AD5781SRU-EP [ADI]

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL;
AD5781SRU-EP
型号: AD5781SRU-EP
厂家: ADI    ADI
描述:

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL

光电二极管 转换器
文件: 总20页 (文件大小:656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
True 18-Bit, Voltage Output DAC  
0.5 LSB INL, 0.5 LSB DNL  
Enhanced Product  
AD5781-EP  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
V
CC  
DD  
REFPF REFPS  
Single 18-bit DAC, 0.5 LSB INL  
7.5 nV/√Hz noise spectral density  
0.05 LSB long-term linearity stability  
<0.05 ppm/°C temperature drift  
1 µs settling time  
6.8kΩ 6.8kΩ  
R1  
AD5781-EP  
A1  
R
IOV  
CC  
FB  
R
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
18  
18  
18-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
1.4 nV-sec glitch impulse  
20-lead TSSOP package  
CONTROL  
LOGIC  
Wide power supply range of up to 16.5 V  
35 MHz Schmitt triggered digital interface  
1.8 V compatible digital interface  
Extended automotive operating temperature range −55°C to  
+125°C  
6kΩ  
LDAC  
CLR  
POWER-ON-RESET  
AND CLEAR LOGIC  
RESET  
DGND  
V
AGND  
V
V
REFNF REFNS  
SS  
Figure 1.  
ENHANCED PRODUCT FEATURES  
COMPANION PRODUCTS  
Supports defense and aerospace applications (AQEC standard)  
Military temperature range (−55°C to +125°C)  
Controlled manufacturing baseline  
One assembly/test site  
Ultra precision op amps: AD8675, AD8676  
High voltage op amp: ADA4898-1  
Additional companion products on the AD5781 product page  
One fabrication site  
Enhanced product change notification  
Qualification data available on request  
Table 1. Related Devices  
Part No.  
Description  
AD5791  
20-bit, 1 ppm accurate DAC  
APPLICATIONS  
AD5541A/AD5542A 16-bit, 1 LSB accurate 5 V DAC  
Medical instrumentation  
Test and measurement  
Industrial control  
Scientific and aerospace instrumentation  
Data acquisition systems  
Digital gain and offset adjustment  
Power supply control  
GENERAL DESCRIPTION  
state and remains in this state until a valid write to the device  
takes place.  
The AD5781-EP1 is a single 18-bit, unbuffered voltage output DAC  
that operates from a bipolar supply of up to 33 V. T he AD5781-EP  
accepts a positive reference input range of 5 V to VDD − 2.5 V  
and a negative reference input range of VSS + 2.5 V to 0 V. The  
AD5781-EP offers a relative accuracy specification of 0.5 LSB  
maximum, and operation is guaranteed monotonic with a  
0.5 LSB DNL maximum specification.  
The part provides an output clamp feature that places the  
output in a defined load state.  
The AD5781-EP is available in a compact, 20-lead TSSOP  
package and operates at the extended automotive temperature  
range of −55°C to +125°C. Additional application and technical  
information can be found in the AD5781 data sheet.  
The part uses a versatile 3-wire serial interface that operates at  
clock rates of up to 35 MHz and is compatible with standard  
SPI, QSPI™, MICROWIRE™, and DSP interface standards. The  
part incorporates a power-on reset circuit that ensures that the  
DAC output powers up to 0 V and in a known output impedance  
PRODUCT HIGHLIGHTS  
1. True 18-Bit Accuracy.  
2. Wide Power Supply Range of Up to 16.5 V.  
3. −55°C to +125°C Operating Temperature Range.  
4. Low 7.5 nV/√Hz Noise.  
1 Protected by U.S. Patent No. 8,089,380, and other patents are pending.  
5. Low 0.05 ppm/°C Temperature Drift.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
 
 
AD5781-EP  
Enhanced Product  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing Characteristics .................................................................5  
Absolute Maximum Ratings ............................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Description ...............................8  
Typical Performance Characteristics ..............................................9  
Outline Dimensions ....................................................................... 17  
Ordering Guide .......................................................................... 17  
Enhanced Product Features ............................................................ 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
REVISION HISTORY  
7/13—Rev. 0 to Rev. A  
Changes to t1 Test Conditions/Comments and Endnote 2 ......... 5  
Deleted Figure 4................................................................................ 7  
2/12—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Enhanced Product  
SPECIFICATIONS  
AD5781-EP  
VDD = +12.5 V to +16.5 V, VSS = −16.5 V to −12.5 V, VREFP = +10 V, VREFN = −10 V, VCC = +2.7 V to +5.5 V, IOVCC = +1.71 V to +5.5 V,  
RL = unloaded, CL = unloaded, TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Integral Nonlinearity Error (Relative  
Accuracy)  
18  
−0.5  
Bits  
LSB  
0.25  
+0.5  
VREFP = +10 V, VREFN = −10 V  
−0.5  
−1  
−0.5  
−0.5  
−1  
0.25  
0.5  
0.25  
0.25  
0.5  
0.04  
0.05  
0.03  
0.25  
0.0ꢀ2 +2.75  
0.2  
0.25  
+0.5  
+1  
+0.5  
+0.5  
+1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
VREFP = +10 V, VREFN = 0 V3  
VREFP = +5 V, VREFN = 0 V3  
VREFP = +10 V, VREFN = −10 V  
VREFP = +10 V, VREFN = 0 V  
VREFP = +5 V, VREFN = 0 V  
After 500 hours at TA = 125°C  
After 1000 hours at TA = 125°C  
After 1000 hours at TA = 100°C  
VREFP = +10 V, VREFN = −10 V3  
VREFP = +10 V, VREFN = 0 V3  
VREFP = +5 V, VREFN = 0 V3  
Differential Nonlinearity Error  
Linearity Error Long-Term Stability4  
Full-Scale Error  
−1.75  
−2.75  
−5.25  
−1  
+1.75  
+5.25  
+1  
VREFP = +10 V, VREFN = −10 V3,  
TA = 0°C to 105°C  
−1  
−1.5  
0.0ꢀ2 +1  
LSB  
LSB  
VREFP = 10 V, VREFN = 0 V3, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V3, TA = 0°C to 105°C  
0.2  
+1.5  
Full-Scale Error Temperature Coefficient  
Zero-Scale Error  
0.02  
0.025 +1.75  
0.38  
0.1ꢁ  
0.025 +1  
ppm FSR/°C  
LSB  
LSB  
LSB  
LSB  
−1.75  
−2.5  
−5.25  
−1  
VREFP = +10 V, VREFN = −10 V3  
VREFP = +10 V, VREFN = 0 V3  
VREFP = +5 V, VREFN = 0 V3  
VREFP = +10 V, VREFN = −10 V3,  
TA = 0°C to 105°C  
+2.5  
+5.25  
−1  
−1.5  
0.38  
0.1ꢁ  
0.04  
0.3  
0.4  
0.4  
+1  
+1.5  
LSB  
LSB  
VREFP = 10 V, VREFN = 0 V3, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V3, TA = 0°C to 105°C  
Zero-Scale Error Temperature Coefficient3  
Gain Error  
ppm FSR/°C  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR/°C  
%
−ꢀ  
−10  
−20  
+ꢀ  
+10  
+20  
VREFP = +10 V, VREFN = −10 V3  
VREFP = +10 V, VREFN = 0 V3  
VREFP = +5 V, VREFN = 0 V3  
Gain Error Temperature Coefficient3  
R1, RFB Matching  
OUTPUT CHARACTERISTICS3  
0.04  
0.01  
Output Voltage Range  
VREFN  
VREFP  
V
Output Slew Rate  
Output Voltage Settling Time  
50  
1
V/μs  
μs  
Unbuffered output, 10 MΩ||20 pF load  
10 V step to 0.02%, using AD845  
buffer in unity-gain mode  
125 code step to 1 LSB5  
1
μs  
Output Noise Spectral Density  
Output Voltage Noise  
7.5  
7.5  
7.5  
1.1  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
At 1 kHz, DAC code = midscale  
At 10 kHz, DAC code = midscale  
At 100 kHz, DAC code = midscale  
DAC code = midscale, 0.1 Hz to  
10 Hz bandwidthꢀ  
Rev. A | Page 3 of 20  
 
