AD645JCHIPS [ADI]

IC OP-AMP, 1000 uV OFFSET-MAX, 2 MHz BAND WIDTH, UUC, DIE, Operational Amplifier;
AD645JCHIPS
型号: AD645JCHIPS
厂家: ADI    ADI
描述:

IC OP-AMP, 1000 uV OFFSET-MAX, 2 MHz BAND WIDTH, UUC, DIE, Operational Amplifier

运算放大器
文件: 总8页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Low Drift  
FET Op Amp  
a
AD645  
FEATURES  
CONNECTION DIAGRAMS  
Improved Replacement for Burr-Brown  
OPA-111 and OPA-121 Op Amp  
TO-99 (H) Package  
8-Pin Plastic Mini-DIP  
(N) Package  
CASE  
LOW NOISE  
2 V p-p max, 0.1 Hz to 10 Hz  
10 nV/Hz max at 10 kHz  
11 fA p-p Current Noise 0.1 Hz to 10 Hz  
OFFSET  
NULL  
OFFSET  
NULL  
8
1
2
3
4
8
7
6
5
NC  
+V  
+V  
1
3
7
5
AD645  
–IN  
S
2
– IN  
6
OUTPUT  
HIGH DC ACCURACY  
250 V max Offset Voltage  
1 V/؇C max Drift  
1.5 pA max Input Bias Current  
114 dB Open-Loop Gain  
Available in Plastic Mini-DIP, 8-Pin Header Packages, or  
Chip Form  
+IN  
OUTPUT  
AD645  
4
OFFSET  
NULL  
OFFSET  
NULL  
+IN  
TOP VIEW  
–V  
S
V
NC = NO CONNECT  
NOTE: CASE IS CONNECTED  
TO PIN 8  
The AD645 is available in six performance grades. The AD645J  
and AD645K are rated over the commercial temperature range  
of 0°C to +70°C. The AD645A, AD645B, and the ultra-  
precision AD645C are rated over the industrial temperature  
range of –40°C to +85°C. The AD645S is rated over the military  
temperature range of –55°C to +125°C and is available  
processed to MIL-STD-883B.  
APPLICATIONS  
Low Noise Photodiode Preamps  
CT Scanners  
Precision I-V Converters  
PRODUCT DESCRIPTION  
The AD645 is available in an 8-pin plastic mini-DIP, 8-pin  
header, or in die form.  
The AD645 is a low noise, precision FET input op amp. It of-  
fers the pico amp level input currents of a FET input device  
coupled with offset drift and input voltage noise comparable to a  
high performance bipolar input amplifier.  
PRODUCT HIGHLIGHTS  
1. Guaranteed and tested low frequency noise of 2 µV p-p max  
and 20 nV/Hz at 100 Hz makes the AD645C ideal for low  
noise applications where a FET input op amp is needed.  
The AD645 has been improved to offer the lowest offset drift in  
a FET op amp, 1 µV/°C. Offset voltage drift is measured and  
trimmed at wafer level for the lowest cost possible. An inher-  
ently low noise architecture and advanced manufacturing tech-  
niques result in a device with a guaranteed low input voltage  
noise of 2 µV p-p, 0.1 Hz to 10 Hz. This level of dc performance  
along with low input currents make the AD645 an excellent  
choice for high impedance applications where stability is of  
prime concern.  
2. Low VOS drift of 1 µV/°C max makes the AD645C an excel-  
lent choice for applications requiring ultimate stability.  
3. Low input bias current and current noise (11 fA p-p 0.1 Hz to  
10 Hz) allow the AD645 to be used as a high precision  
preamp for current output sensors such as photodiodes, or as  
a buffer for high source impedance voltage output sensors.  
30  
25  
20  
1k  
100  
15  
10  
10  
5
0
1.0  
–2.5 –2.0 –1.5 –1.0 –0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
1
10  
100  
1k  
10k  
FREQUENCY – Hz  
INPUT OFFSET VOLTAGE DRIFT– µV/  
°C  
Figure 1. AD645 Voltage Noise Spectral Density vs.  
