AD9229BCPZ-65 [ADI]

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter;
AD9229BCPZ-65
型号: AD9229BCPZ-65
厂家: ADI    ADI
描述:

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter

转换器
文件: 总15页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 12-Bit, 50/65 MSPS  
Serial LVDS 3V A/D Converter  
AD9229  
Preliminary Technical Data  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
· Four ADCs in one package  
· Serial LVDS digital output data rates (ANSI-644)  
· Data clock output provided  
· On Chip Reference and SHA  
· SNR = 70 dB at Fin up to Nyquist  
· Excellent Linearity:  
PDWN  
AVDD  
DRVDD  
DRGND  
AD9229  
12  
VIN+A  
VIN-A  
D1+A  
D1-A  
Serial  
LVDS  
Pipeline  
ADC  
SHA  
SHA  
SHA  
SHA  
12  
VIN+B  
VIN-B  
-
-
DNL = ±0.3 LSB (Typical)  
INL = ±0.6 LSB (Typical)  
Serial  
LVDS  
D1+B  
D1-B  
Pipeline  
ADC  
12  
12  
· 500 MHz full power analog bandwidth  
VIN+C  
VIN-C  
D1+C  
D1-C  
Serial  
LVDS  
Pipeline  
ADC  
· Per Channel Core Power Dissipation = 270mW at 65MSPS /  
200mW at 50MSPS  
VIN+D  
VIN-D  
Serial  
LVDS  
D1+D  
D1-D  
· 1 Vpp – 2 Vpp input voltage range  
· +3.0 V supply operation  
· Power down mode  
Pipeline  
ADC  
VREF  
SENSE  
FCO+  
FCO-  
+
-
0.5 V  
APPLICATIONS  
REFT  
REFB  
Ref  
Select  
Data Rate  
Multiplier  
DCO+  
DCO-  
· Digital beam forming systems in ultrasound  
· Wireless and wired broadband communications  
· Communications test equipment  
CLK  
AGND  
LVDSBIAS  
· Radar and satellite imaging sub-systems  
Figure 1. Functional Block Diagram  
signal a new output byte. Power down is supported and consumes  
less than 3mW when enabled.  
PRODUCT DESCRIPTION  
The AD9229 is a quad 12-bit monolithic sampling analog–to–  
digital converter with an on–chip track–and–hold circuit and is  
designed for low cost, low power, small size and ease of use. The  
product operates up to a 65 MSPS conversion rate and is optimized  
for outstanding dynamic performance where a small package size is  
critical.  
Fabricated on an advanced CMOS process, the AD9229 is available  
in a 48-LFCSP package specified over the industrial temperature  
range (–40°C to +85°C).  
PRODUCT HIGHLIGHTS  
1. Four analog-to-digital converters are contained in one small,  
space saving package.  
2. A Data Clock Output (DCO) is provided which operates up to  
390 MHz.  
3. The outputs of each ADC are serialized with a maximum data  
output rate of 780 Mbps (12-bits x 65 MSPS).  
4. The AD9229 operates from a single +3.0 V analog power  
supply.  
The ADC requires a single+3.0 V power supply and a TTL/CMOS  
compatible sample rate clock for full performance operation. No  
external reference or driver components are required for many  
applications. A separate output power supply pin supports LVDS  
compatible serial digital output levels.  
The ADC automatically multiplies up the sample rate clock for the  
appropriate LVDS serial data rate. An MSB trigger is provided to  
Rev. PrF 10/06/2003  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its  
use. No license is granted by implication or otherwise under any patent or patent  
rights of Analog Devices. Trademarks and registered trademarks are the property  
of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9229  
Preliminary Technical Data  
TABLE OF CONTENTS  
AD9229—Specifications ........................................................................ 3  
Analog Inputs ....................................................................................11  
Voltage Reference..............................................................................11  
Digital Outputs..................................................................................11  
Timing ................................................................................................11  
PLL ......................................................................................................11  
Pin Function Descriptions ...................................................................12  
Pin Configurations................................................................................13  
Timing Diagram ....................................................................................14  
Ordering Guide .................................................................................15  
DIGITAL SPECIFICATIONS ........................................................... 4  
AC SPECIFICATIONS....................................................................... 4  
SWITCHING SPECIFICATIONS.................................................... 5  
EXPLANATION OF TEST LEVELS................................................ 5  
Absolute Maximum Ratings .................................................................. 6  
EQuivalent circuits.................................................................................. 7  
TYPICAL PERFORMANCE CHARACTERISTICS ......................... 8  
Theory of Operation .............................................................................11  
REVISION HISTORY  
Revision PrA: Initial Version  
Revision PrB: Added Definition and Theory of Operation sections, updated Pin Configurations  
Revision PrC: Deleted demux outputs  
Revision PrD: Added Pin Info, Package Info  
Revision PrE: Ch. 3.3V to 3.0V for supply, Updated Sinad spec typo, Added analog typical Cin, Overange Recovery Time, Latency  
Revision PrF: Added 50MSPS Grade, Removed Clk-, Updated Power, SNR,LVDS Rset, Tpd Estimates, Added Equiv Ckts, Added FFT, VREF  
figure, Corrected FCO, DCO polarity timing  
Rev. PrF | Page 2 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
AD9229  
1
AD9229—SPECIFICATIONS  
AVDD = 3.0V, DRVDD = 3.0V; INTERNAL REFERENCE; DIFFERENTIAL ANALOG INPUTS,MAXIMUM SAMPLE RATE,TMIN TO  
TMAX, UNLESS OTHERWISE NOTED  
Unit  
Temp  
Test  
AD9229BCP-50  
AD9229BCP-65  
Parameter  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
RESOLUTION  
12  
12  
Bits  
No Missing Codes  
Full  
VI  
Guaran  
teed  
Guaran  
teed  
Offset Error  
I
I
mV  
%FS  
mV  
% FS  
LSB  
LSB  
LSB  
LSB  
25°C  
25°C  
25°C  
25°C  
25°C  
Full  
± 0.5  
± 0.5  
± 0.5  
± 0.5  
Gain Error  
Offset Matching  
Gain Matching2  
Differential Nonlinearity (DNL)  
I
ACCURACY  
I
I
± 0.3  
± 0.6  
± 0.3  
± 0.6  
VI  
I
Integral Nonlinearity (INL)  
25°C  
Full  
VI  
V
V
V
I
Offset Error  
Gain Error2  
Full  
ppm/°C  
ppm/°C  
ppm/°C  
V
TEMPERATURE  
DRIFT  
Full  
Reference  
Full  
Internal Reference Voltage  
Output Current  
0.5  
0.5  
25°C  
Full  
Full  
Full  
V
V
V
uA  
REFERENCE  
Input Current  
uA  
Input Resistance  
Differential Input Voltage Range  
Common Mode Voltage  
Input Capacitance  
Analog Bandwidth, Full Power  
AVDD  
kW  
1 –2  
1.5  
7
1 –2  
1.5  
7
Vpp  
V
Full  
Full  
Full  
Full  
V
V
ANALOG INPUTS  
pF  
V
500  
3.0  
500  
3.0  
MHz  
V
IV  
2.7  
2.7  
3.6  
3.6  
2.7  
2.7  
3.6  
3.6  
DRVDD  
Full  
IV  
V
3.0  
940  
<3  
3.0  
1250  
<3  
Power Dissipation3  
Power Down Dissipation  
Power Supply Rejection Ratio (PSRR)  
IAVDD3  
IDRVDD3  
IPLLVDD3  
Full  
Full  
25°C  
Full  
Full  
Full  
VI  
VI  
I
mW  
mW  
mV/V  
mA  
POWER SUPPLY  
VI  
VI  
VI  
268  
28  
367  
30  
mA  
18  
19  
Table 1: DC Specifications  
1 Specifications subject to change without notice  
2 Gain error and gain temperature coefficients are based on the ADC only (with a fixed 0.5 V external reference and a 1 V p-p differential analog input).  
3 Power dissipation measured with rated encode and a dc analog input (Outputs Static, IVDD = 0.). IVCC and IVDD measured with TBD MHz analog input @ 0.5dBFS.  
Rev. PrF | Page 3 of 15  
Oct. 6, 2003  
AD9229  
Preliminary Technical Data  
DIGITAL SPECIFICATIONS  
AVDD = 3.0V, DRVDD = 3.0V  
Parameter  
Unit  
Temp  
Test  
Level  
AD9229BCP-50  
AD9229BCP-65  
Min  
Typ  
Max  
Min  
Typ  
Max  
V
Full  
Full  
25°C  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
2.0  
2.0  
V
IH  
V
IL  
0.8  
0.8  
0.8  
V
CLOCK INPUT  
PDWN INPUT  
Input Capacitance  
2
2
pF  
Logic ‘1Voltage  
IV  
IV  
IV  
IV  
2.0  
2.0  
V
Logic ‘0Voltage  
0.8  
V
Input Capacitance  
2
2
PF  
mV  
Differential Output Voltage  
247  
454  
247  
454  
(V )  
OD  
DIGITAL OUTPUTS  
(LVDS Mode)*  
Output Offset Voltage (V )  
Full  
Full  
IV  
IV  
1.125  
1.375  
1.125  
1.375  
V
OS  
Output Coding  
Offset Binary  
Offset Binary  
Table 2: Digital Specifications  
* LVDS Rset resistor = 3.6K, LVDS Output Termination Resistor= 100 Ohms.  
AC SPECIFICATIONS1  
AVDD = 3.0 V, DRVDD = 3.0V; INTERNAL REFERENCE; DIFFERENTIAL ANALOG INPUTS,MAXIMUM SAMPLE RATE,TMIN TO  
TMAX, UNLESS OTHERWISE NOTED  
Parameter  
Temp  
Test  
AD9229BCP-50  
AD9229BCP-65  
Unit  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
fIN= 10.3 MHz  
fIN= 19.6 MHz  
fIN= 32.5 MHz  
fIN= 51 MHz  
V
V
I
70.5  
70.5  
dB  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
SIGNAL TO NOISE  
RATIO (SNR) –  
Without  
dB  
69.7  
70.3  
69.5  
69.7  
70.3  
69.5  
dB  
Harmonics  
V
V
V
I
dB  
fIN= 10.3 MHz  
fIN= 19.6 MHz  
fIN= 32.5 MHz  
fIN= 51 MHz  
dB  
SIGNAL TO NOISE  
RATIO (SINAD) –  
With Harmonics  
dB  
dB  
V
V
V
I
dB  
fIN= 10.3 MHz  
fIN= 19.6 MHz  
fIN= 32.5 MHz  
fIN= 51 MHz  
Bits  
Bits  
Bits  
Bits  
dB  
EFFECTIVE  
NUMBER OF BITS  
(ENOB)  
V
V
V
I
fIN= 10.3 MHz  
fIN= 19.6 MHz  
fIN= 32.5 MHz  
fIN= 51 MHz  
SPURIOUS FREE  
DYNAMIC RANGE  
(SFDR)  
85  
85  
dB  
dB  
V
V
V
I
dB  
fIN= 10.3 MHz  
fIN= 19.6 MHz  
fIN= 32.5 MHz  
fIN= 51 MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
SECOND AND  
THIRD  
HARMONIC  
DISTORTION  
-85  
-85  
-85  
-85  
V
V
V
TWO TONE  
INTERMOD  
DISTORTION  
(IMD)  
fIN1= 19 MHz, fIN2= 20 MHz  
fIN1= xx MHz, fIN2= xx MHz  
1 SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1 Vpp full-scale input range.  
Rev. PrF | Page 4 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
AD9229  
Parameter  
Temp  
Test  
AD9229BCP-50  
AD9229BCP-65  
Unit  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
CROSSTALK  
Full  
V
-80  
-80  
dB  
Table 3: AC Specifications  
SWITCHING SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V; DIFFERENTIAL ENCODE INPUT  
Parameter  
Temp  
Test  
AD9229BCP-50  
AD9229BCP-65  
Unit  
Level  
Min  
10  
Typ  
Max  
50  
Min  
10  
Typ  
Max  
65  
Clock Rate  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
25°C  
Full  
VI  
IV  
IV  
VI  
VI  
VI  
V
MSPS  
ns  
CLOCK  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
Valid Time (tV)1  
ns  
ns  
1
Propagation Delay (tPD  
)
5
5
5
5
ns  
1
MSB Propagation Delay (tMSB  
)
ns  
OUTPUT  
PARAMETERS IN  
LVDS MODE  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
ns  
V
ns  
DCO Propagation Delay (tCPD  
)
VI  
IV  
VI  
V
5
9
5
9
ns  
Data to DCO Skew (tPD – tCPD  
)
ns  
Pipeline Latency  
cycles  
ps  
Aperture Delay (tA)  
APERTURE  
Aperture Uncertainty (Jitter)  
V
<1  
<1  
ps rms  
cycles  
Out of Range  
Recovery Time  
IV  
2
2
Table 4: Switching Specifications  
EXPLANATION OF TEST LEVELS  
TEST LEVEL  
I
100% production tested.  
II  
100% production tested at +25°C and guaranteed by design and characterization at specified temperatures.  
Sample tested only.  
III  
IV  
V
Parameter is guaranteed by design and characterization testing.  
Parameter is a typical value only.  
VI  
100% production tested at +25°C and guaranteed by design and characterization for industrial temperature range.  
1 tV and tPD are measured from the transition points of the CLK input to the 50%/50% levels of the digital outputs swing. The digital output load during test is  
not to exceed an ac load of 5 pF or a dc current of ±40 µA. Rise and fall times measured from 20% to 80%.  
Rev. PrF | Page 5 of 15  
Oct. 6, 2003  
AD9229  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
AVDD Voltage  
3.9V  
3.9V  
DRVDD Voltage  
Analog Input Voltage  
Electrical  
Analog Input Current  
Digital Input Voltage  
Digital Output Current  
VREF Input Voltage  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
Maximum Case Temperature  
Storage Temperature Range (Ambient)  
-40°C to +85°C  
150°C  
Environmental  
Table 5: Absolute Maximum Ratings  
Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Rev. PrF | Page 6 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
EQUIVALENT CIRCUITS  
AD9229  
DRVDD  
AVDD  
3.5MA  
ANALOG IN  
V-  
V+  
DATAOUT-,  
DCO-,FCO-  
DATAOUT+,  
DCO+,FCO+  
V+  
V-  
Figure 2 Analog Inputs  
3.5MA  
Figure 4 LVDS Outputs  
AVDD  
AVDD  
AVDD  
AVDD  
PDWN  
CLK  
Figure 5 PDWN Input  
Figure 3 Clock Input  
Rev. PrF | Page 7 of 15  
Oct. 6, 2003  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
-20  
-40  
-60  
SNR = 68.7 dB  
SINAD = 68.5 dB  
SFDR = 88.6 dB  
-80  
-100  
-120  
0
5
10  
15  
20  
25  
30  
MHz  
Measured FFT Performance 32MHz Ain at 65MSPS  
Preliminary Technical Data  
AD9229  
Definitions  
ANALOG BANDWIDTH  
ENCODE PULSE WIDTH/DUTY CYCLE  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Pulse width high is the minimum amount of time that the  
ENCODE pulse should be left in logic1” state to achieve rated  
performance; pulse width low is the minimum time ENCODE  
pulse should be left in low state. See timing implications of  
changing tENCH in text. At a give clock rate, these specs define an  
acceptable Encode duty cycle.  
APERTURE DELAY  
The delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog input is  
sampled.  
FULL SCALE INPUT POWER  
Expressed in dBm. Computed using the following equation:  
APERTURE UNCERTAINTY (JITTER)  
2
æ
ö
÷
V
Fullscalerms  
The sample-to-sample variation in aperture delay.  
ç
ç
ç
ç
÷
÷
÷
ZInput  
PowerFullscale =10log  
CROSSTALK  
.001  
Coupling onto one channel being driven by a low level (-40 dBFS)  
signal when the adjacent interfering channel is driven by a full-  
scale signal.  
ç
÷
è
ø
GAIN ERROR  
DIFFERENTIAL ANALOG INPUT RESISTANCE,  
DIFFERENTIAL ANALOG INPUT CAPACITANCE, AND  
DIFFERENTIAL ANALOG INPUT IMPEDANCE  
Gain error is the difference between the measured and ideal full  
scale input voltage range of the worst ADC.  
The real and complex impedances measured at each analog input  
port. The resistance is measured statically and the capacitance and  
differential input impedances are measured with a network  
analyzer.  
GAIN MATCHING  
Expressed in %FSR. Computed using the following equation:  
FSR max- FSR min  
GainMatching =  
*100%  
DIFFERENTIAL ANALOG INPUT VOLTAGE RANGE  
FSR max+ FSR min  
æ
ö
÷
ç
The peak to peak differential voltage that must be applied to the  
converter to generate a full scale response. Peak differential voltage  
is computed by observing the voltage on a single pin and  
subtracting the voltage from the other pin, which is 180 degrees out  
of phase. Peak to peak differential is computed by rotating the  
inputs phase 180 degrees and taking the peak measurement again.  
Then the difference is computed between both peak measurements.  
2
è
ø
where FSRmax is the most positive gain error of the ADCs and  
FSRmin is the most negative gain error of the ADCs.  
HARMONIC DISTORTION, SECOND  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
DIFFERENTIAL NONLINEARITY  
HARMONIC DISTORTION, THIRD  
The deviation of any code width from an ideal 1 LSB step.  
The ratio of the rms signal amplitude to the rms value of the third  
harmonic component, reported in dBc.  
EFFECTIVE NUMBER OF BITS  
The effective number of bits (ENOB) is calculated from the  
measured SNR based on the equation:  
INTEGRAL NONLINEARITY  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using abest straight line”  
determined by a least square curve fit.  
SNRMEASURED - 1.76dB  
ENOB =  
6.02  
Rev. PrF | Page 9 of 15  
Oct. 6, 2003  
AD9229  
Preliminary Technical Data  
the rms value of the sum of all other spectral components,  
including harmonics but excluding dc.  
MINIMUM CONVERSION RATE  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
SIGNAL-TO-NOISE RATIO (WITHOUT HARMONICS)  
The ratio of the rms signal amplitude (set at 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
excluding the first five harmonics and dc.  
MAXIMUM CONVERSION RATE  
The encode rate at which parametric testing is performed.  
OFFSET ERROR  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
Offset error is the difference between the measured and ideal  
voltage at the analog input that produces the midscale code at the  
outputs. Offset error is given for the worst ADC.  
The ratio of the rms signal amplitude to the rms value of the peak  
spurious spectral component. The peak spurious component may  
or may not be a harmonic. It also may be reported in dBc (i.e.,  
degrades as signal level is lowered) or dBFS (i.e., always related back  
to converter full scale).  
OFFSET MATCHING  
Expressed in mV. Computed using the following equation:  
TWO-TONE INTERMODULATION DISTORTION  
REJECTION  
OffsetMatching = OFF max- OFF min  
The ratio of the rms value of either input tone to the rms value of  
the worst third order intermodulation product; reported in dBc.  
where OFFmax is the most positive offset error and OFFmin is the  
most negative offset error.  
TWO-TONE SFDR  
OUTPUT PROPAGATION DELAY  
The ratio of the rms value of either input tone to the rms value of  
the peak spurious component. The peak spurious component may  
or may not be an IMD product. It also may be reported in dBc (i.e.,  
degrades as signal level is lowered) or in dBFS (i.e., always relates  
back to converter full scale).  
The delay between a differential crossing of CLK+ and CLK- and  
the time when all output data bits are within valid logic levels.  
NOISE (FOR ANY RANGE WITHIN THE ADC)  
WORST OTHER SPUR  
FSdBm - SNRdBc - SignaldBFS  
æ
ö
÷
ø
Vnoise = Z *.001*10èç  
10  
The ratio of the rms signal amplitude to the rms value of the worst  
spurious component (excluding the second and third harmonic)  
reported in dBc.  
Where Z is the input impedance, FS is the full scale of the device  
for the frequency in question, SNR is the value for the particular  
input level and Signal is the signal level within the ADC reported in  
dB below full scale. This value includes both thermal and  
quantization noise.  
TRANSIENT RESPONSE TIME  
Transient response time is defined as the time it takes for the ADC  
to reacquire the analog input after a transient from 10% above  
negative full scale to 10% below positive full scale.  
POWER SUPPLY REJECTION RATIO  
The ratio of a change in input offset voltage to a change in power  
supply voltage.  
OUT-OF-RANGE RECOVERY TIME  
Out of range recovery time is the time it takes for the ADC to  
reacquire the analog input after a transient from 10% above positive  
full scale to 10% above negative full scale, or from 10% below  
negative full scale to 10% below positive full scale.  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)  
The ratio of the rms signal amplitude (set 1 dB below full scale) to  
Rev. PrF | Page 10 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
AD9229  
THEORY OF OPERATION  
Analog Inputs  
recommended to keep the trace length no longer than 1–2 inches  
and to keep differential output trace lengths as equal as possible.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched such that common-mode  
settling errors are symmetrical. These errors will be reduced by the  
common-mode rejection of the A/D.  
The format of the output data is offset binary.  
Timing  
Data from each A/D is serialized and provided on a separate  
channel.  
Voltage Reference  
The AD9229 has a stable and accurate reference voltage on chip,  
which sets the full-scale voltage at the analog input channels.  
Internal reference mode is established by grounding the SENSE pin.  
(Recommended decoupling capacitors shown below) The internal  
reference can be bypassed by setting SENSE to AVDD and driving  
VREF with an external 1V reference.  
Two output clocks are provided to assist in capturing data from the  
AD9229. The data clock out (DCO) is used to clock the output  
data and is equal to 6 times the sample clock frequency. ( 390MHz  
for 65MHz input clock) Data is clocked out of the AD9229 on the  
rising and falling edges of DCO. The FCO clock signals the start of  
a new serial word, the rising edge of FCO occurs at the start of an  
MSB.  
VINA  
VINB  
REFT  
PLL  
0.1uF  
10 uF  
The AD9229 contains an internal PLL that is used to generate  
internal clocking signals, if the PLL is unlocked, the data outputs  
are static.  
ADC  
CORE  
0.1  
uF  
REFB  
0.1uF  
VREF  
10 uF  
0.5V  
0.1u F  
SELECT  
LOGIC  
SENSE  
AD9229  
Internal Reference Mode Connection  
Digital Outputs  
The AD9229s differential outputs conform to the ANSI-644 LVDS  
standard. To set the LVDS bias current, place a resistor (RSET is  
nominally equal to 3.6 kW) to ground at the LVDSBIAS pin. The  
RSET resistor current (~ 1.2/RSET) is ratioed on-chip setting the  
output current at each output equal to a nominal 3.5 mA. A 100 W  
differential termination resistor placed at the LVDS receiver inputs  
results in a nominal 350 mV swing at the receiver.  
The AD9229s LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capability  
for superior switching performance in noisy environments. Single  
point-to-point net topologies are recommended with a 100 W  
termination resistor as close to the receiver as possible. It is  
Rev. PrF | Page 11 of 15  
Oct. 6, 2003  
AD9229  
Preliminary Technical Data  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Name  
Description  
3.0 V Analog Supply  
Pin No.  
Name  
Description  
8,16,21,  
29  
AVDD  
44  
D+A  
ADC A True Digital Output  
9,12,15,  
AGND  
Analog Ground  
43  
D-A  
ADC A Complement Digital Output  
22,25,28,  
31  
2,35  
DRVDD  
42  
D+B  
ADC B True Digital Output  
3.0 V Digital Output Supply  
Digital Ground  
1,36  
32  
DRGND  
PLLVDD  
41  
40  
D-B  
ADC B Complement Digital Output  
ADC C True Digital Output  
D+C  
PLL 3.0V Supply  
33  
30  
18  
17  
20  
19  
10  
11  
14  
13  
23  
24  
27  
26  
PLLGND  
CLK  
PLL Ground  
39  
38  
D-C  
D+D  
ADC C Complement Digital Output  
ADC D True Digital Output  
Input Clock  
VREF  
Voltage Reference Input/Output  
Reference Mode Selection  
Differential Reference (Positive)  
Differential Reference (Negative)  
ADC A Analog Input – True  
ADC A Analog Input – Complement  
ADC B Analog Input – True  
ADC B Analog Input – Complement  
ADC C Analog Input – True  
ADC C Analog Input – Complement  
ADC D Analog Input – True  
ADC D Analog Input – Complement  
37  
D1-D  
ADC D Complement Digital Output  
Data Clock Output – True  
SENSE  
REFT  
48  
DCO+  
DCO-  
47  
Data Clock Output – Complement  
Frame Clock Indicator – True Output  
Frame Clock Indicator – Complement Output  
LVDS Output Current Set Resistor Pin  
Power Down Selection ( Logic ‘1’ = Power Down )  
Do Not Connect  
REFB  
46  
FCO+  
FCO-  
VIN+A  
VIN-A  
VIN+B  
VIN-B  
VIN+C  
VIN-C  
VIN+D  
VIN-D  
45  
34  
LVDSBIAS  
PDWN  
DNC  
7
3,4,5,6  
Table 6: Pin Function Descriptions  
Rev. PrF | Page 12 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
PIN CONFIGURATIONS  
AD9229  
48  
1
37  
36  
DRGND  
DRGND  
DRVDD  
LVDSBIAS  
PLLGND  
PLLVDD  
AGND  
DRVDD  
DNC  
DNC  
DNC  
DNC  
AD9229  
PDWN  
AVDD  
AGND  
VIN+A  
VIN-A  
CLK  
AVDD  
AGND  
VIN+D  
VIN-D  
AGND  
AGND  
12  
13  
25  
24  
Rev. PrF | Page 13 of 15  
Oct. 6, 2003  
AD9229  
Preliminary Technical Data  
TIMING DIAGRAM  
N-1  
AIN  
tA  
N
tEH  
tEL  
CLK  
tPD  
Data  
Out  
MSB  
LSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB MSB  
tCPD  
DCO+  
DCO-  
tFPD  
FCO-  
FCO+  
Figure 6: Serial LVDS Outputs  
NOTE : Latency = 9 cycles  
Rev. PrF | Page 14 of 15  
Oct. 6, 2003  
Preliminary Technical Data  
AD9229  
OUTLINE DIMENSIONS  
Figure 7  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features proprietary  
ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges.  
Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
Ordering Guide  
Model  
Temperature Range  
-40°C to +85°C (Ambient)  
-40°C to +85°C (Ambient)  
25°C (Ambient)  
Description  
AD9229BCP-50  
AD9229BCP-65  
AD9229/PCB  
48-LFCSP  
48-LFCSP  
Evaluation Board ( Supplied with –65 Grade )  
Table 7: Ordering Guide  
© 2002 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
Printed in the U.S.A.  
C02959-0-11/02(0)  
Rev. PrF | Page 15 of 15  
Oct. 6, 2003  

相关型号:

AD9229BCPZRL7-50

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD9229BCPZRL7-50

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9229BCPZRL7-65

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9230

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-11

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9230-170EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-170EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9230-210EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-210EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9230-250EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-250EBZ

1.8 V Analog-to-Digital Converter
ADI

AD923011-200EBZ

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
ADI