AD5781-EP  
Enhanced Product  
Parameter1  
Midscale Glitch Impulse7  
Min  
Typ  
3.1  
1.7  
1.4  
9.1  
3.6  
1.9  
45  
Max  
Unit  
Test Conditions/Comments  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kΩ  
VREFP = +10 V, VREFN = −10 V  
VREFP = +10 V, VREFN = 0 V  
VREFP = +5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V, see Figure 42  
VREFP = 10 V, VREFN = 0 V, see Figure 43  
VREFP = 5 V, VREFN = 0 V, see Figure 44  
On removal of output ground clamp  
MSB Segment Glitch Impulse7  
Output Enabled Glitch Impulse  
Digital Feedthrough  
DC Output Impedance (Normal Mode)  
DC Output Impedance (Output  
Clamped to Ground)  
0.4  
3.4  
6
kΩ  
Spurious Free Dynamic Range  
Total Harmonic Distortion  
REFERENCE INPUTS3  
100  
97  
dB  
dB  
1 kHz tone, 10 kHz sample rate  
1 kHz tone, 10 kHz sample rate  
VREFP Input Range  
VREFN Input Range  
DC Input Impedance  
5
VDD − 2.5 V  
0
V
VSS + 2.5 V  
5
6.6  
15  
kΩ  
pF  
VREFP, VREFN, code dependent,  
typical at mid-scale code  
Input Capacitance  
VREFP, VREFN  
LOGIC INPUTS3  
Input Current8  
−1  
+1  
0.3 × IOVCC  
µA  
V
V
Input Low Voltage, VIL  
Input High Voltage, VIH  
IOVCC = 1.71 V to 5.5 V  
IOVCC = 1.71 V to 5.5 V  
0.7 × IOVCC  
Pin Capacitance  
LOGIC OUTPUT (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output Capacitance  
5
3
pF  
0.4  
1
V
IOVCC = 1.71 V to 5.5 V, sinking 1 mA  
IOVCC = 1.71 V to 5.5 V, sourcing 1 mA  
IOVCC − 0.5 V  
µA  
pF  
POWER REQUIREMENTS  
All digital inputs at DGND or IOVCC  
VDD  
VSS  
VCC  
7.5  
VDD − 33  
2.7  
VSS + 33  
−2.5  
5.5  
V
V
V
IOVCC  
1.71  
5.5  
V
IOVCC ≤ VCC  
IDD  
ISS  
ICC  
IOICC  
4.2  
4
5.2  
4.9  
900  
140  
mA  
mA  
µA  
µA  
µV/V  
µV/V  
dB  
dB  
600  
52  
0.6  
0.6  
95  
95  
SDO disabled  
VDD 10%, VSS = 15 V  
VSS 10%, VDD = 15 V  
VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio3, 9  
AC Power Supply Rejection Ratio3  
1 Temperature range: −55°C to +125°C, typical conditions: TA = 25°C, VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFN = −10 V.  
2 Performance characterized with AD8676BRZ voltage reference buffers and AD8675ARZ output buffer.  
3 Guaranteed by design and characterization; not production tested.  
4 Linearity error refers to both INL error and DNL error; either parameter can be expected to drift by the amount specified after the length of time specified.  
5 AD5791-EP configured in ×2 gain mode, 25 pF compensation capacitor on AD797.  
6 Includes noise contribution from AD8676BRZ voltage reference buffers.  
7 The AD5781-EP is configured in the bias compensation mode with a low-pass RC filter on the output. R = 300 Ω, C = 143 pF (total capacitance seen by the output  
buffer, lead capacitance, and so forth).  
8 Current flowing in an individual logic pin.  
9 Includes PSRR of AD8676BRZ voltage reference buffers.  
Rev. A | Page 4 of 20  
 
 
 
 
 
 
 
 
 
Enhanced Product  
AD5781-EP  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Limit1  
Parameter  
IOVCC = 1.71 V to 3.3 V  
IOVCC = 3.3 V to 5.5 V Unit  
Test Conditions/Comments  
SCLK cycle time  
SCLK cycle time (readback mode)  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
2
t1  
40  
92  
15  
9
28  
60  
10  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
t2  
t3  
t4  
5
5
t5  
2
2
SCLK falling edge to SYNC rising edge hold time  
Minimum SYNC high time  
t6  
48  
8
40  
6
t7  
SYNC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYNC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYNC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYNC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYNC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVCC) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback mode.  
Rev. A | Page 5 of 20  
 
 
AD5781-EP  
Enhanced Product  
t1  
t7  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
V
OUT  
OUT  
t14  
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Rev. A | Page 6 of 20  
Enhanced Product  
AD5781-EP  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
VDD to AGND  
VSS to AGND  
VDD to VSS  
VCC to DGND  
IOVCC to DGND  
Rating  
−0.3 V to +34 V  
−34 V to +0.3 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to VCC + 3 V or +7 V  
(whichever is less)  
This device is a high performance integrated circuit with an ESD  
rating of 1.5 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
ESD CAUTION  
VOUT to AGND  
VREFPF to AGND  
VREFPS to AGND  
VREFNF to AGND  
VREFNS to AGND  
DGND to AGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3 V to +0.3 V  
VSS − 0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Operating Temperature Range, TA  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−55°C to + 125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
TSSOP Package  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature  
Soldering  
143°C/W  
45°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1.5 kV  
Rev. A | Page 7 of 20  
 
 
AD5781-EP  
Enhanced Product  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
INV  
OUT  
R
FB  
V
AGND  
3
V
V
REFPS  
SS  
4
V
V
REFPF  
REFNS  
REFNF  
AD5781-EP  
5
V
V
DD  
TOP VIEW  
6
RESET  
CLR  
DGND  
SYNC  
SCLK  
SDIN  
SDO  
(Not to Scale)  
7
8
LDAC  
9
V
CC  
CC  
10  
IOV  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
INV  
VOUT  
VREFPS  
Connection to Inverting Input of External Amplifier.  
Analog Output Voltage.  
Positive Reference Sense Voltage Input. A voltage range of 5 V to VDD − 2.5 V can be connected. A unity gain amplifier  
must be connected at this pin, in conjunction with the VREFPF pin.  
4
5
VREFPF  
VDD  
Positive Reference Force Voltage Input. A voltage range of 5 V to VDD − 2.5 V can be connected. A unity gain amplifier  
must be connected at these pin, in conjunction with the VREFPS pin.  
Positive Analog Supply Connection. A voltage range of 7.5 V to 16.5 V can be connected. VDD should be decoupled to  
AGND.  
6
7
Active Low Reset Logic Input Pin. Asserting this pin returns the AD5781-EP to its power-on status.  
RESET  
CLR  
Active Low Clear Logic Input Pin. Asserting this pin sets the DAC register to a user defined value and updates the DAC  
output. The output value depends on the DAC register coding that is being used, either binary or twos complement.  
8
Active Low Load DAC Logic Input Pin. This is used to update the DAC register and, consequently, the analog output.  
When tied permanently low, the output is updated on the rising edge of SYNC. If LDAC is held high during the write  
cycle, the input register is updated, but the output update is held off until the falling edge of LDAC. The LDAC pin  
should not be left unconnected.  
LDAC  
9
VCC  
Digital Supply Connection. A voltage in the range of 2.7 V to 5.5 V can be connected. VCC should be decoupled to DGND.  
10  
IOVCC  
Digital Interface Supply Pin. Digital threshold levels are referenced to the voltage applied to this pin. A voltage range of  
1.71 V to 5.5 V can be connected. IOVCC should not be allowed to exceed VCC.  
11  
12  
SDO  
SDIN  
Serial Data Output Pin. Data is clocked out on the rising edge of the serial clock input.  
Serial Data Input Pin. This device has a 24-bit shift register. Data is clocked into the register on the falling edge of the  
serial clock input.  
13  
14  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be  
transferred at clock rates of up to 35 MHz.  
Active Low Digital Interface Synchronization Input Pin. This is the frame synchronization signal for the input data. When  
SYNC is low, it enables the input shift register, and data is then transferred in on the falling edges of the following clocks.  
The input shift register is updated on the rising edge of SYNC.  
15  
16  
DGND  
VREFNF  
Ground Reference Pin for Digital Circuitry.  
Negative Reference Force Voltage Input. A voltage range of VSS + 2.5 V to 0 V can be connected. A unity gain amplifier  
must be connected at this pin, in conjunction with the VREFNS pin.  
17  
18  
VREFNS  
VSS  
Negative Reference Sense Voltage Input. A voltage range of VSS + 2.5 V to 0 V can be connected. A unity gain amplifier  
must be connected at these pin, in conjunction with the VREFNF pin.  
Negative Analog Supply Connection. A voltage range of −16.5 V to −2.5 V can be connected. VSS should be decoupled to  
AGND.  
19  
20  
AGND  
RFB  
Ground Reference Pin for Analog Circuitry.  
Feedback Connection for External Amplifier.  
Rev. A | Page 8 of 20  
 
Enhanced Product  
AD5781-EP  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.5  
0.4  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +25°C  
= –40°C  
= +125°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
A
A
A
0.4  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
0.3  
0.3  
DD  
SS  
0.2  
0.2  
= –15V  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
V
V
= +10V  
= –10V  
= +15V  
= –15V  
50000  
REFP  
REFN  
DD  
SS  
0
100000  
150000  
200000  
250000  
0
50000  
100000  
150000  
200000  
250000  
DAC CODE  
DAC CODE  
Figure 5. Integral Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 10 V Span, ×2 Gain Mode  
0.5  
0.5  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
0.4  
0.3  
0.4  
0.3  
V
V
V
V
= +10V  
= –10V  
= +15V  
REFP  
REFN  
DD  
SS  
0.2  
0.2  
= –15V  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
DD  
SS  
= –15V  
0
50000  
100000  
150000  
200000  
250000  
0
50000  
100000  
150000  
200000  
250000  
DAC CODE  
DAC CODE  
Figure 6. Integral Nonlinearity Error vs. DAC Code, +10 V Span  
Figure 9. Differential Nonlinearity Error vs. DAC Code, 10 V Span  
1.0  
0.5  
T
T
T
= +125°C  
= +25°C  
= –40°C  
AD8676 REFERENCE BUFFERS  
0.4 AD8675 OUTPUT BUFFER  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0.8  
0.6  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
0.3  
0.2  
REFN  
DD  
SS  
0.4  
= –15V  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
V
V
= +5V  
= 0V  
= +15V  
= –15V  
REFP  
REFN  
DD  
SS  
0
50000  
100000  
150000  
200000  
250000  
0
50000  
100000  
150000  
200000  
250000  
DAC CODE  
DAC CODE  
Figure 7. Integral Nonlinearity Error vs. DAC Code, +5 V Span  
Figure 10. Differential Nonlinearity Error vs. DAC Code, +10 V Span  
Rev. A | Page 9 of 20  
 
AD5781-EP  
Enhanced Product  
0.5  
0.3  
0.2  
T
T
T
= +125°C  
= +25°C  
= –40°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.4  
0.3  
V
V
= +5V  
= 0V  
REFP  
REFN  
V
V
= +15V  
= –15V  
DD  
SS  
0.1  
0
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
±10V SPAN MAX DNL  
+5V SPAN MAX DNL  
+10V SPAN MIN DNL  
+10V SPAN MAX DNL  
±10V SPAN MIN DNL  
+5V SPAN MIN DNL  
V
= +15V  
= –15V  
DD  
V
SS  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
50000  
100000  
150000  
200000  
250000  
TEMPERATURE (°C)  
DAC CODE  
Figure 14. Differential Nonlinearity Error vs. Temperature  
Figure 11. Differential Nonlinearity Error vs. DAC Code, +5 V Span  
0.14  
0.5  
T
T
T
= +25°C  
= –40°C  
= +125°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.4  
0.3  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
INL MAX  
DD  
SS  
0.2  
= –15V  
T
= 25°C  
A
0.1  
V
V
= +10V  
= –10V  
REFP  
REFN  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
INL MIN  
–0.02  
–0.04  
–0.06  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
0
50000  
100000  
150000  
200000  
250000  
V
/|V | (V)  
DAC CODE  
DD SS  
Figure 15. Integral Nonlinearity Error vs. Supply Voltage, 10 V Span  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 10 V Span,  
×2 Gain Mode  
0.4  
0.5  
AD8676 REFERENCE BUFFERS  
0.4 AD8675 OUTPUT BUFFER  
0.3  
V
V
= +15V  
= –15V  
DD  
SS  
INL MAX  
0.3  
0.2  
0.2  
T
V
V
= 25°C  
0.1  
A
0.1  
= +5V  
REFP  
REFN  
= 0V  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0
–0.1  
–0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
±10V SPAN MAX INL  
+5V SPAN MAX INL  
+10V SPAN MIN INL  
+10V SPAN MAX INL  
±10V SPAN MIN INL  
+5V SPAN MIN INL  
INL MIN  
–0.3  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
TEMPERATURE (°C)  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 13. Integral Nonlinearity Error vs. Temperature  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, +5 V Span  
Rev. A | Page 10 of 20  
Enhanced Product  
AD5781-EP  
0.08  
0.14  
0.12  
T
V
V
= 25°C  
A
0.06  
= +5V  
REFP  
REFN  
DNL MAX  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.04  
0.02  
0.10  
0.08  
T
V
V
= 25°C  
A
= +10V  
REFP  
REFN  
0
= –10V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.06  
–0.02  
0.04  
0.02  
–0.04  
–0.06  
DNL MIN  
0
–0.08  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
/|V | (V)  
DD SS  
V
SS  
Figure 20. Zero-Scale Error vs. Supply Voltage, +5 V Span  
Figure 17. Differential Nonlinearity Error vs. Supply Voltage, 10 V Span  
0.05  
0.04  
0.10  
0.05  
T
V
V
= 25°C  
A
= +10V  
REFP  
REFN  
= –10V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
DNL MAX  
0.03  
0.02  
0.01  
0
0
T
V
V
= 25°C  
A
–0.05  
–0.10  
= +5V  
REFP  
REFN  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.15  
–0.20  
–0.01  
–0.02  
DNL MIN  
–0.03  
–0.25  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
V
V
DD SS  
/|V | (V)  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 21. Midscale Error vs. Supply Voltage, 10 V Span  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, +5 V Span  
0.05  
0
0.14  
0.12  
0.10  
0.08  
0.06  
–0.05  
–0.10  
–0.15  
–0.20  
T
V
V
= 25°C  
A
T
V
V
= 25°C  
0.04  
0.02  
= +10V  
= –10V  
A
REFP  
REFN  
= +5V  
= 0V  
REFP  
REFN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0
12.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
DD  
V
/|V | (V)  
DD SS  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 22. Midscale Error vs. Supply Voltage, +5 V Span  
Figure 19. Zero-Scale Error vs. Supply Voltage, 10 V Span  
Rev. A | Page 11 of 20  
AD5781-EP  
Enhanced Product  
–0.015  
0.10  
0.05  
0
T
V
V
= 25°C  
A
= +5V  
= 0V  
REFP  
REFN  
–0.020  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.025  
–0.030  
–0.035  
T
V
V
= 25°C  
A
= +10V  
= –10V  
REFP  
REFN  
–0.040  
–0.045  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
V
/|V | (V)  
V
(V)  
DD SS  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 23. Full-Scale Error vs. Supply Voltage, 10 V Span  
Figure 26. Gain Error vs. Supply Voltage, +5 V Span  
0.07  
0.15  
0.10  
0.06  
0.05  
INL MAX  
0.04  
0.03  
0.02  
0.01  
0.05  
0
T
V
V
= 25°C  
= +15V  
A
DD  
= –15V  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.05  
T
= 25°C  
A
V
V
= +5V  
= 0V  
REFP  
REFN  
0
–0.01  
–0.02  
–0.10  
–0.15  
INL MIN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
V
| (V)  
DD  
REFP REFN  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 24. Full-Scale Error vs. Supply Voltage, +5 V Span  
Figure 27. Integral Nonlinearity Error vs. Reference Voltage  
–0.30  
–0.35  
0.10  
T
V
V
= 25°C  
A
DNL MAX  
= +10V  
REFP  
REFN  
= –10V  
0.05  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.40  
–0.45  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.50  
–0.55  
–0.05  
–0.10  
–0.15  
–0.60  
–0.65  
DNL MIN  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
/|V | (V)  
V
| (V)  
DD SS  
REFP REFN  
Figure 25. Gain Error vs. Supply Voltage, 10 V Span  
Figure 28. Differential Nonlinearity Error vs. Reference Voltage  
Rev. A | Page 12 of 20  
Enhanced Product  
AD5781-EP  
0.16  
0.14  
0.12  
0.10  
–0.30  
–0.35  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
T
V
V
= 25°C  
A
0.08  
0.06  
0.04  
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.02  
0
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
V
| (V)  
REFP REFN  
REFP REFN  
Figure 32. Gain Error vs. Reference Voltage  
Figure 29. Zero-Scale Error vs. Reference Voltage  
0.3  
0.2  
0.1  
0.03  
0.02  
0.01  
0
±10V SPAN  
+10V SPAN  
±5V SPAN  
0
–0.1  
–0.01  
–0.02  
–0.03  
–0.2  
–0.3  
–0.4  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
T
V
V
= 25°C  
= +15V  
A
DD  
V
V
V
V
= +15V  
= –15V  
= –15V  
DD  
SS  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
= +10V  
= –15V  
REFP  
REFN  
–0.04  
–0.05  
–0.5  
–0.6  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
TEMPERATURE (°C)  
V
| (V)  
REFP REFN  
Figure 33. Full-Scale Error vs. Temperature  
Figure 30. Mid-Scale Error vs. Reference Voltage  
0.40  
0.35  
0.30  
0.04  
0.03  
0.02  
0.01  
±10V SPAN  
+10V SPAN  
±5V SPAN  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
–0.01  
–0.02  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –15V  
REFP  
REFN  
–0.03  
–0.04  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
TEMPERATURE (°C)  
V
| (V)  
REFP REFN  
Figure 34. Mid-Scale Error vs. Temperature  
Figure 31. Full-Scale Error vs. Reference Voltage  
Rev. A | Page 13 of 20  
AD5781-EP  
Enhanced Product  
1.2  
1.0  
0.8  
0.6  
5
4
±10V SPAN  
+10V SPAN  
±5V SPAN  
T
= 25°C  
A
I
DD  
3
2
0.4  
0.2  
1
0
0
–1  
–2  
–3  
–0.2  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.4  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–0.6  
–0.8  
–1.0  
I
SS  
= +10V  
= –15V  
REFP  
REFN  
–4  
–5  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
TEMPERATURE (°C)  
V
, V (V)  
DD SS  
Figure 35. Zero-Scale Error vs. Temperature  
Figure 38. Power Supply Currents vs. Power Supply Voltages  
4
3
±10V SPAN  
+10V SPAN  
+5V SPAN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
2
1
= +10V  
= –15V  
REFP  
REFN  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFP  
REFN  
0
3→  
AD8676 REFERENCE BUFFERS  
OUTPUT UNBUFFERED  
LOAD = 10MΩ||20pF  
–1  
–2  
–3  
–4  
–5  
4→  
CH3 5V  
CH4 5V  
200ns  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
Figure 39. Rising Full-Scale Voltage Step  
Figure 36. Gain Error vs. Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
IOV = 5V, LOGIC VOLTAGE  
= +10V  
= –10V  
CC  
REFP  
REFN  
DECREASING  
IOV = 3V, LOGIC VOLTAGE  
AD8676 REFERENCE BUFFERS  
OUTPUT UNBUFFERED  
LOAD = 10MΩ||20pF  
CC  
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
DECREASING  
3→  
4→  
CH3 5V  
CH4 5V  
200ns  
0
1
2
3
4
5
6
LOGIC INPUT VOLTAGE (V)  
Figure 40. Falling Full-Scale Voltage Step  
Figure 37. IOICC vs. Logic Input Voltage  
Rev. A | Page 14 of 20  
Enhanced Product  
AD5781-EP  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
3.0  
2.6  
2.2  
±10V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
5V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
NEGATIVE CODE  
CHANGE  
POSITIVE CODE  
CHANGE  
1.8  
1.4  
1.0  
0.6  
9.6  
0.2  
9.4  
–0.2  
0
1
2
3
4
5
TIME (µs)  
CODE  
Figure 41. 125 Code Step Settling Time  
Figure 44. 6 MSB Segment Glitch Energy for 5 V VREF  
10  
9
40  
30  
5V V  
±10V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
REF  
OUTPUT GAIN OF 1  
NEGATIVE CODE  
CHANGE  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
8
7
6
5
4
3
2
1
0
20  
10  
POSITIVE CODE  
CHANGE  
0
C
C
C
C
= 143pF + 0pF  
X
X
X
X
–10  
–20  
= 143pF + 220pF  
= 143pF + 470pF  
= 143pF + 1,000pF  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TIME (µs)  
CODE  
Figure 45. Midscale Peak-to-Peak Glitch for 10 V  
Figure 42. 6 MSB Segment Glitch Energy for 10 V VREF  
800  
4.0  
3.5  
T
= 25°C  
A
MID-SCALE CODE LOADED  
OUTPUT UNBUFFERED  
AD8676 REFERENCE BUFFERS  
10V V  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
REF  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
600  
400  
= +10V  
= –10V  
REFP  
REFN  
POSITIVE CODE  
CHANGE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NEGATIVE CODE  
CHANGE  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 46. Voltage Output Noise, 0.1 Hz to 10 Hz Bandwidth  
Figure 43. 6 MSB Segment Glitch Energy for 10 V VREF  
Rev. A | Page 15 of 20  
 
 
 
AD5781-EP  
Enhanced Product  
100  
350  
300  
250  
200  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFP  
REFN  
= +10V  
= –10V  
REFP  
REFN  
CODE = MIDSCALE  
AD8675 OUTPUT BUFFER  
10  
150  
100  
50  
0
–50  
–1  
1
0.1  
0
1
2
3
4
5
6
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (µs)  
Figure 48. Glitch Impulse on Removal of Output Clamp  
Figure 47. Noise Spectral Density vs. Frequency  
Rev. A | Page 16 of 20  
Enhanced Product  
AD5781-EP  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 50. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−55°C to +125°C  
INL  
0.5 LSB  
Package Description  
Package Option  
RU-20  
AD5781SRU-EP  
20-Lead TSSOP  
Rev. A | Page 17 of 20  
 
 
AD5781-EP  
NOTES  
Enhanced Product  
Rev. A | Page 18 of 20  
Enhanced Product  
NOTES  
AD5781-EP  
Rev. A | Page 19 of 20  
AD5781-EP  
NOTES  
Enhanced Product  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10454-0-7/13(A)  
Rev. A | Page 20 of 20  

相关型号:

AD5781SRUZ-EP

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL
ADI

AD5781_18

True 18-Bit, Voltage Output DAC
ADI

AD578JD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578JN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578K

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578KD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578KN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578L

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578LD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578LN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578SD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578SD/883B

Analog-to-Digital Converter, 12-Bit
ETC