Frequency  
Figure 2. Typical Distribution of Average Input Offset  
Voltage Drift (196 Units)  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
(@ +25؇C, and ؎15 V dc, unless otherwise noted)  
AD645–SPECIFICATIONS  
Model  
AD645J/A  
AD645K/B  
Max Min Typ Max  
AD645C  
Min Typ  
AD645S  
Min Typ  
Conditions1  
Min Typ  
Max  
Max  
Units  
INPUT OFFSET VOLTAGE1  
Initial Offset  
Offset  
Drift (Average)  
vs. Supply (PSRR)  
vs. Supply  
100  
300  
3
110  
100  
500  
1000  
10/5  
50  
100  
1
110  
100  
250  
400  
5/2  
50  
75  
0.5  
110  
100  
250  
300  
1
100  
500  
4
110  
95  
500  
1500  
10  
µV  
µV  
µV/°C  
dB  
dB  
T
MIN –TMAX  
90  
94  
90  
94  
90  
90  
86  
TMIN –TMAX  
VCM = 0 V  
INPUT BIAS CURRENT2  
Either Input  
0.7/1.8 3/5  
0.7/1.8 1.5/3  
1.8  
3
1.8  
5
pA  
Either Input  
@ TMAX  
Either Input  
Offset Current  
Offset Current  
@ TMAX  
VCM = 0 V  
VCM = +10 V  
16/115  
0.8/1.9  
0.1  
16/115  
0.8/1.9  
0.1  
115  
1.9  
0.1  
1800  
1.9  
0.1  
pA  
pA  
pA  
V
CM = 0 V  
1.0  
0.5  
0.5  
1.0  
VCM = 0 V  
2/6  
2/6  
6
100  
pA  
INPUT VOLTAGE NOISE  
0.1 to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
1.0  
20  
10  
9
3.0  
50  
30  
15  
10  
1.0  
20  
10  
9
2.5  
40  
20  
12  
10  
1
2
1.0  
20  
10  
9
3.3  
50  
30  
15  
10  
µV p-p  
20  
10  
9
40  
20  
12  
10  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
f = 10 kHz  
8
8
8
8
INPUT CURRENT NOISE  
f = 0.1 to 10 Hz  
11  
20  
11  
15  
11  
15  
11  
20  
fA p-p  
f = 0.1 thru 20 kHz  
0.6  
1.1  
0.6  
0.8  
0.6  
0.8  
0.6  
1.1  
fA/Hz  
FREQUENCY RESPONSE  
Unity Gain, Small Signal  
Full Power Response  
2
2
2
2
MHz  
kHz  
VO = 20 V p-p  
RLOAD = 2 kΩ  
VOUT = 20 V p-p  
RLOAD = 2 kΩ  
16  
1
32  
2
16  
1
32  
2
16  
1
32  
2
16  
1
32  
2
Slew Rate, Unity Gain  
V/µs  
SETTLING TIME3  
To 0.1%  
6
8
5
6
8
5
6
8
5
6
8
5
µs  
µs  
µs  
To 0.01%  
Overload Recovery4  
Total Harmonic  
Distortion  
50% Overdrive  
f = 1 kHz  
RLOAD 2 kΩ  
VO = 3 V rms  
0.0006  
0.0006  
0.0006  
0.0006  
%
INPUT IMPEDANCE  
Differential  
Common-Mode  
VDIFF = ±1 V  
1012ʈ1  
1012ʈ1  
1012ʈ1  
1012ʈ1  
ʈpF  
ʈpF  
1014ʈ2.2  
1014ʈ2.2  
1014ʈ2.2  
1014ʈ2.2  
INPUT VOLTAGE RANGE  
Differential5  
Common-Mode Voltage  
Over Max Oper. Range  
Common-Mode  
±20  
+11, –10.4  
±20  
+11, –10.4  
±20  
+11, –10.4  
±20  
+11, –10.4  
V
V
V
±10  
±10  
±10  
±10  
±10  
±10  
±10  
±10  
Rejection Ratio  
VCM = ±10 V  
TMIN–TMAX  
90  
110  
100  
94  
90  
110  
100  
94  
90  
110  
100  
90  
86  
110  
100  
dB  
dB  
OPEN-LOOP GAIN  
VO = ±10 V  
RLOAD 2 kΩ  
TMIN –TMAX  
114  
130  
120  
114  
130  
120  
114  
130  
114  
110  
130  
dB  
dB  
OUTPUT CHARACTERISTICS  
Voltage  
RLOAD 2 kΩ  
TMIN –TMAX  
VOUT = ±10 V  
Short Circuit  
±10  
±10  
±5  
±11  
±10  
±10  
±5  
±11  
±10  
±10  
±5  
±11  
±10  
±10  
±5  
±11  
V
V
mA  
mA  
Current  
±10  
±15  
±10  
±15  
±10  
±15  
±10  
±15  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
Transistor Count  
±15  
±15  
±18  
±15  
±18  
±15  
±18  
V
V
mA  
±5  
±18  
3.5  
±5  
±5  
±5  
3.0  
62  
3.0  
62  
3.5  
3.0  
62  
3.5  
3.0  
62  
3.5  
# of Transistors  
NOTES  
1Input offset voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.  
2Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = +25°C. For higher temperature, the current doubles every 10°C.  
3Gain = –1, RLOAD = 2 k.  
4Defined as the time required for the amplifier’s output to return to normal operation after removal of a 50% overload from the amplifier input.  
5Defined as the maximum continuous voltage between the inputs such that neither input exceeds ±10 V from ground.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD645  
ABSOLUTE MAXIMUM RATINGS1  
AD645A/B/C . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD645S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 (@ TA = +25°C)  
8-Pin Header Package . . . . . . . . . . . . . . . . . . . . . . 500 mW  
8-Pin Mini-DIP Package . . . . . . . . . . . . . . . . . . . . 750 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (H) . . . . . . . . . –65°C to +150°C  
Storage Temperature Range (N) . . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
(Soldering 60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . +300°C  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational section of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
2Thermal Characteristics:  
8-Pin Plastic Mini-DIP Package: θJA = 100°C/Watt  
8-Pin Header Package: θJA = 200°C/Watt  
AD645J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD645 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
Model1  
Temperature Range Package Option2  
AD645JN  
0°C to +70°C  
N-8  
AD645KN  
AD645AH  
AD645BH  
AD645CH  
AD645SH/883B  
0°C to +70°C  
N-8  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
55°C to +125°C  
H-08A  
H-08A  
H-08A  
H-08A  
NOTES  
1Chips are also available.  
2N = Plastic Mini-DIP; H = Metal Can.  
+V  
S
7
2
3
6
AD645  
5
1
10k  
4
V
ADJUST  
OS  
–V  
S
Figure 3. AD645 Offset Null Configuration  
25  
20  
15  
10  
5
120  
110  
100  
90  
800  
700  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–1.0 –0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0  
1.2  
1.6  
0.4  
0.6  
0.8  
1.0  
1.4  
1.8  
INPUT BIAS CURRENT – pA  
INPUT OFFSET VOLTAGE – mV  
INPUT VOLTAGE NOISE – µV p-p  
Figure 4. Typical Distribution of Input  
Offset Voltage (1855 Units)  
Figure 5. Typical Distribution of Input  
Bias Current (576 Units)  
Figure 6. Typical Distribution of 0.1 Hz  
to 10 Hz Voltage Noise (202 Units)  
REV. B  
–3–  
(@ +25؇C, ؎15 V unless otherwise noted)  
AD645–Typical Characteristics  
1k  
1000  
100  
100  
RS = 10M  
RS = 1MΩ  
100  
10  
RS = 100kΩ  
RS = 100Ω  
10  
10  
1.0  
1
0.1  
0
0.1  
1.0  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
FREQUENCY – Hz  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 9. Voltage Noise Spectral  
Density vs. Frequency for Various  
Source Resistances  
Figure 7. Current Noise Spectral  
Density vs. Frequency  
Figure 8. Voltage Noise Spectral  
Density vs. Frequency  
1k  
1k  
25  
100  
f
o
= 1kHz  
10  
1
20  
15  
100  
100  
CURRENT NOISE  
NOISE BANDWIDTH: 0.1 to 10Hz  
NOISE OF AD645  
AND RESISTOR  
10  
10  
10  
5
0.1  
SOURCE  
RESISTANCE  
VOLTAGE NOISE  
RESISTOR NOISE  
ONLY  
0.01  
1.0  
20  
60 40  
0
20  
40  
60 80 100 120 140  
1.0  
100  
103  
104  
105  
106  
107  
10 8  
109  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE –  
C
SOURCE RESISTANCE –  
SOURCE RESISTANCE –  
Figure 11. Voltage and Current  
Noise Spectral Density vs.  
Temperature  
Figure 12. Voltage Noise Spectral  
Density @ 1 kHz vs. Source  
Resistance  
Figure 10. Input Voltage Noise vs.  
Source Resistance  
10 –  
10–  
10 –  
10 –  
9
50  
9
150  
75  
T
A = +25  
C
VS = ±15V  
10–  
10  
10  
11  
25  
0
INPUT  
BIAS  
CURRENT  
11  
T
= 25°C TO T = 85°C  
A
10 –  
A
0
10–  
10–  
10 –  
12  
13  
12  
13  
INPUT  
OFFSET  
CURRENT  
25  
50  
75  
10–  
10–  
1014  
80 100 120 140  
14  
150  
0
1
2
3
4
5
20  
60 40  
0
20  
40  
60  
0
1
2
3
4
5
WARM-UP TIME – Minutes  
TEMPERATURE –  
C
TIME FROM THERMAL SHOCK – Minutes  
Figure 14. Change in Input Offset  
Voltage vs. Time from Thermal  
Shock  
Figure 13. Change in Input Offset  
Voltage vs. Warmup Time  
Figure 15. Input Bias and Offset  
Currents vs. Temperature  
–4–  
REV. B  
AD645  
120  
100  
80  
120  
100  
80  
10  
T
V
= +25°C  
= ±15V  
A
S
+
PSRR  
H PACKAGE  
PSRR  
60  
40  
1.0  
60  
40  
20  
0
20  
0
0.1  
–20  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
15  
10  
5
0
5
10  
15  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
COMMON MODE VOLTAGE – Volts  
Figure 18. Common-Mode  
Rejection vs. Frequency  
Figure 17. Power Supply Rejection  
vs. Frequency  
Figure 16. Input Bias Current vs.  
Common-Mode Voltage  
110  
100  
45  
120  
110  
3.0  
2.0  
4.0  
3.0  
PHASE  
80  
60  
90  
100  
90  
SLEW RATE  
GAIN  
40  
135  
180  
GAIN-BANDWIDTH  
1.0  
2.0  
20  
0
80  
70  
20  
0
1.0  
5
15  
10  
0
5
10  
15  
10  
100  
1k  
10k  
100k  
1M  
10M  
20  
20  
TEMPERATURE – ؇C  
60 40  
0
40  
60 80 100 120 140  
FREQUENCY – Hz  
COMMON MODE VOLTAGE – Volts  
Figure 19. Common-Mode  
Rejection vs. Input Common-Mode  
Voltage  
Figure 20. Open-Loop Gain and  
Phase Shift vs. Frequency  
Figure 21. Gain-Bandwidth Product  
and Slew Rate vs. Temperature  
4.0  
160  
35  
30  
25  
20  
VS= ±15V  
VO= ±10V  
RL = 2kΩ  
4.0  
150  
3.0  
140  
3.0  
SLEW RATE  
130  
120  
15  
10  
2.0  
GAIN-BANDWIDTH  
2.0  
110  
100  
5
0
1.0  
0
5
10  
15  
20  
60 40 20  
0
20 40  
60 80 100 120 140  
SUPPLY VOLTAGE – ±Volts  
1k  
10k  
100k  
1M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 23. Open-Loop Gain vs.  
Temperature  
Figure 24. Large Signal Frequency  
Response  
Figure 22. Gain-Bandwidth and  
Slew Rate vs. Supply Voltage  
REV. B  
–5–  
AD645–Typical Characteristics  
4
3
10  
100  
90  
80  
8
6
FOR 10V STEP  
4
2
0
70  
60  
50  
40  
30  
20  
0.1%  
0.01%  
0.01%  
ERROR  
2
0.1%  
2
4
6
8
0.1%  
0.01%  
1
0
10  
0
10  
1.0  
1
10  
100  
1k  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
CLOSED-LOOP VOLTAGE GAIN (V/V)  
SETTLING TIME – µs  
TEMPERATURE – ؇C  
Figure 26. Settling Time vs. Closed-  
Loop Voltage Gain  
Figure 27. Supply Current vs.  
Temperature  
Figure 25. Output Swing and Error  
vs. Settling Time  
0.1µF  
+
VS  
7
2
VOUT  
AD645  
6
V
IN  
3
4
0.1µF  
RL  
CL  
2k  
10pF  
VS  
Figure 28c. Unity-Gain Follower  
Small Signal Pulse Response  
Figure 28a. Unity-Gain Follower  
Figure 28b. Unity-Gain Follower  
Large Signal Pulse Response  
5k  
0.1µF  
+
VS  
V
IN  
5kΩ  
7
2
VOUT  
6
AD645  
3
4
0.1µF  
CL  
RL  
10pF  
2kΩ  
VS  
Figure 29a. Unity-Gain Inverter  
Figure 29c. Unity-Gain Inverter  
Small Signal Pulse Response  
Figure 29b. Unity-Gain Inverter  
Large Signal Pulse Response  
–6–  
REV. B  
AD645  
10pF  
Sources of noise in a typical preamp are shown in Figure 32.  
The total noise contribution is defined as:  
109  
2
2
Rf  
Rf  
1 + s (Cd ) Rd  
Rd 1 + s (Cf ) Rf  
2
en  
2
2
2
i
i
i
V
=
+
+
s
+
1 +  
GUARD  
n
f
OUT  
1 + s (Cf ) Rf  
2
OUTPUT  
AD645  
6
Figure 33, a spectral density versus frequency plot of each  
source’s noise contribution, shows that the bandwidth of the  
3
8
PHOTODIODE  
amplifier’s input voltage noise contribution is much greater than  
its signal bandwidth. In addition, capacitance at the summing  
junction results in a “peaking” of noise gain in this configura-  
tion. This effect can be substantial when large photodiodes with  
large shunt capacitances are used. Capacitor Cf sets the signal  
bandwidth and also limits the peak in the noise gain. Each  
source’s rms or root-sum-square contribution to noise is ob-  
tained by integrating the sum of the squares of all the noise  
sources and then by obtaining the square root of this sum. Mini-  
mizing the total area under these curves will optimize the  
preamplifier’s overall noise performance.  
FILTERED  
OUTPUT  
OPTIONAL 26Hz  
FILTER  
Figure 30. The AD645 Used as a Sensitive Preamplifier  
Preamplifier Applications  
The low input current and offset voltage levels of the AD645 to-  
gether with its low voltage noise make this amplifier an excellent  
choice for preamplifiers used in sensitive photodiode applica-  
tions. In a typical preamp circuit, shown in Figure 30, the out-  
put of the amplifier is equal to:  
Cf  
10pF  
Rf  
109  
V
OUT = ID (Rf) = Rp (P) Rf  
where:  
PHOTODIODE  
en  
ID = photodiode signal current (Amps)  
i
f
i
Rp = photodiode sensitivity (Amp/Watt)  
n
Rd  
iS  
iS  
Cd  
50pF  
OUTPUT  
Rf = the value of the feedback resistor, in ohms.  
P = light power incident to photodiode surface, in watts.  
An equivalent model for a photodiode and its dc error sources is  
shown in Figure 31. The amplifier’s input current, IB, will con-  
tribute an output voltage error which will be proportional to the  
value of the feedback resistor. The offset voltage error, VOS, will  
cause a “dark” current error due to the photodiode’s finite  
shunt resistance, Rd. The resulting output voltage error, VE, is  
equal to:  
Figure 32. Noise Contributions of Various Sources  
10µV  
i
& i  
f
s
SIGNAL BANDWIDTH  
1µV  
i
n
WITH FILTER  
NO FILTER  
VE = (1 + Rf/Rd) VOS + Rf IB  
A shunt resistance on the order of 109 ohms is typical for a  
small photodiode. Resistance Rd is a junction resistance which  
will typically drop by a factor of two for every 10°C rise in tem-  
perature. In the AD645, both the offset voltage and drift are  
low, this helps minimize these errors.  
100nV  
e
n
en  
10nV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Cf  
10pF  
Figure 33. Voltage Noise Spectral Density of the Circuit of  
Figure 32 With and Without an Output Filter  
Rf  
109  
PHOTODIODE  
VOS  
An output filter with a passband close to that of the signal can  
greatly improve the preamplifier’s signal to noise ratio. The pho-  
todiode preamplifier shown in Figure 32—without a bandpass  
filter—has a total output noise of 50 µV rms. Using a 26 Hz  
single pole output filter, the total output noise drops to 23 µV  
rms, a factor of 2 improvement with no loss in signal bandwidth.  
IB  
OUTPUT  
Cd  
50pF  
Rd  
ID  
Figure 31. A Photodiode Model Showing DC Error  
Sources  
Using a “T” Network  
A “T” network, shown in Figure 34, can be used to boost the ef-  
fective transimpedance of an I to V converter, for a given feed-  
back resistor value. Unfortunately, amplifier noise and offset  
voltage contributions are also amplified by the “T” network  
gain. A low noise, low offset voltage amplifier, such as the  
AD645, is needed for this type of application.  
Minimizing Noise Contributions  
The noise level limits the resolution obtainable from any pream-  
plifier. The total output voltage noise divided by the feedback  
resistance of the op amp defines the minimum detectable signal  
current. The minimum detectable current divided by the photo-  
diode sensitivity is the minimum detectable light power.  
REV. B  
–7–  
AD645  
10pF  
Guarding the input lines by completely surrounding them with a  
metal conductor biased near the input lines’ potential has two  
major benefits. First, parasitic leakage from the signal line is  
reduced, since the voltage between the input line and the guard  
is very low. Second, stray capacitance at the input terminal is  
minimized which in turn increases signal bandwidth. In the  
header or can package, the case of the AD645 is connected to  
Pin 8 so that it may be tied to the input potential (when operat-  
ing as a follower) or tied to ground (when operating as an in-  
verter). The AD645’s positive input (Pin 3) is located next to  
the negative supply voltage pin (Pin 4). The negative input (Pin  
2) is next to the balance adjust pin (Pin 1) which is biased at a  
potential close to that of the negative supply voltage. Note that  
any guard traces should be placed on both sides of the board. In  
addition, the input trace should be guarded along both of its  
edges, along its entire length.  
RG  
10k  
Rf  
Ri  
108Ω  
1.1kΩ  
VOUT  
AD645  
PHOTODIODE  
RG  
)
Ri  
f
R (1  
+
VOUT = ID  
Figure 34. A Photodiode Preamp Employing a “T”  
Network for Added Gain  
A pH Probe Buffer Amplifier  
A typical pH probe requires a buffer amplifier to isolate its 106  
to 109 source resistance from external circuitry. Just such an  
amplifier is shown in Figure 35. The low input current of the  
AD645 allows the voltage error produced by the bias current  
and electrode resistance to be minimal. The use of guarding,  
shielding, high insulation resistance standoffs, and other such  
standard methods used to minimize leakage are all needed to  
maintain the accuracy of this circuit.  
Contaminants such as solder flux, on the board’s surface and on  
the amplifier’s package, can greatly reduce the insulation resis-  
tance and also increase the sensitivity to atmospheric humidity.  
Both the package and the board must be kept clean and dry. An  
effective cleaning procedure is to: first, swab the surface with  
high grade isopropyl alcohol, then rinse it with deionized water,  
and finally, bake it at 80°C for 1 hour. Note that if either poly-  
styrene or polypropylene capacitors are used on the printed cir-  
cuit board that a baking temperature of 70°C is safer, since both  
of these plastic compounds begin to melt at approximately  
+85°C.  
The slope of the pH probe transfer function, 50 mV per pH unit  
at room temperature, has a +3300 ppm/°C temperature coeffi-  
cient. The buffer of Figure 35 provides an output voltage equal  
to 1 volt/pH unit. Temperature compensation is provided by  
resistor RT which is a special temperature compensation resis-  
tor, part number Q81, 1 k, 1%, +3500 ppm/°C, available from  
Tel Labs Inc.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
TO-99 Header (H) Package  
REFERENCE PLANE  
0.750 (19.05)  
+15V  
V
OS ADJUST  
100k  
+VS  
VS  
0.1µF  
0.1µF  
0.500 (12.70)  
0.185 (4.70)  
0.165 (4.19)  
COM  
–15V  
0.250 (6.35)  
MIN  
0.050  
(1.27)  
MAX  
0.100  
(2.54)  
BSC  
VS  
0.160 (4.06)  
0.110 (2.79)  
1
GUARD  
4
5
3
2
OUTPUT  
1VOLT/pH UNIT  
5
6
8
4
2
0.335 (8.51)  
0.305 (7.75)  
6
AD645  
0.045 (1.14)  
0.027 (0.69)  
0.200  
(5.08)  
BSC  
7
7
3
pH  
PROBE  
0.370 (9.40)  
0.335 (8.51)  
8
19.6kΩ  
+
VS  
1
0.100  
(2.54)  
BSC  
0.019 (0.48)  
0.016 (0.41)  
0.040 (1.02) MAX  
RT  
1kΩ  
+3500ppm/°C  
0.034 (0.86)  
0.027 (0.69)  
0.045 (1.14)  
0.010 (0.25)  
0.021 (0.53)  
0.016 (0.41)  
BASE & SEATING PLANE  
45  
°
BSC  
Plastic Mini-DIP (N) Package  
Figure 35. A pH Probe Amplifier  
Circuit Board Notes  
8
5
The AD645 is designed for through hole mount into PC boards.  
Maintaining picoampere level resolution in that environment  
requires a lot of care. Since both the printed circuit board and  
the amplifier’s package have a finite resistance, the voltage dif-  
ference between the amplifier’s input pin and other pins (or  
traces on the PC board) will cause parasitic currents to flow into  
(or out of) the signal path. These currents can easily exceed the  
1.5 pA input current level of the AD645 unless special precau-  
tions are taken. Two successful methods for minimizing leakage  
are: guarding the AD645’s input lines and maintaining adequate  
insulation resistance.  
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
PLANE  
0.100  
(2.54)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
BSC  
–8–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY