AD8616ARZ-REEL7 [ADI]

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers; 精密, 20 MHz的CMOS轨到轨输入/输出运算放大器
AD8616ARZ-REEL7
型号: AD8616ARZ-REEL7
厂家: ADI    ADI
描述:

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
精密, 20 MHz的CMOS轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, 20 MHz, CMOS, Rail-to-Rail  
Input/Output Operational Amplifiers  
AD8615/AD8616/AD8618  
FEATURES  
current noise. The parts use a patented trimming technique  
that achieves superior precision without laser trimming.  
The AD8615/AD8616/AD8618 are fully specified to operate  
from 2.7 V to 5 V single supplies.  
Low offset voltage: 65 μV max  
Single-supply operation: 2.7 V to 5.5 V  
Low noise: 8 nV/√Hz  
Wide bandwidth: >20 MHz  
Slew rate: 12 V/μs  
High output current: 150 mA  
No phase reversal  
Low input bias current: 1 pA  
Low supply current: 2 mA  
Unity-gain stable  
The combination of 20 MHz bandwidth, low offset, low noise,  
and very low input bias current make these amplifiers useful in  
a wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. AC applications benefit  
from the wide bandwidth and low distortion. The  
AD8615/AD8616/AD8618 offer the highest output drive  
capability of the DigiTrimTM family, which is excellent for audio  
line drivers and other low impedance applications.  
APPLICATIONS  
Barcode scanners  
Battery-powered instrumentation  
Multipole filters  
Sensors  
ASIC input or output amplifier  
Audio  
Photodiode amplification  
Applications for the parts include portable and low powered  
instrumentation, audio amplification for portable devices,  
portable phone headsets, bar code scanners, and multipole  
filters. The ability to swing rail-to-rail at both the input and  
output enables designers to buffer CMOS ADCs, DACs, ASICs,  
and other wide output swing devices in single-supply systems.  
GENERAL DESCRIPTION  
The AD8615/AD8616/AD8618 are specified over the extended  
The AD8615/AD8616/AD8618 are dual/quad, rail-to-rail, input  
and output, single-supply amplifiers featuring very low offset  
voltage, wide signal bandwidth, and low input voltage and  
industrial (–40°C to +125°C) temperature range. The AD8615  
is available in 5-lead TSOT-23 packages. The AD8616 is availa-  
ble in 8-lead MSOP and narrow SOIC surface-mount packages;  
the MSOP version is available in tape and reel only. The  
AD8618 is available in 14-lead SOIC and TSSOP packages.  
PIN CONFIGURATIONS  
OUT A  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
1
14  
5
4
V+  
OUT  
V–  
1
2
3
–IN A  
+IN A  
V+  
+IN B  
–IN B  
AD8615  
AD8618  
TOP VIEW  
(Not to Scale)  
8
7
OUT B  
–IN  
+IN  
Figure 4. 14-Lead TSSOP (RU-14)  
Figure 1. 5-Lead TSOT-23 (UJ-5)  
OUT A  
IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8616  
OUT B  
–IN B  
+IN B  
+IN A  
V+  
TOP VIEW  
(Not to Scale)  
AD8618  
11  
10  
9
V–  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
Figure 2. 8-Lead MSOP (RM-8)  
8
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8616  
OUT B  
–IN B  
+IN B  
Figure 5. 14-Lead SOIC (R-14)  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead SOIC (R-8)  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8615/AD8616/AD8618  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 11  
Input Overvoltage Protection ................................................... 11  
Output Phase Reversal............................................................... 11  
Driving Capacitive Loads.......................................................... 11  
Overload Recovery Time .......................................................... 12  
D/A Conversion ......................................................................... 12  
Low Noise Applications............................................................. 12  
High Speed Photodiode Preamplifier...................................... 13  
Active Filters ............................................................................... 13  
Power Dissipation....................................................................... 13  
Power Calculations for Varying or Unknown Loads............. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
6/05—Rev. B to Rev. C  
Change to Table 1 ......................................................................... 3  
Change to Table 2 ......................................................................... 4  
Change to Figure 20 ..................................................................... 8  
1/05—Rev. A to Rev. B  
Added AD8615 ...............................................................Universal  
Changes to Figure 12.................................................................... 8  
Deleted Figure 19; Renumbered Subsequent Figures.............. 8  
Changes to Figure 20.................................................................... 9  
Changes to Figure 29.................................................................. 10  
Changes to Figure 31.................................................................. 11  
Deleted Figure 34; Renumbered Subsequent Figures............ 11  
Deleted Figure 35; Renumbered Subsequent Figures............ 35  
4/04—Rev. 0 to Rev. A  
Added AD8618 ...............................................................Universal  
Updated Outline Dimensions................................................... 16  
1/04—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
AD8615/AD8616/AD8618  
SPECIFICATIONS  
VS =5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage AD8616/AD8618/  
AD8615  
VOS  
VS = 3.5 V at VCM = 0.5 V and 3.0 V  
23  
23  
60  
100  
μV  
μV  
VCM = 0 V to 5 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
80  
500  
800  
7
μV  
μV  
μV/°C  
μV/°C  
Offset Voltage Drift AD8616/AD8618/  
AD8615  
Input Bias Current  
∆VOS/∆T  
IB  
1.5  
3
10  
0.2  
1
pA  
pA  
pA  
pA  
pA  
pA  
V
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
550  
0.5  
50  
250  
5
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 4.5 V  
RL = 2 kΩ, VO = 0.5 V to 5 V  
80  
105  
100  
1500  
2.5  
dB  
V/mV  
pF  
6.7  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
IL = 10 mA  
−40°C < TA < +125°C  
IL = 1 mA  
IL = 10 mA  
4.98  
4.88  
4.7  
4.99  
4.92  
V
V
V
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
7.5  
70  
15  
100  
200  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
150  
3
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C < TA < +125°C  
70  
90  
1.7  
dB  
mA  
mA  
2.0  
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
Øm  
RL = 2 kΩ  
To 0.01%  
12  
<0.5  
24  
V/μs  
μs  
MHz  
Degrees  
63  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
2.4  
10  
7
0.05  
–115  
–110  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
Cs  
dB  
Rev. C | Page 3 of 20  
 
AD8615/AD8616/AD8618  
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage AD8616/AD8618/  
AD8615  
VOS  
VS = 3.5 V at VCM = 0.5 V and 3.0 V  
23  
23  
65  
100  
μV  
μV  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
80  
500  
800  
μV  
μV  
Offset Voltage Drift AD8616/AD8618/  
AD8615  
Input Bias Current  
∆VOS/∆T  
IB  
1.5  
3
7
10  
μV/°C  
μV/°C  
0.2  
1
50  
pA  
pA  
pA  
pA  
pA  
pA  
V
−40°C < TA < +85°C  
−40°C < TA < +125°C  
550  
0.5  
50  
250  
2.7  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 2.7 V  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
80  
55  
100  
150  
2.5  
dB  
V/mV  
pF  
7.8  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 1 mA  
2.65  
2.6  
2.68  
11  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
25  
30  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
50  
3
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C < TA < +125°C  
70  
90  
1.7  
dB  
mA  
mA  
2
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
Øm  
RL = 2 kΩ  
To 0.01%  
12  
< 0.3  
23  
V/μs  
μs  
MHz  
Degrees  
42  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
2.1  
10  
7
0.05  
–115  
–110  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
Cs  
dB  
Rev. C | Page 4 of 20  
AD8615/AD8616/AD8618  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Parameter  
Rating  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for device soldered in circuit board for surface-mount  
packages.  
Supply Voltage  
Input Voltage  
6 V  
GND to VS  
3 V  
Indefinite  
–65°C to +150°C  
–40°C to +125°C  
300°C  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
Junction Temperature  
Table 4.  
Package Type  
θJA  
θJC  
61  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5–Lead TSOT-23 (UJ)  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
207  
210  
158  
120  
180  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 20  
 
AD8615/AD8616/AD8618  
TYPICAL PERFORMANCE CHARACTERISTICS  
2200  
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
S
V = ±2.5V  
S
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
= 25°C  
A
V
= 0V TO 5V  
CM  
600  
400  
200  
0
0
–700  
–500  
–300  
–100  
100  
300  
V)  
500  
700  
0
25  
50  
75  
100  
125  
OFFSET VOLTAGE (  
μ
TEMPERATURE (°C)  
Figure 6. Input Offset Voltage Distribution  
Figure 9. Input Bias Current vs. Temperature  
22  
20  
18  
16  
14  
12  
10  
8
1000  
V
T
= ±2.5V  
= –40°C TO +125°C  
= 0V  
S
V
T
= 5V  
= 25°C  
A
S
A
V
CM  
100  
10  
SINK  
SOURCE  
6
1
4
2
0
0.1  
0.001  
0
2
4
6
8
10  
12  
100  
0.01  
0.1  
I
1
10  
(mA)  
TCV  
(μV/°C)  
LOAD  
OS  
Figure 10. Output Voltage to Supply Rail vs. Load Current  
Figure 7. Offset Voltage Drift Distribution  
500  
400  
120  
100  
80  
60  
40  
20  
0
V
T
= 5V  
= 25  
S
A
V
= 5V  
S
°C  
300  
10mA LOAD  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
1mA LOAD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (  
°
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
Figure 11. Output Saturation Voltage vs. Temperature  
Rev. C | Page 6 of 20  
 
AD8615/AD8616/AD8618  
120  
100  
80  
60  
40  
20  
0
100  
225  
V
= ±2.5V  
S
V
T
Ø
= ±2.5V  
= 25°C  
= 63°  
S
A
80  
60  
40  
20  
0
180  
135  
90  
45  
0
m
–20  
–40  
–60  
–45  
–90  
–135  
–80  
–180  
–225  
–100  
1k  
10k  
100k  
1M  
10M  
1M  
10M  
60M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Open-Loop Gain and Phase vs. Frequency  
Figure 15. Common-Mode Rejection Ratio vs. Frequency  
120  
100  
80  
60  
40  
20  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ±2.5V  
S
V
V
T
R
A
= 5.0V  
S
= 4.9V p-p  
IN  
= 25°C  
A
= 2k  
= 1  
Ω
L
V
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Closed-Loop Output Voltage Swing  
Figure 16. PSRR vs. Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
V = 5V  
S
S
R
=  
= 25  
L
T
°C  
A
A
= 1  
V
–OS  
+OS  
A
= 100  
A = 1  
V
V
A
= 10  
V
0
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 17. Small-Signal Overshoot vs. Load Capacitance  
Figure 14. Output Impedance vs. Frequency  
Rev. C | Page 7 of 20  
AD8615/AD8616/AD8618  
2.4  
2.2  
2.0  
V
= 5V  
= 10kΩ  
= 200pF  
= 1  
S
R
C
A
L
L
V
V
= 2.7V  
S
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
S
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
TIME (1μs/DIV)  
TEMPERATURE (  
°
Figure 18. Supply Current vs. Temperature  
Figure 21. Small-Signal Transient Response  
2000  
1800  
1600  
1400  
1200  
1000  
800  
V
= 5V  
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
L
L
V
600  
400  
200  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
TIME (1μs/DIV)  
Figure 22. Large-Signal Transient Response  
Figure 19. Supply Current vs. Supply Voltage  
0.1  
0.01  
1k  
V
V
A
= ±2.5V  
= 0.5V rms  
= 1  
S
V
V
= ±2.5V  
= ±1.35V  
S
S
IN  
V
BW = 22kHz  
= 100k  
R
Ω
L
100  
0.001  
0.0001  
10  
1
20  
100  
1k  
20k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Voltage Noise Density vs. Frequency  
Figure 23. THD + N  
Rev. C | Page 8 of 20  
AD8615/AD8616/AD8618  
500  
400  
V
V
A
= ±2.5V  
= 2V p-p  
= 10  
V
T
= 2.7V  
= 25°C  
S
S
A
IN  
V
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
TIME (200ns/DIV)  
COMMON-MODE VOLTAGE (V)  
Figure 24. Settling Time  
Figure 27. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
500  
400  
V
T
= 3.5V  
= 25°C  
V
= 2.7V  
S
A
S
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TIME (1s/DIV)  
COMMON-MODE VOLTAGE (V)  
Figure 25. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 28. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
1000  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 2.7V  
= 25°C  
= 0V TO 2.7V  
S
V
T
= ±1.35V  
= 25°C  
S
A
T
A
V
CM  
100  
10  
SOURCE  
SINK  
1
0.1  
0.001  
–700  
–500  
–300  
–100  
100  
300  
500  
700  
0.01  
0.1  
(mA)  
1
10  
I
LOAD  
OFFSET VOLTAGE (μV)  
Figure 29. Output Voltage to Supply Rail vs. Load Current  
Figure 26. Input Offset Voltage Distribution  
Rev. C | Page 9 of 20  
AD8615/AD8616/AD8618  
18  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 2.7V  
V
= ±1.35V  
S
S
16  
14  
12  
10  
8
R
=  
L
T
= 25°C  
V
@ 1mA LOAD  
A
OH  
A
= 1  
V
V
@ 1mA LOAD  
OL  
–OS  
+OS  
6
4
2
0
0
10  
100  
CAPACITANCE (pF)  
1000  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 30. Output Saturation Voltage vs. Temperature  
Figure 33. Small-Signal Overshoot vs. Load Capacitance  
100  
225  
V
= 2.7V  
= 10kΩ  
= 200pF  
= 1  
S
V
T
Ø
= ±1.35V  
= 25°C  
= 42°  
R
C
A
S
L
L
V
80  
60  
40  
20  
0
180  
135  
90  
45  
0
A
m
–20  
–40  
–60  
–45  
–90  
–135  
–80  
–180  
–225  
–100  
1M  
10M  
60M  
FREQUENCY (Hz)  
TIME (1μs/DIV)  
Figure 31. Open-Loop Gain and Phase vs. Frequency  
Figure 34. Small-Signal Transient Response  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
= 2.7V  
S
V
V
T
R
A
= 2.7V  
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
L
= 2.6V p-p  
IN  
A
L
V
= 25  
= 2k  
= 1  
°C  
Ω
L
V
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TIME (1μs/DIV)  
Figure 32. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 35. Large-Signal Transient Response  
Rev. C | Page 10 of 20  
AD8615/AD8616/AD8618  
APPLICATIONS  
This reduces the overshoot and minimizes ringing, which  
in turn improves the frequency response of the AD8615/  
AD8616/AD8618. One simple technique for compensation is  
the snubber, which consists of a simple RC network. With this  
circuit in place, output swing is maintained and the amplifier  
is stable at all gains.  
INPUT OVERVOLTAGE PROTECTION  
The AD8615/AD8616/AD8618 have internal protective cir-  
cuitry that allows voltages exceeding the supply to be applied  
at the input.  
It is recommended, however, not to apply voltages that exceed  
the supplies by more than 1.5 V at either input of the amplifier.  
If a higher input voltage is applied, series resistors should be  
used to limit the current flowing into the inputs.  
Figure 38 shows the implementation of the snubber, which  
reduces overshoot by more than 30% and eliminates ringing  
that can cause instability. Using the snubber does not recover  
the loss of bandwidth incurred from a heavy capacitive load.  
The input current should be limited to <5 mA. The extremely  
low input bias current allows the use of larger resistors, which  
allows the user to apply higher voltages at the inputs. The use  
of these resistors adds thermal noise, which contributes to the  
overall output voltage noise of the amplifier.  
V
A
C
= ±2.5V  
= 1  
= 500pF  
S
V
L
For example, a 10 kΩ resistor has less than 13 nV/√Hz of  
thermal noise and less than 10 nV of error voltage at room  
temperature.  
OUTPUT PHASE REVERSAL  
The AD8615/AD8616/AD8618 are immune to phase  
inversion, a phenomenon that occurs when the voltage  
applied at the input of the amplifier exceeds the maxi-  
mum input common mode.  
TIME (2μs/DIV)  
Phase reversal can cause permanent damage to the ampli-  
fier and can create lock-ups in systems with feedback loops.  
Figure 37. Driving Heavy Capacitive Loads Without Compensation  
V
V
A
R
= ±2.5V  
S
V
CC  
= 6V p-p  
= 1  
IN  
V
L
= 10kΩ  
+
V–  
V+  
200Ω  
500pF  
+
500pF  
V
EE  
200mV  
V
OUT  
V
IN  
Figure 38. Snubber Network  
V
= ±2.5V  
= 1  
S
A
R
C
C
V
S
S
L
= 200  
Ω
= 500pF  
= 500pF  
TIME (2ms/DIV)  
Figure 36. No Phase Reversal  
DRIVING CAPACITIVE LOADS  
Although the AD8615/AD8616/AD8618 are capable of driving  
capacitive loads of up to 500 pF without oscillating, a large  
amount of overshoot is present when operating at frequencies  
above 100 kHz. This is especially true when the amplifier is  
configured in positive unity gain (worst case). When such large  
capacitive loads are required, the use of external compensation  
is highly recommended.  
TIME (10μs/DIV)  
Figure 39. Driving Heavy Capacitive Loads Using the Snubber Network  
Rev. C | Page 11 of 20  
 
 
AD8615/AD8616/AD8618  
5V  
2.5V  
OVERLOAD RECOVERY TIME  
10  
μF  
+
Overload recovery time is the time it takes the output of the  
amplifier to come out of saturation and recover to its linear  
region. Overload recovery is particularly important in applica-  
tions where small signals must be amplified in the presence of  
large transients. Figure 40 and Figure 41 show the positive and  
negative overload recovery times of the AD8616. In both cases,  
the time elapsed before the AD8616 comes out of saturation is  
less than 1 μs. In addition, the symmetry between the positive  
and negative recovery times allows excellent signal rectification  
without distortion to the output signal.  
0.1μF  
0.1μF  
SERIAL  
INTERFACE  
V
REFF  
REFS  
DD  
1/2  
AD8616  
CS  
UNIPOLAR  
OUTPUT  
DIN  
AD5542  
OUT  
SCLK  
LDAC  
DGND  
AGND  
Figure 42. Buffering DAC Output  
LOW NOISE APPLICATIONS  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
S
L
Although the AD8618 typically has less than 8 nV/√Hz of  
voltage noise density at 1 kHz, it is possible to reduce it fur-  
ther. A simple method is to connect the amplifiers in parallel,  
as shown in Figure 43. The total noise at the output is divided  
by the square root of the number of amplifiers. In this case, the  
total noise is approximately 4 nV/√Hz at room temperature.  
The 100 Ω resistor limits the current and provides an effective  
output resistance of 50 Ω.  
V
+2.5V  
V
= 50mV  
IN  
0V  
0V  
3
V
IN  
R3  
–50mV  
V+  
V–  
1
1
1
1
R1  
2
100Ω  
10Ω  
TIME (1μs/DIV)  
R2  
Figure 40. Positive Overload Recovery  
1kΩ  
V
= ±2.5V  
S
3
R
= 10kΩ  
= 100  
= 50mV  
L
V
R6  
V+  
V–  
A
V
R4  
2
IN  
100Ω  
10Ω  
–2.5V  
0V  
0V  
R5  
V
OUT  
1kΩ  
3
2
R9  
V+  
V–  
R7  
100Ω  
10Ω  
R8  
+50mV  
1kΩ  
3
2
TIME (1μs/DIV)  
R12  
V+  
V–  
R10  
100Ω  
Figure 41. Negative Overload Recovery  
10Ω  
D/A CONVERSION  
R11  
The AD8616 can be used at the output of high resolution DACs.  
Their low offset voltage, fast slew rate, and fast settling time  
make the parts suitable to buffer voltage output or current  
output DACs.  
1kΩ  
Figure 43. Noise Reduction  
Figure 42 shows an example of the AD8616 at the output of the  
AD5542. The AD8616s rail-to-rail output and low distortion  
help maintain the accuracy needed in data acquisition systems  
and automated test equipment.  
Rev. C | Page 12 of 20  
 
 
 
 
 
AD8615/AD8616/AD8618  
10  
0
HIGH SPEED PHOTODIODE PREAMPLIFIER  
The AD8615/AD8616/AD8618 are excellent choices for I-to-V  
conversions. The very low input bias, low current noise, and  
high unity-gain bandwidth of the parts make them suitable,  
especially for high speed photodiode preamps.  
–10  
–20  
–30  
–40  
In high speed photodiode applications, the diode is operated  
in a photoconductive mode (reverse biased). This lowers the  
junction capacitance at the expense of an increase in the  
amount of dark current that flows out of the diode.  
The total input capacitance, C1, is the sum of the diode and op  
amp input capacitances. This creates a feedback pole that causes  
degradation of the phase margin, making the op amp unstable.  
Therefore, it is necessary to use a capacitor in the feedback to  
compensate for this pole.  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 46. Second-Order Butterworth, Low-Pass Filter Frequency Response  
POWER DISSIPATION  
To get the maximum signal bandwidth, select  
Although the AD8615/AD8616/AD8618 are capable of  
providing load currents up to 150 mA, the usable output, load  
current, and drive capability is limited to the maximum power  
dissipation allowed by the device package.  
C1  
2πR2 fU  
C2 =  
where fU is the unity-gain bandwidth of the amplifier.  
In any application, the absolute maximum junction temperature  
for the AD8615/AD8616/AD8618 is 150°C. This should never  
be exceeded because the device could suffer premature failure.  
Accurately measuring power dissipation of an integrated circuit  
is not always a straightforward exercise; Figure 47 is a design aid  
for setting a safe output current drive level or selecting a heat  
sink for the package options available on the AD8616.  
C2  
R2  
+2.5V  
V–  
I
R
C
C
IN  
D
SH  
D
V+  
1.5  
+
–2.5V  
–V  
BIAS  
Figure 44. High Speed Photodiode Preamplifier  
1.0  
SOIC  
ACTIVE FILTERS  
The low input-bias current and high unity-gain bandwidth  
of the AD8616 make it an excellent choice for precision filter  
design.  
MSOP  
0.5  
Figure 45 shows the implementation of a second-order, low-  
pass filter. The Butterworth response has a corner frequency  
of 100 kHz and a phase shift of 90°. The frequency response  
is shown in Figure 46.  
0
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (  
°
C)  
2nF  
Figure 47. Maximum Power Dissipation vs. Ambient Temperature  
V
CC  
V–  
V+  
1.1kΩ  
1.1kΩ  
V
1nF  
IN  
V
EE  
Figure 45. Second-Order, Low-Pass Filter  
Rev. C | Page 13 of 20  
 
 
 
 
AD8615/AD8616/AD8618  
Calculating Power by Measuring Ambient and Case  
Temperature  
These thermal resistance curves were determined using  
the AD8616 thermal resistance data for each package and  
a maximum junction temperature of 150°C. The following  
formula can be used to calculate the internal junction tem-  
perature of the AD8615/AD8616/AD8618 for any application:  
The two equations for calculating junction temperature are  
TJ = TA + P θJA  
where:  
TJ = PDISS × θJA + TA  
TJ = junction temperature  
TA = ambient temperature  
where:  
θJA = the junction-to-ambient thermal resistance  
TJ = junction temperature  
PDISS = power dissipation  
θJA = package thermal resistance, junction-to-case  
TJ = TC + P θJC  
TA = ambient temperature of the circuit  
where TC is case temperature and θJA and θJC are given in the  
data sheet.  
To calculate the power dissipated by the AD8615/  
AD8616/AD8618, use  
The two equations for calculating P (power) are  
TA + P θJA = TC + P θJC  
PDISS = ILOAD × (VS VOUT  
)
where:  
P = (TA TC)/(θJC – θJA)  
ILOAD = output load current  
VS = supply voltage  
VOUT = output voltage  
Once power has been determined, it is necessary to recalculate  
the junction temperature to ensure that it has not been  
exceeded.  
The quantity within the parentheses is the maximum voltage  
developed across either output transistor.  
The temperature should be measured directly on and near the  
package, but not touching it. Measuring the package can be  
difficult. A very small bimetallic junction glued to the package  
can be used, or an infrared sensing device can be used if the  
spot size is small enough.  
POWER CALCULATIONS FOR VARYING OR  
UNKNOWN LOADS  
Often, calculating power dissipated by an integrated circuit to  
determine if the device is being operated in a safe range is not  
as simple as it might seem. In many cases, power cannot be  
directly measured. This may be the result of irregular output  
waveforms or varying loads. Indirect methods of measuring  
power are required.  
Calculating Power by Measuring Supply Current  
Power can be calculated directly if the supply voltage and  
current are known. However, the supply current can have a dc  
component with a pulse directed into a capacitive load, which  
could make the rms current very difficult to calculate. This  
difficulty can be overcome by lifting the supply pin and  
inserting an rms current meter into the circuit. For this method  
to work, make sure the current is delivered by the supply pin  
being measured. This is usually a good method in a single-  
supply system; however, if the system uses dual supplies, both  
supplies may need to be monitored.  
There are two methods to calculate power dissipated by  
an integrated circuit. The first is to measure the package  
temperature and the board temperature. The second is  
to directly measure the circuits supply current.  
Rev. C | Page 14 of 20  
 
AD8615/AD8616/AD8618  
OUTLINE DIMENSIONS  
3.00  
BSC  
8.75 (0.3445)  
8.55 (0.3366)  
8
1
5
4
14  
1
8
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
4.90  
BSC  
3.00  
BSC  
7
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
PIN 1  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
0.65 BSC  
8°  
0°  
1.10 MAX  
0.15  
0.00  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
COPLANARITY  
0.10  
SEATING  
PLANE  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 48. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 50. 14-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
14  
8
7
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0040)  
0.65  
BSC  
1.05  
1.00  
0.80  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0.20  
0.09  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
1.20  
SEATING  
PLANE  
0.75  
0.60  
0.45  
0.40 (0.0157)  
MAX  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 51. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Figure 49. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 15 of 20  
 
AD8615/AD8616/AD8618  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 52. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
Rev. C | Page 16 of 20  
AD8615/AD8616/AD8618  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
Branding  
AD8615AUJZ-R21  
AD8615AUJZ-REEL1  
AD8615AUJZ-REEL71  
AD8616ARM-R2  
AD8616ARM-REEL  
AD8616ARMZ-R21  
AD8616ARMZ-REEL1  
AD8616AR  
AD8616AR-REEL  
AD8616AR-REEL7  
AD8616ARZ1  
AD8616ARZ-REEL1  
AD8616ARZ-REEL71  
AD8618AR  
AD8618AR-REEL  
AD8618AR-REEL7  
AD8618ARZ1  
AD8618ARZ-REEL1  
AD8618ARZ-REEL71  
AD8618ARU  
AD8618ARU-REEL  
AD8618ARUZ1  
AD8618ARUZ-REEL1  
UJ-5  
UJ-5  
UJ-5  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
BKA  
BKA  
BKA  
BLA  
BLA  
A0K  
A0K  
8-Lead SOIC  
R-8  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
1 Z = Pb-free part.  
Rev. C | Page 17 of 20  
 
 
AD8615/AD8616/AD8618  
NOTES  
Rev. C | Page 18 of 20  
AD8615/AD8616/AD8618  
NOTES  
Rev. C | Page 19 of 20  
AD8615/AD8616/AD8618  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04648–0–6/05(C)  
Rev. C | Page 20 of 20  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY