-10  
25  
60  
95  
130  
Ambient Temperature (ºC)  
400 µsec/div  
Start-Up Response  
Enable=Vin=12V  
Feedback Voltage Temperature  
Variation  
0.8  
0.0  
FBSW  
VLDO out  
1V /div  
FBLDO  
-0.8  
-1.6  
-2.4  
ILDO=Isw=0  
VLDO out=1.8V, VSW out=2.5V  
IL  
2A/div  
Vin  
10V /div  
-50  
-10  
30  
70  
110  
150  
Ambient Temperature (ºC)  
2 msec/div  
Start-Up Response Vin=20V  
Step-Down Converter Power Switch  
Saturation Voltage Vin=12V  
1.2  
VSW out  
1V /div  
0.9  
0.6  
0.3  
0
VLDO out  
1V /div  
IL  
2A/div  
Tamb = 25C  
Mounted on Eval. Board  
Ven  
5V /div  
0
0.7  
1.4  
2.1  
2.8  
3.5  
Current (A)  
1 msec/div  
3/5/2010  
www.advanced-monolithic.com  
8
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical Characteristic  
LDO Ground Current  
VLDO in = 3.3V, VLDO out=1.8V  
LDO Current Limit  
VLDO in = 3.3V, VLDO out=1.8V  
50  
1.4  
1.3  
1.2  
1.1  
1
40  
30  
20  
10  
0
0.9  
0.8  
0.7  
0.6  
Voltage Mode Load VLDO out = 1.68V  
0
200  
400  
600  
800  
1000  
5
9
13  
17  
21  
25  
Load Current (mA)  
Vin Input Voltage (V)  
3/5/2010  
www.advanced-monolithic.com  
9
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Functional Block Diagram  
Vin  
3
UVLO  
BST  
Reg.  
4.2V / 3.8V  
Internal  
Vcc  
Regulator  
Vcc  
3.3V  
Isense  
Σ
Vref  
0.6V  
EAout  
BST  
2
SET  
CLR  
R
S
Q
Q
Level  
Shift  
300kHz  
Oscillator  
SW  
SW out  
1
FB SW  
5
EAout  
Vref  
0.6V  
Switching  
Regulator  
Shutdown  
PVin  
LDO In  
2.0V  
7
8
4
En  
Vref  
Shutdown  
Comparators  
2.5V  
LDO Out  
P
6
Pgnd  
Paddle  
FB LDO  
3/5/2010  
www.advanced-monolithic.com  
10  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Device Summary  
Fault Protection  
The AMS4123 is combines a high voltage 3 Amp fixed  
frequency step-down converter combined with a 1  
Amp low drop out (LDO) linear regulator on a single  
die.  
Short circuit and over-temperature shutdown disable  
the converter and LDO in the event of an overload  
condition.  
The peak current mode step-down converter has  
internal compensation and is stable with a wide range  
of ceramic, tantalum, and electrolytic output  
capacitors. The step-down converter output voltage is  
sensed through an external resistive divider that feeds  
the negative input to an internal transconductance  
error amplifier. The output of the error amplifier is  
connected to the input to a peak current mode  
comparator. The inductor current is sensed as it  
passes through the power switch, amplified and is  
also fed to the current mode comparator. The error  
amplifier regulates the output voltage by controlling  
the peak inductor current passing through the power  
switch so that, in steady state, the average inductor  
current equals the load current. The step-down  
converter has an input voltage range of 4.5V to 20V  
with an output voltage as low as 0.6V.  
The LDO operates from an input voltage ranging from  
1V to 20V and a typical dropout voltage of 350mV at  
1A. The input to the LDO can be supplied by the  
output of the Step-Down converter or some other  
available power source that must be 2V less than the  
input voltage (Vin). The LDO is also stable for a wide  
range of ceramic output capacitors ranging from as  
low as 1µF.  
Application  
Inductor  
The step-down converter inductor is typically selected  
to limit the ripple current to 40% of the full load output  
current. Solve for this value at the maximum input  
voltage where the inductor ripple current is greatest.  
Vo  
L= Vin-Vo ·  
Vin·Io·0.4·Fs  
2.5V  
L= 15V-2.5V ·  
=9.4µH  
15V·2A·0.4·300kHz  
For most applications the duty cycle of the AMS4123  
step down converter is less than 50% duty and does  
not require slope compensation for stability. This  
provides some flexibility in the selected inductor  
value. Given the above selected value, others values  
slightly greater or less may be examined to determine  
the effect on efficiency without a detrimental effect on  
stability.  
With and inductor value selected, the ripple current  
can be calculated:  
(Vo+Vfwd)·(1-D)  
Ipp=  
L·Fs  
Enable  
The enable input has two levels so that the step-down  
converter can be enabled independently of the LDO.  
The enable threshold for the step-down converter is  
2.0V while the enable threshold for the linear regulator  
output is 2.5V typical.  
Using the maximum input voltage values the ripple is:  
(2.5V+0.2V)· 1-0.23  
Ipp=  
=0.7A  
10μH·300kHz  
Under Voltage Lockout  
Once the appropriate value is determined, the  
component is selected based on the DC current and  
the peak (saturation) current. Select an inductor that  
has a DC current rating greater than the full load  
current of the application. The DC current rating is  
also reflected in the DC resistance (DCR)  
specification of the inductor. The inductor DCR should  
limit the inductor loss to less than 2% of the step-  
down converter output power.  
The under-voltage lockout (UVLO) feature guarantees  
sufficient input voltage (Vin) bias for proper operation  
of all internal circuitry prior to activation. The input  
voltage (Vin) is internally monitored and the converter  
and LDO are enabled when the rising level of Vin  
reaches 4.2V. To prevent UVLO chatter 400mV of  
hysteresis is built in to the UVLO comparator so that  
the step-down converter and LDO are disabled when  
VIN drops to 3.8V.  
The peak current at full load is equal to the full load  
DC current plus one half of the ripple current. As  
mentioned before, the ripple current varies with input  
3/5/2010  
www.advanced-monolithic.com  
11  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
voltage and is a maximum at the maximum input  
voltage.  
Step-Down Converter Output Capacitor  
The optimum solution for the switching regulator is to  
use a large bulk capacitor for large load transients in  
parallel with a smaller, low ESR, X5R or X7R ceramic  
capacitor to minimize the switching frequency ripple.  
(Vo+Vfwd)·(1-Dmin)  
Ipkmax=Io+  
2·L·Fs  
High Frequency Ripple  
Vo  
Dmin=  
The following equation determines the required low  
ESR ceramic output capacitance for a given inductor  
current ripple (Ipp).  
Vinmax  
The duty cycle can be more accurately estimated by  
including the drops of the external Schottky diode and  
the internal power switch:  
Ipp  
0.7A  
C=  
=
=15μF  
Fs·8·dV 300kHz·8·20mV  
Vo+Vfwd  
Dmin=  
Large Signal Transient  
For applications with large load transients an  
additional capacitor may be required to keep the  
output voltage within the limits required during large  
load transients.  
Vinmax-Vo+Vfwd  
2.5V+0.2V  
Dmin=  
=0.23  
15V-0.3V+0.2V  
In this case the required capacitance can be  
examined for the load application and load removal.  
For full load to no load transient the required  
capacitance is  
Vfwd is the diode freewheeling diode drop and Vsw is  
the collector to emitter drop of the internal power  
switch.  
With a good estimate of the duty cycle (D) the  
inductor peak current can be determined:  
L·Io2  
Vos2-Vo2 (2.7V)2-(2.5V)2  
10μH·(2A)2  
Cbulk=  
=
=36μF  
(2.5V+0.2V)·(1-0.23)  
For the application of a load pulse the capacitance  
required form hold up depends on the time it takes for  
the power supply loop to build up the inductor current  
to match the load current. For the AMS4123 this can  
be estimated to be less than 10 µsec or about three  
clock cycles.  
Ipkmax=2A+  
=2.35A  
2·10µH·300kHz  
There are a wide range 2 and 3 Amp, shielded and  
non-shielded inductors available. Table 1 lists a few.  
Table 1. Inductor Selection Guide  
Dimensions (mm)  
Io·t 2A·10μsec  
Cbulk=  
=
=100μF  
dV  
0.2V  
Series  
Coilcraft  
Type  
W
L
H
For applications that do not have any significant load  
transient requirements a ceramic capacitor alone is  
typically sufficient.  
Non-  
Shielded  
Non-  
DO3316P  
DO3308  
9.4  
9.4  
13  
13  
5.2  
3.0  
Shielded  
Boot Strap Capacitor  
Sumida  
An external capacitor is required for the high side  
switch drive. The capacitor is biased during the off  
time while the switch node is at ground by way of the  
freewheeling diode. During the on time portion of the  
switching cycle the switch node is tied to the input  
voltage by way of the internal power switch. The boot  
strap capacitor is always referenced to the switch  
node so the charge stored in the capacitor during the  
off time is then used to drive the internal power switch  
during the on time.  
CDRH6D26  
Shielded  
7
7
2.8  
5.2  
Non-  
Shielded  
CDH74  
7.3  
7.3  
Coiltronics  
SD8328  
Shielded  
8.3  
9.5  
3.0  
3/5/2010  
www.advanced-monolithic.com  
12  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Typical bootstrap capacitor values are in the 220nF to  
470nF range. Insufficient values will not be able to  
provide sufficient base drive current to the power  
switch during the on time. Values less than 220nF are  
not recommended. This will result in excessive losses  
and reduced efficiency.  
Linear Regulator Output Capacitor  
The Linear regulator is stable with a wide range of  
ceramic capacitors. The ceramic output capacitor can  
range from 1uF to 100uF with either X5R or X7R  
temperature coefficient. The actual values selected  
within the range will depend on the expected load  
transients and the output voltage tolerance  
requirements during the load transient.  
Optional Snubber  
To reduce high frequency ringing at the switching  
node a snubber network is suggested. The values  
typically selected are 470pF ceramic in series with a  
10resistor. The power dissipation of the 10Ω  
resistor is about 32mW for a 15V input with a 300kHz  
switching frequency.  
Linear Regulator Input Capacitor  
Place a 2.2uF X5R or X7R or equivalent ceramic  
bypass capacitor at the LDO input.  
Feedback Resistor Selection  
The step down converter and LDO both use a 0.6V  
reference voltage at the positive terminal of the error  
amplifier. To set the output voltage a programming  
resistor form the feedback node to ground must first  
be selected (R2,R3 of figure 4). A 10kresistor is a  
good selection for a programming resistor. A higher  
value could result in an excessively sensitive  
feedback node while a lower value will draw more  
current and degrade the light load efficiency. The  
equation for selecting the voltage specific resistor is:  
PR1=C3·Vin2·Fsw  
Vin is the maximum input voltage and Fsw is the  
switching frequency. The snubber capacitor must be  
rated to withstand the input voltage.  
Step-Down Converter Input Capacitor  
The low esr ceramic capacitor required at the input to  
filter out high frequency noise as well as switching  
frequency ripple. Placement of the capacitor is critical  
for good high frequency noise rejection. See the PCB  
layout guidelines section for details. Switching  
frequency ripple is also filtered by the ceramic bypass  
input capacitor. Given a desired input voltage ripple  
(Vripple) limit, the required input capacitor can be  
estimated with:  
R4=VVoreuft -1ꢆ ·R3 =02..56VV -1Vꢆ ·10k=31.67kΩ  
Table 2. Feedback Resistor values  
R1,R4 (k)  
Vout (V)  
1.8  
(R2,R3=10k)  
Vo+Vfwd  
Dmax=  
20.0  
31.6  
Vinmin-Vo+Vfwd  
2.5  
3.3  
5.0  
45.3  
73.2  
Dmax·Io·(1-Dmax)  
C=  
Fs·Vripple  
2.5V +0.2V  
9V-0.3V+0.2V  
2.5V0.2V  
9V-0.3V+0.2V  
·2A· 1-  
=
=7μF  
300kHz·0.2V  
.
For high voltage input converters the duty cycle is  
always less than 50% so the maximum ripple is at the  
minimum input voltage. The ripple will increase as the  
duty cycle approaches 50% where it is a maximum.  
Step-Down Converter Feedforward Capacitor  
For optimum start-up and improved transient  
response place a feed-forward capacitor (C6) across  
the feedback resistor R2. Typical values range from  
220pF to 10nF.  
3/5/2010  
www.advanced-monolithic.com  
13  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
PCB Layout  
The following guidelines should be followed to insure  
proper layout.  
Ion+ Ioff  
1. Vin Capacitor. A low ESR ceramic bypass  
capacitor must be placed as close to the IC as  
possible.  
2. Schottky Diode. During the off portion of the  
switching cycle the inductor current flows through  
the Schottky diode to the output cap and returns  
to the inductor through the output capacitor. The  
trace that connects the output diode to the output  
capacitor sees a current signal with a very high  
di/dt. To minimize the associated spiking and  
ringing, the inductance and resistance of this  
trace should be minimized by connecting the  
diode anode to the output capacitor return with a  
short wide trace.  
3. Feedback Resistors. The feedback resistors  
should be placed as close as possible the IC.  
Minimize the length of the trace from the feedback  
pin to the resistors. This is a high impedance  
node susceptible to interference from external RF  
noise sources.  
Ion  
Ioff  
PCB Inductance  
Ion  
High  
di/dt  
Ioff  
Ion+Ioff  
Ion  
4. Inductor. Minimize the length of the SW node  
trace. This minimizes the radiated EMI associated  
with the SW node.  
Ioff  
5. Ground. The most quiet ground or return potential  
available is the output capacitor return. The  
inductor current flows through the output  
capacitor during both the on time and off time,  
hence it never sees a high di/dt. The only di/dt  
seen by the output capacitor is the inductor ripple  
current which is much less than the di/dt of an  
edge to a square wave current pulse. This is the  
best place to make a solid connection to the IC  
ground and input capacitor. This node is used as  
the star ground shown in Figure 1. This method of  
grounding helps to reduce high di/dt traces, and  
the detrimental effect associated with them, in a  
step-down converter. The inductance of these  
traces should always be minimized by using wide  
traces, ground planes, and proper component  
placement.  
High di/dt trace reduction  
“Star Ground”  
Figure 1. Step Down Converter Layout  
6. For good thermal performance vias are required  
to couple the exposed tab of the SO-8 package to  
the PCB ground plane. The via diameter should  
be 0.3mm to 0.33mm positioned on a 1.2mm grid.  
3/5/2010  
www.advanced-monolithic.com  
14  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Output Power and Thermal Limits  
The AMS4123 junction temperature, Step-Down  
converter and LDO current capability depends on the  
internal dissipation and the junction to case thermal  
resistance of the SO8 exposed paddle package. This  
gives the junction temperature rise above the device  
paddle and PCB temperature.  
The temperature of the paddle and PCB will be  
elevated above the ambient temperature due to the  
total losses of the step down converter and losses of  
other circuits and or converters mounted to the PCB.  
Tjmax=Pd·θjc+Tpcb+Tamb  
The losses associated with the AMS4123 overall  
efficiency are;  
1. Output Diode Conduction Losses  
2. Inductor DCR Losses  
3. AMS4123 Internal losses  
a. Power Switch Forward Conduction  
and Switching Losses  
b. Quiescent Current Losses  
The internal losses contribute to the junction  
temperature rise above the case and PCB  
temperature.  
The junction temperature depends on many factors  
and should always be verified in the final application  
at the maximum ambient temperature. This will assure  
that the device does not enter over-temperature  
shutdown when fully loaded at the maximum ambient  
temperature.  
3/5/2010  
www.advanced-monolithic.com  
15  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
Figure 2. AMS4123 Evaluation Board Top Side  
Figure 3. AMS4123 Evaluation Board Bottom Side  
JP1  
LDO Input  
R5  
10  
VLX  
J1  
VLDOIn  
L1  
10uH  
C7  
J4  
U1 AMS4123_1  
SW LDO Out  
470pF  
1
2
3
4
8
7
6
5
Vout  
C5  
R1  
31.6k  
VLDOOut  
BST LDO In  
Vin FB LDO  
C2  
Vin  
220nF  
J3  
C9  
100uF 16V  
22uF  
C1  
10uF 50V  
J6  
J2  
EN  
FB SW  
gnd  
gnd  
C4  
22uF 35V  
C6  
C3  
R2  
10.0k  
2.2uF  
2.2uF  
D1  
B340LB  
R4  
45.3k  
R3  
10.0k  
J7  
J5  
Enable  
C8  
gnd  
4.7nF  
Figure 4. AMS4123 Evaluation Board Schematic  
Table 3. Evaluation Board Bill of Materials  
Component Value  
Manufacturer Manufacturer Part Number  
L1  
10µH 3.9A  
Coilcraft  
DO3316P  
9.4mm x 13mm x 5.2mm  
100µF, 16V, X case General  
Purpose Tantalum  
C9  
Kemet  
T491X107M016AS  
Taiyo Yuden  
TDK  
LMK212BJ226MG-T  
C3225X5R1A226M  
C2  
22µF, 10V, X5R, 0805, Ceramic  
C1  
C3,C6  
C3,C6  
option  
C7  
C5  
C8  
C4  
R5  
10µF, 50V, X5R, 1210, Ceramic  
2.2µF, 10V, X5R, 0805  
2.2µF, 10V, X5R, 0603  
Taiyo Yuden  
Murata  
Murata  
UMK325BJ106KM-T  
GRM216R61A225KE24  
GRM39X5R225K10H52V  
470pF 50V, 20%, X7R, 0603  
220nF 25V, 10%, X7R, 0603  
4.7nF 50V, 20%, X7R, 0603  
22µF 35V Tantalum Case E  
10, 0.1W, 0603 5%  
Murata  
Murata  
Murata  
Vishay  
GRM188R71H471MA01  
GRM188R71E224KA88  
GRM188R71H472MA01  
293D226X9035E2TE3  
CRCW060310R0JNEA  
Vishay/Dale  
3/5/2010  
www.advanced-monolithic.com  
16  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
R2,R3  
R1,R4  
D1  
10k, 0.1W, 0603 1%  
See table 2  
3A, 40V Schottky  
Various  
Various  
Diodes Inc.  
AMS  
CRCW060310K0FKEA  
CRCW0603xxKxFKEA  
B340LB  
U1  
Step-Down Converter / LDO  
AMS4123  
ORDERING INFORMATION  
Package Type  
SOIC EDP  
AMS4123S  
TEMP. RANGE  
-25°C to 125°C  
PACKAGE DIMENSIONS inches (millimeters) unless otherwise noted.  
8 LEAD SOIC PLASTIC PACKAGE (S)  
3/5/2010  
www.advanced-monolithic.com  
17  
Phone (925) 443-0722  
Fax (925) 443-0723  
AMS4123  
3A 20V Step-Down Converter + 1A LDO  
3/5/2010  
www.advanced-monolithic.com  
18  
Phone (925) 443-0722  
Fax (925) 443-0723  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY