AD8655ARMZ-REEL [ADI]

Low Noise, Precision CMOS Amplifier; 低噪声,精密CMOS放大器
AD8655ARMZ-REEL
型号: AD8655ARMZ-REEL
厂家: ADI    ADI
描述:

Low Noise, Precision CMOS Amplifier
低噪声,精密CMOS放大器

放大器
文件: 总20页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise,  
Precision CMOS Amplifier  
AD8655/AD8656  
FEATURES  
PIN CONFIGURATIONS  
Low noise: 2.7 nV/Hz @ f = 10 kHz  
Low offset voltage: 250 μV max over VCM  
Offset voltage drift: 0.4 μV/°C typ and 2.3 μV/°C max  
Bandwidth: 28 MHz  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8655  
AD8656  
OUT B  
–IN B  
+IN B  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
OUT  
NC  
(Not to Scale)  
Rail-to-rail input/output  
NC = NO CONNECT  
Unity gain stable  
2.7 V to 5.5 V operation  
−40°C to +125°C operation  
Figure 1. AD8655  
8-Lead MSOP (RM-8)  
Figure 2. AD8656  
8-Lead MSOP (RM-8)  
APPLICATIONS  
ADC and DAC buffers  
Audio  
Industrial controls  
Precision filters  
Digital scales  
Strain gauges  
PLL filters  
NC  
1
8
7
6
5
NC  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8655  
AD8656  
–IN  
+IN  
V–  
2
3
4
V+  
OUT B  
–IN B  
+IN B  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 3. AD8655  
8-Lead SOIC (R-8)  
Figure 4. AD8656  
8-Lead SOIC (R-8)  
GENERAL DESCRIPTION  
The AD8655/AD8656 are the industrys lowest noise, precision  
CMOS amplifiers. They leverage the Analog Devices DigiTrim®  
technology to achieve high dc accuracy.  
The high precision performance of the AD8655/AD8656  
improves the resolution and dynamic range in low voltage  
applications. Audio applications, such as microphone pre-amps  
and audio mixing consoles, benefit from the low noise, low  
distortion, and high output current capability of the AD8655/  
AD8656 to reduce system level noise performance and maintain  
audio fidelity. The high precision and rail-to-rail input and  
output of the AD8655/AD8656 benefit data acquisition, process  
controls, and PLL filter applications.  
The AD8655/AD8656 provide low noise (2.7 nV/√Hz @ 10 kHz),  
low THD + N (0.0007%), and high precision performance  
(250 μV max over VCM) to low voltage applications. The ability  
to swing rail-to-rail at the input and output enables designers  
to buffer analog-to-digital converters (ADCs) and other wide  
dynamic range devices in single-supply systems.  
The AD8655/AD8656 are fully specified over the −40°C to  
+125°C temperature range. The AD8655/AD8656 are available  
in Pb-free, 8-lead MSOP and SOIC packages.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8655/AD8656  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Driving Capacitive Loads.......................................................... 16  
Layout, Grounding, and Bypassing Considerations .................. 18  
Power Supply Bypassing............................................................ 18  
Grounding................................................................................... 18  
Leakage Currents........................................................................ 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 15  
Applications..................................................................................... 16  
Input Overvoltage Protection ................................................... 16  
Input Capacitance....................................................................... 16  
REVISION HISTORY  
6/05—Rev. 0 to Rev. A  
Added AD8656 ...................................................................Universal  
Added Figure 2 and Figure 4........................................................... 1  
Changes to Specifications................................................................ 3  
Changed Caption of Figure 12 and Added Figure 13.................. 7  
Replaced Figure 16 ........................................................................... 7  
Changed Caption of Figure 37 and Added Figure 38................ 11  
Replaced Figure 47 ......................................................................... 13  
Added Figure 55.............................................................................. 14  
Changes to Ordering Guide .......................................................... 18  
4/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
AD8655/AD8656  
SPECIFICATIONS  
VS = 5.0 V, VCM = VS/2, TA = 25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 5 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
50  
250  
550  
2.3  
10  
500  
10  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
0.4  
1
ΔVOS/ΔT  
IB  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA≤ +125°C  
Input Offset Current  
IOS  
500  
5
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 5 V  
VO = 0.2 V to 4.8 V, RL = 10 kΩ, VCM = 0 V  
−40°C ≤ TA ≤ +125°C  
85  
100  
95  
100  
110  
dB  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
VOH  
VOL  
IOUT  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
4.97  
4.991  
8
220  
V
mV  
mA  
30  
VOUT  
=
0.5 V  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.0 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
88  
105  
3.7  
dB  
mA  
mA  
4.5  
5.3  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
9.3  
16.7  
pF  
pF  
NOISE PERFORMANCE  
Input Voltage Noise Density  
en  
f = 1 kHz  
4
nV/Hz  
nV/Hz  
%
f = 10 kHz  
2.7  
Total Harmonic Distortion + Noise  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time  
Phase Margin  
THD + N  
G = 1, RL = 1 kΩ, f = 1 kHz, VIN = 2 V p-p  
0.0007  
GBP  
SR  
ts  
28  
11  
370  
69  
MHz  
V/μs  
ns  
RL = 10 kΩ  
To 0.1%, VIN = 0 V to 2 V step, G = +1  
CL = 0 pF  
degrees  
Rev. A | Page 3 of 20  
AD8655/AD8656  
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
44  
250  
550  
2.0  
10  
500  
10  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
0.4  
1
ΔVOS/ΔT  
IB  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
500  
2.7  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
VO = 0.2 V to 2.5 V, RL = 10 kΩ, VCM = 0 V  
−40°C ≤ TA ≤ +125°C  
80  
98  
90  
98  
dB  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
VOH  
VOL  
IOUT  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
2.67  
2.688  
10  
75  
V
mV  
mA  
30  
VOUT  
=
0.5 V  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.0 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
88  
105  
3.7  
dB  
mA  
mA  
4.5  
5.3  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
9.3  
16.7  
pF  
pF  
NOISE PERFORMANCE  
Input Voltage Noise Density  
en  
f = 1 kHz  
4.0  
nV/Hz  
nV/Hz  
%
f = 10 kHz  
2.7  
Total Harmonic Distortion + Noise  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time  
Phase Margin  
THD + N  
G = 1, RL = 1kΩ, f = 1 kHz, VIN = 2 V p-p  
0.0007  
GBP  
SR  
ts  
27  
MHz  
V/μs  
ns  
RL = 10 kΩ  
To 0.1%, VIN = 0 to 1 V step, G = +1  
CL = 0 pF  
8.5  
370  
54  
degrees  
Rev. A | Page 4 of 20  
AD8655/AD8656  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
to GND  
Electrostatic Discharge (HBM)  
6 V  
VSS − 0.3 V to VDD + 0.3 V  
6 V  
Indefinite  
3.0 kV  
−65°C to +150°C  
Table 4.  
Package Type  
Storage Temperature Range  
R, RM Packages  
1
Unit  
θJA  
θJC  
Junction Temperature Range  
R, RM Packages  
Lead Temperature  
(Soldering, 10 sec)  
−65°C to +150°C  
260°C  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
1θJA is specified for worst-case conditions; that is, θJA is specified for a device  
soldered in the circuit board for surface-mount packages.  
210  
158  
45  
43  
°C/W  
°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 20  
AD8655/AD8656  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
20  
10  
V
= ±2.5V  
S
V
= ±2.5V  
S
50  
40  
30  
20  
0
–10  
10  
0
–20  
–30  
–150  
–100  
–50  
0
50  
100  
150  
0
1
2
3
4
5
6
V
(μV)  
OS  
COMMON-MODE VOLTAGE (V)  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
150.0  
100.0  
50.0  
250  
200  
150  
100  
V
= ±2.5V  
S
V
= ±2.5V  
S
0.0  
–50.0  
50  
0
–100.0  
–150.0  
–50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Input Offset Voltage vs. Temperature  
Figure 9. Input Bias Current vs. Temperature  
60  
50  
40  
30  
20  
4.0  
3.5  
3.0  
V
= ±2.5V  
S
V
= ±2.5V  
S
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
1
2
3
4
5
6
|TCV | (μV/°C)  
OS  
SUPPLY VOLTAGE (V)  
Figure 7. |TCVOS | Distribution  
Figure 10. Supply Current vs. Supply Voltage  
Rev. A | Page 6 of 20  
AD8655/AD8656  
4.5  
4.0  
3.5  
3.0  
4.996  
4.994  
4.992  
4.990  
V
= ±2.5V  
S
V = ±2.5V  
S
LOAD CURRENT = 1mA  
4.988  
4.986  
4.984  
4.982  
2.5  
2.0  
–50  
0
50  
100  
150  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 11. Supply Current vs. Temperature  
Figure 14. Output Voltage Swing High vs. Temperature  
12  
10  
8
2500  
2000  
1500  
1000  
500  
LOAD CURRENT = 1mA  
V
= ±2.5V  
S
V
= ±2.5V  
S
V
OH  
6
V
OL  
4
2
0
–50  
0
50  
100  
150  
0
50  
100  
150  
200  
250  
TEMPERATURE (°C)  
CURRENT LOAD (mA)  
Figure 15. Output Voltage Swing Low vs. Temperature  
Figure 12. AD8655 Output Voltage to Supply Rail vs. Current Load  
120  
100  
10000  
V
V
R
C
= ±2.5V  
= 28mV  
= 1MΩ  
= 47pF  
V
= ±2.5V  
S
S
IN  
L
L
1000  
100  
10  
80  
60  
40  
20  
0
V
OL  
V
OH  
1
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
CURRENT LOAD (mA)  
Figure 13. AD8656 Output Swing vs. Current Load  
Figure 16. CMRR vs. Frequency  
Rev. A | Page 7 of 20  
AD8655/AD8656  
100  
10  
1
110.00  
107.00  
104.00  
101.00  
98.00  
V
V
= ±2.5V  
S
V
= ±2.5V  
S
= 0V  
CM  
95.00  
92.00  
1
10  
100  
1k  
10k  
100k  
–50  
0
50  
100  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 20. Voltage Noise Density vs. Frequency  
Figure 17. Large Signal CMRR vs. Temperature  
100  
80  
+PSRR  
V
V
R
C
= ±2.5V  
= 50mV  
= 1MΩ  
= 47pF  
S
V
= ±2.5V  
S
IN  
Vn (p-p) = 1.23μV  
L
L
–PSRR  
60  
1
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
1s/DIV  
FREQUENCY (Hz)  
Figure 21. Low Frequency Noise (0.1 Hz to 10 Hz).  
Figure 18. Small Signal PSSR vs. Frequency  
110.00  
108.00  
106.00  
104.00  
102.00  
100.00  
V
= ±2.5V  
T
S
V
V
IN  
V
C
= ±2.5V  
= 50pF  
S
L
GAIN = +1  
OUT  
2
–50  
0
50  
100  
150  
20μs/DIV  
TEMPERATURE (°C)  
Figure 22. No Phase Reversal  
Figure 19. Large Signal PSSR vs. Temperature  
Rev. A | Page 8 of 20  
AD8655/AD8656  
–45  
6
5
4
3
2
120  
100  
80  
V
V
= ±2.5V  
= 5V  
V
C
= ±2.5V  
S
S
= 11.5pF  
IN  
LOAD  
PHASE MARGIN = 69°  
G = +1  
–90  
60  
40  
20  
–135  
–180  
–225  
0
–20  
–40  
1
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
Figure 26. Maximum Output Swing vs. Frequency  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
140.00  
130.00  
120.00  
110.00  
V
R
= ±2.5V  
= 10kΩ  
S
T
V
C
= ±2.5V  
= 100pF  
L
S
L
GAIN = +1  
V = 4V  
IN  
2
100.00  
90.00  
–50  
0
50  
100  
150  
TIME (10μs/DIV)  
TEMPERATURE (°C)  
Figure 24. Large Signal Open-Loop Gain vs. Temperature  
Figure 27. Large Signal Response  
50  
40  
30  
20  
T
V
R
C
= ±2.5V  
= 1MΩ  
= 47pF  
S
V
C
= ±2.5V  
= 100pF  
S
L
L
L
G = +1  
2
10  
0
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TIME (1μs/DIV)  
Figure 25. Closed-Loop Gain vs. Frequency  
Figure 28. Small Signal Response  
Rev. A | Page 9 of 20  
AD8655/AD8656  
30  
100  
10  
V
= ±2.5V  
S
V
V
= ±2.5V  
S
= 200mV  
IN  
25  
20  
15  
10  
G = +1  
G = +100  
G = +10  
–OS  
1
+OS  
5
0
0.1  
100  
0
50  
100  
150  
200  
250  
300  
350  
1k  
10k  
100k  
1M  
10M  
100M  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
Figure 29. Small Signal Overshoot vs. Load Capacitance  
Figure 32. Output Impedance vs. Frequency  
80  
70  
60  
V
= ±1.35V  
S
T
300mV  
V
IN  
1
2
0V  
0V  
50  
40  
30  
20  
10  
0
V
OUT  
V
V
= ±2.5V  
= 300mV  
S
IN  
GAIN = –10  
RECOVERY TIME = 240ns  
–2.5V  
–150 –125 –100 –75 –50 –25  
V
0
25 50 75 100 125 150  
400ns/DIV  
(μV)  
OS  
Figure 30. Negative Overload Recovery Time  
Figure 33. Input Offset Voltage Distribution  
60  
40  
20  
0
T
V
= ±1.35V  
S
1
0V  
V
IN  
V
V
= ±2.5V  
= 300mV  
S
IN  
–300mV  
GAIN = –10  
RECOVERY TIME = 240ns  
2.5V  
V
OUT  
–20  
–40  
2
0V  
–50  
0
50  
100  
150  
400ns/DIV  
TEMPERATURE (°C)  
Figure 31. Positive Overload Recovery Time  
Figure 34. Input Offset Voltage vs. Temperature  
Rev. A | Page 10 of 20  
AD8655/AD8656  
80  
70  
60  
10000  
1000  
100  
10  
V
= ±1.35V  
S
V
= ±1.35V  
S
50  
40  
30  
20  
10  
0
V
OL  
V
OH  
1
0.1  
0
0.2  
0.4  
0.6  
0.8  
|TCV | (  
1.0  
V/  
1.2  
1.4  
1.6  
1
10  
100  
150  
150  
μ
°C)  
OS  
CURRENT LOAD (mA)  
Figure 35. |TCVOS| Distribution  
Figure 38. AD8656 Output Swing vs. Current Load  
4.5  
4.0  
3.5  
3.0  
2.698  
2.694  
2.690  
2.686  
2.682  
V
= ±1.35V  
V = ±1.35V  
S
LOAD CURRENT = 1mA  
S
2.5  
2.0  
2.678  
2.674  
–50  
0
50  
TEMPERATURE (°C)  
100  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 36. Supply Current vs. Temperature  
Figure 39. Output Voltage Swing High vs. Temperature  
14  
12  
10  
8
1400  
V
= ±1.35V  
S
V
= ±1.35V  
S
LOAD CURRENT = 1mA  
1200  
1000  
800  
V
OH  
600  
400  
200  
0
6
V
OL  
4
2
–50  
0
50  
TEMPERATURE (°C)  
100  
0
20  
40  
60  
80  
100  
120  
LOAD CURRENT (mA)  
Figure 37. AD8655 Output Voltage to Supply Rail vs. Load Current  
Figure 40. Output Voltage Swing Low vs. Temperature  
Rev. A | Page 11 of 20  
AD8655/AD8656  
35  
30  
25  
20  
15  
10  
5
T
V
= ±1.35V  
V
V
= ±1.35V  
= 200mV  
S
S
G = +1  
C = 50pF  
IN  
L
V
IN  
–OS  
V
OUT  
2
+OS  
0
0
50  
100  
150  
200  
250  
300  
350  
20μs/DIV  
CAPACITANCE (pF)  
Figure 44. Small Signal Overshoot vs. Load Capacitance  
Figure 41. No Phase Reversal  
T
T
V
C
= ±1.35V  
= 50pF  
S
200mV  
L
V
IN  
GAIN = +1  
0V  
1
2
2
0V  
V
OUT  
–1.35V  
V
V
= ±1.35V  
= 200mV  
S
IN  
GAIN = –10  
RECOVERY TIME = 180ns  
400ns/DIV  
TIME (10μs/DIV)  
Figure 42. Large Signal Response  
Figure 45. Negative Overload Recovery Time  
T
T
V
C
= ±1.35V  
= 100pF  
S
1
0V  
L
V
IN  
GAIN = +1  
V
V
= ±1.35V  
= 200mV  
S
–200mV  
IN  
GAIN = –10  
RECOVERY TIME = 200ns  
2
1.35V  
V
OUT  
0V  
2
400ns/DIV  
TIME (1μs/DIV)  
Figure 43. Small Signal Response  
Figure 46. Positive Overload Recovery Time  
Rev. A | Page 12 of 20  
AD8655/AD8656  
120  
100  
120  
100  
–45  
V
= ±1.35V  
V
V
R
C
= ±1.35V  
= 28mV  
= 1MΩ  
S
S
C
= 11.5pF  
LOAD  
PHASE MARGIN = 54°  
IN  
L
L
= 47pF  
–90  
80  
60  
40  
80  
60  
40  
20  
0
–135  
–180  
–225  
20  
0
–20  
–40  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50. Open-Loop Gain and Phase vs. Frequency  
Figure 47. CMRR vs. Frequency  
130.00  
120.00  
110.00  
102.00  
98.00  
94.00  
90.00  
86.00  
V
= ±1.35V  
V = ±1.35V  
S
S
R
= 10kΩ  
L
100.00  
90.00  
80.00  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 51. Large Signal Open-Loop Gain vs. Temperature  
Figure 48. Large Signal CMRR vs. Temperature  
100  
80  
50  
40  
V
V
R
C
= ±1.35V  
= 50mV  
= 1MΩ  
V
R
C
= ±1.35V  
= 1MΩ  
= 47pF  
S
S
IN  
L
L
+PSRR  
L
L
= 47pF  
–PSRR  
30  
60  
20  
10  
40  
0
20  
0
–10  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. Small Signal PSSR vs. Frequency  
Figure 52. Closed-Loop Gain vs. Frequency  
Rev. A | Page 13 of 20  
AD8655/AD8656  
3.0  
0
–20  
V
V
=
±
2.5V  
S
R1  
= 50mV  
IN  
10k  
Ω
+2.5V  
V+  
R2  
2.5  
100  
Ω
V–  
V+  
V
V
= 1.35V  
= 2.7V  
S
+
V
A
B
IN  
50mV p-p  
V
OUT  
IN  
V–  
–2.5V  
–40  
2.0  
1.5  
1.0  
G = +1  
NO LOAD  
–60  
–80  
–100  
0.5  
0
–120  
–140  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 53. Maximum Output Swing vs. Frequency  
Figure 55. Channel Separation vs. Frequency  
1000  
100  
10  
V
= ±1.35V  
S
G = +100  
G = +10  
G = +1  
1
0.1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 54. Output Impedance vs. Frequency  
Rev. A | Page 14 of 20  
AD8655/AD8656  
THEORY OF OPERATION  
The AD8655/AD8656 amplifiers are voltage feedback, rail-to-  
rail input and output precision CMOS amplifiers, which operate  
from 2.7 V to 5.0 V of power supply voltage. These amplifiers  
use the Analog Devices DigiTrim technology to achieve a  
higher degree of precision than is available from most CMOS  
amplifiers. DigiTrim technology, used in a number of ADI  
amplifiers, is a method of trimming the offset voltage of the  
amplifier after it is packaged. The advantage of post-package  
trimming is that it corrects any offset voltages caused by the  
mechanical stresses of assembly.  
The AD8655/AD8656 can be used in any precision op amp  
application. The amplifier does not exhibit phase reversal for  
common-mode voltages within the power supply. The  
AD8655/AD8656 are great choices for high resolution data  
acquisition systems with voltage noise of 2.7 nV/√Hz and  
THD + Noise of –103 dB for a 2 V p-p signal at 10 kHz. Their  
low noise, sub-pA input bias current, precision offset, and high  
speed make them superb preamps for fast filter applications.  
The speed and output drive capability of the AD8655/AD8656  
also make them useful in video applications.  
The AD8655/AD8656 are available in standard op amp pinouts,  
making DigiTrim completely transparent to the user. The input  
stage of the amplifiers is a true rail-to-rail architecture, allowing  
the input common-mode voltage range of the amplifiers to  
extend to both positive and negative supply rails. The open-  
loop gain of the AD8655/AD8656 with a load of 10 kΩ is  
typically 110 dB.  
Rev. A | Page 15 of 20  
AD8655/AD8656  
APPLICATIONS  
One simple technique for compensation is a snubber that  
consists of a simple RC network. With this circuit in place,  
output swing is maintained, and the amplifier is stable at all  
gains. Figure 57 shows the implementation of a snubber, which  
reduces overshoot by more than 30% and eliminates ringing.  
Using a snubber does not recover the loss of bandwidth  
incurred from a heavy capacitive load.  
INPUT OVERVOLTAGE PROTECTION  
The internal protective circuitry of the AD8655/AD8656 allows  
voltages exceeding the supply to be applied at the input. It is  
recommended, however, not to apply voltages that exceed the  
supplies by more than 0.3 V at either input of the amplifier. If a  
higher input voltage is applied, series resistors should be used to  
limit the current flowing into the inputs. The input current  
should be limited to less than 5 mA.  
V
A
C
= ±2.5V  
= 1  
S
V
L
= 500pF  
The extremely low input bias current allows the use of larger  
resistors, which allows the user to apply higher voltages at the  
inputs. The use of these resistors adds thermal noise, which  
contributes to the overall output voltage noise of the amplifier.  
For example, a 10 kΩ resistor has less than 12.6 nV/√Hz of  
thermal noise and less than 10 nV of error voltage at room  
temperature.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground.  
For circuits with resistive feedback network, the total capacitance,  
whether it is the source capacitance, stray capacitance on the  
input pin, or the input capacitance of the amplifier, causes a  
breakpoint in the noise gain of the circuit. As a result, a  
capacitor must be added in parallel with the gain resistor to  
obtain stability. The noise gain is a function of frequency and  
peaks at the higher frequencies, assuming the feedback capaci-  
tor is selected to make the second-order system critically  
damped. A few picofarads of capacitance at the input reduce  
the input impedance at high frequencies, which increases the  
amplifiers gain, causing peaking in the frequency response or  
oscillations. With the AD8655/AD8656, additional input  
damping is required for stability with capacitive loads greater  
than 200 pF with direct input to output feedback. See the  
Driving Capacitive Loads section.  
TIME (2μs/DIV)  
Figure 56. Driving Heavy Capacitive Loads Without Compensation  
V
CC  
+
V–  
V+  
200Ω  
500pF  
+
500pF  
V
EE  
200mV  
Figure 57. Snubber Network  
V
= ±2.5V  
= 1  
= 200Ω  
= 500pF  
= 500pF  
S
A
R
C
C
V
S
S
L
DRIVING CAPACITIVE LOADS  
Although the AD8655/AD8656 can drive capacitive loads up to  
500 pF without oscillating, a large amount of ringing is present  
when operating the part with input frequencies above 100 kHz.  
This is especially true when the amplifiers are configured in  
positive unity gain (worst case). When such large capacitive  
loads are required, the use of external compensation is highly  
recommended. This reduces the overshoot and minimizes  
ringing, which, in turn, improves the stability of the  
TIME (10μs/DIV)  
AD8655/AD8656 when driving large capacitive loads.  
Figure 58. Driving Heavy Capacitive Loads Using a Snubber Network  
Rev. A | Page 16 of 20  
 
AD8655/AD8656  
1.0  
0.5  
THD Readings vs. Common-Mode Voltage  
SWEEP 1:  
SWEEP 2:  
V
R
= 2V p-p  
= 10kΩ  
V = 2V p-p  
Total harmonic distortion of the AD8655/AD8656 is well below  
0.0007% with a load of 1 kΩ. This distortion is a function of the  
circuit configuration, the voltage applied, and the layout, in  
addition to other factors.  
IN  
IN  
0.2  
0.1  
R
= 1kΩ  
L
L
0.05  
0.02  
0.01  
+2.5V  
0.005  
0.002  
0.001  
V
OUT  
AD8655  
SWEEP 2  
SWEEP 1  
R
+
0.0005  
L
–2.5V  
0.0002  
0.0001  
V
IN  
20  
50  
100 200 500  
1k 2k 5k  
Hz  
10k 20k 50k 80k  
Figure 59. THD + N Test Circuit  
Figure 60. THD + Noise vs. Frequency  
Rev. A | Page 17 of 20  
AD8655/AD8656  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
POWER SUPPLY BYPASSING  
LEAKAGE CURRENTS  
Power supply pins can act as inputs for noise, so care must be  
taken to apply a noise-free, stable dc voltage. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering most  
of the noise. Bypassing schemes are designed to minimize the  
supply impedance at all frequencies with a parallel combination  
of capacitors with values of 0.1 μF and 4.7 μF. Chip capacitors  
of 0.1 μF (X7R or NPO) are critical and should be as close as  
possible to the amplifier package. The 4.7 μF tantalum capacitor  
is less critical for high frequency bypassing, and, in most cases,  
only one is needed per board at the supply inputs.  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than  
the input bias current of the AD8655/AD8656. Any voltage  
differential between the inputs and nearby traces creates leakage  
currents through the PC board insulator, for example, 1 V/100  
GΩ = 10 pA. Similarly, any contaminants on the board can  
create significant leakage (skin oils are a common problem).  
To significantly reduce leakage, put a guard ring (shield) around  
the inputs and input leads that are driven to the same voltage  
potential as the inputs. This ensures there is no voltage potential  
between the inputs and the surrounding area to create any  
leakage currents. To be effective, the guard ring must be driven  
by a relatively low impedance source and should completely  
surround the input leads on all sides, above and below, by using  
a multilayer board.  
GROUNDING  
A ground plane layer is important for densely packed PC  
boards to minimize parasitic inductances. This minimizes  
voltage drops with changes in current. However, an under-  
standing of where the current flows in a circuit is critical to  
implementing effective high speed circuit design. The length  
of the current path is directly proportional to the magnitude  
of parasitic inductances, and, therefore, the high frequency  
impedance of the path. Large changes in currents in an  
inductive ground return create unwanted voltage noise.  
The charge absorption of the insulator material itself can also  
cause leakage currents. Minimizing the amount of material  
between the input leads and the guard ring helps to reduce the  
absorption. Also, using low absorption materials, such as  
Teflon® or ceramic, may be necessary in some instances.  
The length of the high frequency bypass capacitor leads is  
critical, and, therefore, surface-mount capacitors are recom-  
mended. A parasitic inductance in the bypass ground trace  
works against the low impedance created by the bypass  
capacitor. Because load currents flow from the supplies, the  
ground for the load impedance should be at the same physical  
location as the bypass capacitor grounds. For larger value  
capacitors intended to be effective at lower frequencies, the  
current return path distance is less critical.  
Rev. A | Page 18 of 20  
AD8655/AD8656  
OUTLINE DIMENSIONS  
3.00  
BSC  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
PIN 1  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.65 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.10 MAX  
0.15  
0.00  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
0.40 (0.0157)  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
COPLANARITY  
0.10  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 61. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Figure 62. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Model  
Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
Branding  
AD8655ARZ1  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
AD8655ARZ-REEL1  
AD8655ARZ-REEL71  
AD8655ARMZ-REEL1  
AD8655ARMZ-R21  
AD8656ARZ1  
AD8656ARZ-REEL1  
AD8656ARZ-REEL71  
AD8656ARMZ-REEL1  
AD8656ARMZ-R21  
A0D  
A0D  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
RM-8  
RM-8  
A0S  
A0S  
8-Lead MSOP  
1 Z = Pb-free part.  
Rev. A | Page 19 of 20  
 
AD8655/AD8656  
NOTES  
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05304–0–6/05(A)  
Rev. A | Page 20 of 20  
 

相关型号:

AD8655ARZ

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARZ-REEL7

Low Noise, Precision CMOS Amplifier
ADI

AD8655_13

Low Noise, Precision CMOS Amplifier
ADI

AD8655_15

Precision CMOS Amplifier
ADI

AD8656

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ-R2

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ-REEL7

Low Noise, Precision CMOS Amplifier
ADI