AD9248BSTZRL-20 [ADI]

14-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter; 14位, 20 MSPS / 40 MSPS / 65 MSPS双通道A / D转换器
AD9248BSTZRL-20
型号: AD9248BSTZRL-20
厂家: ADI    ADI
描述:

14-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
14位, 20 MSPS / 40 MSPS / 65 MSPS双通道A / D转换器

转换器 模数转换器
文件: 总48页 (文件大小:1270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 20 MSPS/40 MSPS/65 MSPS  
Dual A/D Converter  
AD9248  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Integrated dual 14-bit ADC  
AVDD  
AGND  
Single 3 V supply operation (2.7 V to 3.6 V)  
SNR = 71.6 dB (to Nyquist, AD9248-65)  
SFDR = 80.5 dBc (to Nyquist, AD9248-65)  
Low power: 300 mW/channel at 65 MSPS  
Differential input with 500 MHz, 3 dB bandwidth  
Exceptional crosstalk immunity > 85 dB  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary or twos complement data format  
Clock duty cycle stabilizer  
OTR_A  
VIN+_A  
VIN–_A  
14  
14  
D13_A TO D0_A  
OEB_A  
SHA  
ADC  
OUTPUT  
MUX/  
BUFFERS  
REFT_A  
REFB_A  
VREF  
MUX_SELECT  
CLK_A  
CLOCK  
DUTY CYCLE  
STABILIZER  
CLK_B  
DCS  
SENSE  
AGND  
SHARED_REF  
PWDN_A  
PWDN_B  
DFS  
0.5V  
MODE  
CONTROL  
Output datamux option  
REFT_B  
REFB_B  
VIN+_B  
VIN–_B  
APPLICATIONS  
Ultrasound equipment  
Direct conversion or IF sampling receivers  
WB-CDMA, CDMA2000, WiMAX  
Battery-powered instruments  
Hand-held scopemeters  
OTR_B  
14  
14  
OUTPUT  
MUX/  
BUFFERS  
SHA  
ADC  
D13_B TO D0_B  
OEB_B  
AD9248  
DRVDD  
DRGND  
Figure 1.  
Low cost digital oscilloscopes  
Fabricated on an advanced CMOS process, the AD9248 is  
available in a Pb-free, space saving, 64-lead LQFP or LFCSP and  
is specified over the industrial temperature range (−40°C to  
+85°C).  
GENERAL DESCRIPTION  
The AD9248 is a dual, 3 V, 14-bit, 20 MSPS/40 MSPS/65 MSPS  
analog-to-digital converter (ADC). It features dual high  
performance sample-and hold amplifiers (SHAs) and an  
integrated voltage reference. The AD9248 uses a multistage  
differential pipelined architecture with output error correction  
logic to provide 14-bit accuracy and to guarantee no missing  
codes over the full operating temperature range at up to  
65 MSPS data rates. The wide bandwidth, differential SHA  
allows for a variety of user-selectable input ranges and offsets,  
including single-ended applications. It is suitable for various  
applications, including multiplexed systems that switch full-  
scale voltage levels in successive channels and for sampling  
inputs at frequencies well beyond the Nyquist rate.  
PRODUCT HIGHLIGHTS  
1. Pin-compatible with the AD9238, 12-bit 20 MSPS/  
40 MSPS/65 MSPS ADC.  
2. Speed grade options of 20 MSPS, 40 MSPS, and 65 MSPS  
allow flexibility between power, cost, and performance to suit  
an application.  
3. Low power consumption: AD9248-65: 65 MSPS = 600 mW,  
AD9248-40: 40 MSPS = 330 mW, and AD9248-20: 20 MSPS =  
180 mW.  
4. Typical channel isolation of 85 dB @ fIN = 10 MHz.  
Dual single-ended clock inputs are used to control all internal  
conversion cycles. A duty cycle stabilizer is available and can  
compensate for wide variations in the clock duty cycle, allowing  
the converter to maintain excellent performance. The digital  
output data is presented in either straight binary or twos  
complement format. Out-of-range signals indicate an overflow  
condition, which can be used with the most significant bit to  
determine low or high overflow.  
5. The clock duty cycle stabilizer (AD9248-20/AD9248-40/  
AD9248-65) maintains performance over a wide range of  
clock duty cycles.  
6. Multiplexed data output option enables single-port operation  
from either Data Port A or Data Port B.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.  
AD9248  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Clock Circuitry........................................................................... 22  
Analog Inputs ............................................................................. 22  
Reference Circuitry.................................................................... 22  
Digital Control Logic................................................................. 22  
Outputs ........................................................................................ 22  
LQFP Evaluation Board Bill of Materials (BOM).................. 24  
LQFP Evaluation Board Schematics........................................ 25  
LQFP PCB Layers....................................................................... 29  
Dual ADC LFCSP PCB.................................................................. 35  
Power Connector........................................................................ 35  
Analog Inputs ............................................................................. 35  
Optional Operational Amplifier .............................................. 35  
Clock ............................................................................................ 35  
Voltage Reference ....................................................................... 35  
Data Outputs............................................................................... 35  
LFCSP Evaluation Board Bill of Materials (BOM) ................ 36  
LFCSP PCB Schematics............................................................. 37  
LFCSP PCB Layers..................................................................... 40  
Thermal Considerations............................................................ 45  
Outline Dimensions....................................................................... 46  
Ordering Guide .......................................................................... 47  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Absolute Maximum Ratings............................................................ 8  
Explanation of Test Levels........................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Terminology .................................................................................... 11  
Typical Performance Characteristics ........................................... 12  
Equivalent Circuits......................................................................... 16  
Theory of Operation ...................................................................... 17  
Analog Input ............................................................................... 17  
Clock Input and Considerations .............................................. 18  
Power Dissipation and Standby Mode..................................... 19  
Digital Outputs ........................................................................... 19  
Timing.......................................................................................... 19  
Data Format ................................................................................ 20  
Voltage Reference....................................................................... 20  
AD9248 LQFP Evaluation Board ................................................. 22  
REVISION HISTORY  
11/10—Rev. A to Rev. B  
Changes to Terminology ............................................................... 11  
Changes to Figure 22...................................................................... 15  
Changes to Clock Input and Considerations Section................ 18  
Changes to Timing Section........................................................... 19  
Changes to Figure 33...................................................................... 19  
Changes to Data Format Section.................................................. 20  
Changes to Table 10 ....................................................................... 24  
Changes to Figure 39...................................................................... 25  
Changes to Table 13 ....................................................................... 36  
Updated Outline Dimensions....................................................... 46  
Changes to Ordering Guide.......................................................... 47  
Changes to Absolute Maximum Ratings Section......................... 8  
Changes to Figure 3.......................................................................... 9  
Add Figure 4; Renumbered Sequentially....................................... 9  
Changes to Theory of Operation Section and Analog Input  
Section.............................................................................................. 17  
Deleted Note 1 from Dual ADC LFCSP PCB Section............... 35  
Updated Outline Dimensions....................................................... 46  
3/05—Rev. 0 to Rev. A  
Added LFCSP......................................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Applications .................................................................. 1  
Changes to General Description .................................................... 1  
Changes to Product Highlights....................................................... 1  
Changes to Table 6.......................................................................... 10  
1/05—Revision 0: Initial Version  
Rev. B | Page 2 of 48  
AD9248  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
MIN to TMAX, DCS enabled, unless otherwise noted.  
T
Table 1.  
Test  
AD9248BST/BCP-20 AD9248BST/BCP-40 AD9248BST/BCP-65  
Parameter  
Temp Level Min Typ  
Max  
Min Typ  
Max  
Min Typ  
Max  
Unit  
RESOLUTION  
Full  
VI  
14  
14  
14  
14  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
Gain Error1  
Differential Nonlinearity (DNL)2  
Full  
25°C  
Full  
Full  
25°C  
Full  
VI  
I
IV  
V
IV  
V
IV  
14  
14  
Bits  
±±.2  
±±.25 ±2.2  
±±.ꢀ5  
±±.ꢀ  
±2.ꢁ  
±2.3  
±1.3  
±±.2  
±±.3  
±±.ꢀ5  
±±.ꢀ  
±2.ꢁ  
±2.3  
±1.3  
±2.4  
±±.2  
±±.5  
±±.ꢁ  
±±.ꢀ5 ±1.±  
±2.8  
±1.3  
±2.5  
% FSR  
% FSR  
LSB  
LSB  
LSB  
±1.±  
±1.±  
±4.5  
Integral Nonlinearity (INL)2  
25°C  
±4.5  
±2.4  
±4.5  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error1  
Full  
Full  
V
V
±2  
±12  
±2  
±12  
±3  
±12  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.± mA  
Output Voltage Error (±.5 V Mode)  
Load Regulation @ ±.5 mA  
INPUT REFERRED NOISE  
Input Span = 1 V  
Input Span = 2.± V  
ANALOG INPUT  
Full  
Full  
Full  
Full  
VI  
V
V
±5  
±35  
±5  
±35  
±5  
±35  
mV  
mV  
mV  
mV  
±.8  
±2.5  
±.1  
±.8  
±2.5  
±.1  
±.8  
±2.5  
±.1  
V
25°C  
25°C  
V
V
2.1  
1.±5  
2.1  
1.±5  
2.1  
1.±5  
LSB rms  
LSB rms  
Input Span = 1.± V  
Input Span = 2.± V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltages  
Full  
Full  
Full  
Full  
IV  
IV  
V
1
2
1
2
1
2
V p-p  
V p-p  
pF  
V
kΩ  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
2.ꢁ  
2.25 3.±  
3.±  
3.ꢀ  
3.ꢀ  
2.ꢁ  
2.25 3.±  
3.±  
3.ꢀ  
3.ꢀ  
2.ꢁ  
2.25 3.±  
3.±  
3.ꢀ  
3.ꢀ  
V
V
Supply Current  
IAVDD2  
Full  
Full  
Full  
V
V
V
ꢀ±  
5
±±.±1  
11±  
11  
±±.±1  
2±±  
1ꢀ  
±±.±1  
mA  
mA  
% FSR  
IDRVDD2  
PSRR  
POWER CONSUMPTION  
DC Input4  
Sine Wave Input2  
Standby Power5  
Full  
Full  
Full  
V
VI  
V
18±  
19±  
2.±  
33±  
3ꢀ±  
2.±  
ꢀ±±  
ꢀ4±  
2.±  
mW  
mW  
mW  
21ꢁ  
4±±  
ꢁ±±  
Rev. B | Page 3 of 48  
 
AD9248  
Test  
AD9248BST/BCP-20 AD9248BST/BCP-40 AD9248BST/BCP-65  
Max Min Typ Max Min Typ Max  
Parameter  
Temp Level Min Typ  
Unit  
MATCHING CHARACTERISTICS  
Offset Error  
(Nonshared Reference Mode)  
Offset Error  
(Shared Reference Mode)  
Gain Error  
(Nonshared Reference Mode)  
Gain Error  
25°C  
25°C  
25°C  
25°C  
I
I
I
I
±±.19 ±1.5ꢀ  
±±.19 ±1.5ꢀ  
±±.±ꢁ ±1.43  
±±.±1 ±±.±ꢀ  
±±.19 ±1.5ꢀ  
±±.19 ±1.5ꢀ  
±±.±ꢁ ±1.43  
±±.±1 ±±.±ꢀ  
±±.25 ±1.ꢁ4 % FSR  
±±.25 ±1.ꢁ4 % FSR  
±±.±ꢁ ±1.4ꢁ % FSR  
±±.±1 ±±.1± % FSR  
(Shared Reference Mode)  
1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.± V external reference).  
2 Measured at maximum clock rate with a low frequency sine wave input and approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AVSS. Refer to Figure 29 for the equivalent analog input structure.  
4 Measured with dc input at maximum clock rate.  
5 Standby power is measured with the CLK_A and CLK_B pins inactive (that is, set to AVDD or AGND).  
Rev. B | Page 4 of 48  
 
AD9248  
AC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V external reference,  
MIN to TMAX, DCS Enabled, unless otherwise noted.  
T
Table 2.  
Test  
AD9248BST/BCP-20 AD9248BST/BCP-40 AD9248BST/BCP-65  
Parameter  
Temp Level Min Typ  
Max Min Typ  
Max Min Typ  
Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fINPUT = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
IV  
V
IV  
V
IV  
V
ꢁ3.4  
ꢁ3.1 ꢁ3.ꢁ  
ꢁ2.9  
ꢁ3.1  
ꢁ2.8 ꢁ3.4  
ꢁ2.8  
ꢁ2.3 ꢁ3.1  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
fINPUT = 1±± MHz  
ꢁ2.4 ꢁ3.1  
ꢁ2.ꢁ  
ꢁ2.3 ꢁ2.9  
ꢁ1.5  
ꢁ1.2 ꢁ1.ꢀ  
ꢀ9.±  
25°C  
25°C  
IV  
V
ꢁ±  
ꢀ9.5  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO (SINAD)  
fINPUT = 2.4 MHz  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
IV  
V
IV  
V
IV  
V
ꢁ3.±  
ꢁ2.2 ꢁ3.2  
ꢁ2.±  
ꢁ2.8  
ꢁ2.± ꢁ3.±  
ꢁ2.5  
ꢁ1.ꢁ ꢁ2.ꢁ  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ꢁ±.9 ꢁ2.2  
ꢁ2.1  
ꢁ1.± ꢁ2.3  
ꢁ±.9  
ꢁ±.± ꢁ1.±  
ꢀ8.5  
25°C  
25°C  
IV  
V
fINPUT = 1±± MHz  
ꢀ9.5  
ꢀ9.±  
EFFECTIVE NUMBER OF BITS (ENOB)  
fINPUT = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
IV  
V
IV  
V
IV  
V
11.8  
11.ꢁ 11.8  
11.ꢁ  
11.8  
11.ꢁ 11.8  
11.8  
11.ꢀ 11.8  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
11.5 11.ꢁ  
11.ꢁ  
11.5 11.ꢁ  
11.5  
11.3 11.5  
11.2  
25°C  
25°C  
IV  
V
fINPUT = 1±± MHz  
11.3  
11.2  
WORST HARMONIC (SECOND or THIRD)  
fINPUT = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
IV  
V
I
V
I
8ꢀ.±  
ꢁꢁ.5 8ꢁ.5  
83.±  
85.±  
ꢁꢁ.5 8ꢀ.±  
84.±  
ꢁꢁ.5 8ꢀ.±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
ꢁꢀ.1 84.±  
83.±  
ꢁꢀ.± 84.±  
V
I
8±.±  
ꢁ3.± 8±.5  
25°C  
Rev. B | Page 5 of 48  
 
AD9248  
Test  
AD9248BST/BCP-20 AD9248BST/BCP-40 AD9248BST/BCP-65  
Parameter  
Temp Level Min Typ  
Max Min Typ  
Max Min Typ  
Max Unit  
WORST OTHER SPUR  
(NONSECOND or THIRD)  
fINPUT = 2.4 MHz  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
I
V
I
V
I
V
I
88.±  
83.3 89.±  
8ꢁ.±  
88.±  
83.5 89.±  
85.5  
81.± 8ꢀ.±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
83.1 88.±  
88.±  
82.ꢀ 88.5  
85.5  
ꢁ9.8 8ꢀ.±  
ꢁ5.±  
25°C  
25°C  
fINPUT = 1±± MHz  
V
ꢁ9.±  
81.±  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fINPUT = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
V
IV  
V
I
V
I
8ꢀ.±  
ꢁꢁ.5 8ꢁ.5  
83.±  
85.±  
ꢁꢁ.5 8ꢀ.±  
84.±  
ꢁꢁ.5 8ꢀ.±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dB  
fINPUT = 9.ꢁ MHz  
fINPUT = 19.ꢀ MHz  
fINPUT = 35 MHz  
CROSSTALK  
ꢁꢀ.1  
84.±  
83.±  
ꢁꢀ.± 84.±  
V
I
8±.±  
ꢁ3.± 8±.5  
25°C  
Full  
V
−85.±  
−85.±  
−85.±  
DIGITAL SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
MIN to TMAX, DCS enabled, unless otherwise noted.  
T
Table 3.  
Test  
AD9248BST/BCP-20  
AD9248BST-40  
Typ Max Min  
AD9248BST-65  
Typ Max Unit  
Parameter  
Temp Level Min  
Typ Max Min  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
IV  
2.±  
2.±  
±.8  
2.±  
V
V
μA  
μA  
pF  
±.8  
+1±  
+1±  
±.8  
+1±  
+1±  
−1±  
−1±  
+1±  
+1±  
−1±  
−1±  
−1±  
−1±  
2
2
2
LOGIC OUTPUTS1  
High Level Output Voltage  
Full  
Full  
IV  
IV  
DRVDD −  
±.±5  
DRVDD −  
±.±5  
DRVDD −  
±.±5  
V
V
Low Level Output Voltage  
±.±5  
±.±5  
±.±5  
1 Output voltage levels measured with capacitive load only on each output.  
Rev. B | Page ꢀ of 48  
 
AD9248  
SWITCHING SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
MIN to TMAX, DCS enabled, unless otherwise noted.  
T
Table 4.  
Test  
AD9248BST/BCP-20  
AD9248BST/BCP-40  
AD9248BST/BCP-65  
Parameter  
Temp Level Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
CLK Pulse-Width High1  
CLK Pulse-Width Low1  
DATA OUTPUT PARAMETER  
Output Delay2 (tPD)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (tJ)  
Wake-Up Time3  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
2±  
4±  
ꢀ5  
MSPS  
MSPS  
ns  
ns  
ns  
1
1
1
5±.±  
15.±  
15.±  
25.±  
8.8  
8.8  
15.4  
ꢀ.2  
ꢀ.2  
Full  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
V
2
3.5  
1.±  
±.5  
2.5  
2
2
3.5  
1.±  
±.5  
2.5  
2
2
3.5  
1.±  
±.5  
2.5  
2
ns  
Cycles  
ns  
ps rms  
ms  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 The AD9248-ꢀ5 model has a duty cycle stabilizer circuit that, when enabled, corrects for a wide range of duty cycles (see Figure 24).  
2 Output delay is measured from clock 5±% transition to data 5±% transition, with a 5 pF load on each output.  
3 Wake-up time is dependent on the value of the decoupling capacitors; typical values shown with ±.1 μF and 1± μF capacitors on REFT and REFB.  
N+1  
N
N+8  
N+2  
N–1  
N+3  
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLOCK  
DATA  
OUT  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD = MIN 2.0ns,  
MAX 6.0ns  
Figure 2. Timing Diagram  
Rev. B | Page ꢁ of 48  
 
 
 
AD9248  
ABSOLUTE MAXIMUM RATINGS  
EXPLANATION OF TEST LEVELS  
Absolute maximum ratings are limiting values to be applied  
individually, and beyond which the serviceability of the circuit  
may be impaired. Functional operability is not necessarily implied.  
Exposure to absolute maximum rating conditions for an extended  
period may affect device reliability.  
I
1±±% production tested.  
II  
1±±% production tested at 25°C and sample tested at  
specified temperatures.  
III Sample tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
Table 5.  
Parameter  
Rating  
V
Parameter is a typical value only.  
VI 1±±% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range;  
1±±% production tested at temperature extremes for  
military devices.  
ELECTRICAL  
AVDD to AGND  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
Digital Outputs to DRGND  
−±.3 V to +3.9 V  
−±.3 V to +3.9 V  
−±.3 V to +±.3 V  
−3.9 V to +3.9 V  
−±.3 V to DRVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
ESD CAUTION  
OEB, DFS, CLK, DCS, MUX_SELECT,  
SHARED_REF to AGND  
VINA, VINB to AGND  
VREF to AGND  
SENSE to AGND  
REFB, REFT to AGND  
PDWN to AGND  
−±.3 V to AVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
ENVIRONMENTAL1  
Operating Temperature  
Junction Temperature  
Lead Temperature (1± sec)  
Storage Temperature  
−4±°C to +85°C  
15±°C  
3±±°C  
−ꢀ5°C to +15±°C  
1 Typical thermal impedances: ꢀ4-lead LQFP, θJA = 54°C/W; ꢀ4-lead LFCSP, θJA  
= 2ꢀ.4°C/W with heat slug soldered to ground plane. These measurements  
were taken on a 4-layer board in still air, in accordance with EIA/JESD51-ꢁ.  
Rev. B | Page 8 of 48  
 
 
AD9248  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AGND  
D6_A  
PIN 1  
2
VIN+_A  
D5_A  
3
4
VIN–_A  
AGND  
D4_A  
D3_A  
5
AVDD  
D2_A  
6
REFT_A  
REFB_A  
VREF  
D1_A  
7
D0_A (LSB)  
DRVDD  
DRGND  
OTR_B  
D13_B (MSB)  
D12_B  
D11_B  
D10_B  
D9_B  
AD9248  
64-LEAD LQFP  
TOP VIEW  
8
9
SENSE  
REFB_B  
REFT_B  
AVDD  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
AGND  
VIN–_B  
VIN+_B  
AGND  
D8_B  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 3. 64-Lead LQFP Pin Configuration  
PIN 1  
INDICATOR  
AGND  
VIN+_A  
VIN–_A  
AGND  
1
2
3
4
5
6
7
8
9
48 D6_A  
47 D5_A  
46 D4_A  
45 D3_A  
44 D2_A  
43 D1_A  
42 D0_A (LSB)  
41 DRVDD  
40 DRGND  
39 OTR_B  
38 D13_B (MSB)  
37 D12_B  
36 D11_B  
35 D10_B  
34 D9_B  
AVDD  
REFT_A  
REFB_A  
VREF  
AD9248  
64-LEAD LFCSP  
TOP VIEW  
SENSE  
REFB_B 10  
REFT_B 11  
AVDD 12  
AGND 13  
VIN–_B 14  
VIN+_B 15  
AGND 16  
(Not to Scale)  
33 D8_B  
NOTES  
1. THERE IS AN EXPOSED PAD THAT MUST CONNECT TO AGND.  
Figure 4. 64-Lead LFCSP Pin Configuration  
Rev. B | Page 9 of 48  
 
AD9248  
Table 6. 64-Lead LQFP and 64-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 4, 13, 1ꢀ  
AGND  
Analog Ground.  
2
3
VIN+_A  
VIN−_A  
Analog Input Pin (+) for Channel A.  
Analog Input Pin (−) for Channel A.  
Analog Power Supply.  
5, 12, 1ꢁ, ꢀ4 AVDD  
8
9
1±  
11  
14  
15  
18  
19  
2±  
21  
REFT_A  
REFB_A  
VREF  
SENSE  
REFB_B  
REFT_B  
VIN−_B  
VIN+_B  
CLK_B  
DCS  
Differential Reference (+) for Channel A.  
Differential Reference (−) for Channel A.  
Voltage Reference Input/Output.  
Reference Mode Selection.  
Differential Reference (−) for Channel B.  
Differential Reference (+) for Channel B.  
Analog Input Pin (−) for Channel B.  
Analog Input Pin (+) for Channel B.  
Clock Input Pin for Channel B.  
Enable Duty Cycle Stabilizer (DCS) Mode.  
Data Output Format Select Pin (Low for Offset Binary, High for Twos Complement).  
Power-Down Function Selection for Channel B.  
DFS  
PDWN_B  
Logic ± enables Channel B. Logic 1 powers down Channel B (outputs static, not High-Z).  
22  
OEB_B  
Output Enable Pin for Channel B.  
Logic ± enables Data Bus B. Logic 1 sets outputs to High-Z.  
23 to 2ꢁ,  
3± to 38  
D±_B (LSB) to  
D13_B (MSB)  
Channel B Data Output Bits.  
28, 4±, 53  
29, 41, 52  
DRGND  
DRVDD  
Digital Output Ground.  
Digital Output Driver Supply. Must be decoupled to DRGND with a minimum ±.1 μF capacitor.  
Recommended decoupling is ±.1 μF capacitor in parallel with 1± μF capacitor.  
39  
OTR_B  
Out-of-Range Indicator for Channel B.  
42 to 51,  
54 to 5ꢁ  
D±_A (LSB) to Channel A Data Output Bits.  
D13_A (MSB)  
58  
59  
OTR_A  
OEB_A  
Out-of-Range Indicator for Channel A.  
Output Enable Pin for Channel A.  
Logic ± enables Data Bus A. Logic 1 sets outputs to High-Z.  
ꢀ±  
ꢀ1  
PDWN_A  
Power-Down Function Selection for Channel A.  
Logic ± enables Channel A. Logic 1 powers down Channel A (outputs static, not High-Z).  
Data Multiplexed Mode.  
MUX_SELECT  
(See Data Format section for how to enable; high setting disables output data multiplexed mode.)  
ꢀ2  
ꢀ3  
SHARED_REF  
CLK_A  
Shared Reference Control Pin (Low for Independent Reference Mode, High for Shared Reference Mode).  
Clock Input Pin for Channel A.  
EP  
For the ꢀ4-Lead LFCSP only, there is an exposed pad that must connect to AGND.  
Rev. B | Page 1± of 48  
AD9248  
TERMINOLOGY  
Aperture Delay  
Signal-to-Noise and Distortion (SINAD) Ratio  
SHA performance measured from the rising edge of the clock  
input to when the input signal is held for conversion.  
The ratio of the rms value of the measured input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed dB.  
Aperture Jitter  
The variation in aperture delay for successive samples, which is  
manifested as noise on the input to the ADC.  
Effective Number of Bits (ENOB)  
Using the following formula  
Integral Nonlinearity (INL)  
Deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs ½ LSB before the first code transition.  
Positive full scale is defined as a level 1½ LSB beyond the last  
code transition. The deviation is measured from the middle of  
each particular code to the true straight line.  
ENOB = (SINAD − 1.76)/6.02  
ENOB for a device for sine wave inputs at a given input  
frequency can be calculated directly from its measured SINAD.  
Signal-to-Noise Ratio (SNR)  
The ratio of the rms value of the measured input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in dB.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 14-bit resolution indicates that all 16,384  
codes must be present over all operating ranges.  
Spurious-Free Dynamic Range (SFDR)  
The difference in dB between the rms amplitude of the input  
signal and the peak spurious signal.  
Offset Error  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN−. Offset error is defined as the  
deviation of the actual transition from that point.  
Nyquist Sampling  
When the frequency components of the analog input are below  
the Nyquist frequency (fCLOCK/2), this is often referred to as  
Nyquist sampling.  
Gain Error  
The first code transition should occur at an analog value ½ LSB  
above negative full scale. The last transition should occur at an  
analog value 1½ LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between first and last code  
transitions.  
IF Sampling  
Due to the effects of aliasing, an ADC is not limited to Nyquist  
sampling. Higher sampled frequencies are aliased down into the  
first Nyquist zone (DC − fCLOCK/2) on the output of the ADC.  
The bandwidth of the sampled signal should not overlap  
Nyquist zones and alias onto itself. Nyquist sampling  
performance is limited by the bandwidth of the input SHA and  
clock jitter (jitter adds more noise at higher input frequencies).  
Temperature Drift  
The temperature drift for zero error and gain error specifies the  
maximum change from the initial (25°C) value to the value at  
Two-Tone SFDR  
TMIN or TMAX.  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Power Supply Rejection  
The specification shows the maximum change in full scale from  
the value with the supply at the minimum limit to the value  
with the supply at its maximum limit.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transient from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to 10%  
below positive full scale.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal, expressed as a  
percentage or in decibels relative to the peak carrier signal (dBc).  
Crosstalk  
Coupling onto one channel being driven by a (−0.5 dBFS) signal  
when the adjacent interfering channel is driven by a full-scale  
signal. Measurement includes all spurs resulting from both  
direct coupling and mixing components.  
Rev. B | Page 11 of 48  
 
AD9248  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD, DRVDD = 3.0 V, T = 25°C, AIN differential drive, full scale = 2 V, unless otherwise noted.  
0
100  
95  
90  
85  
80  
75  
70  
65  
SNR = 72.6dB  
SINAD = 71.9dB  
H2 = –81.5dBc  
H3 = –86.8dBc  
SFDR = 81.5dB  
–20  
SFDR  
–40  
–60  
SNR  
THIRD  
HARMONIC  
–80  
SECOND  
HARMONIC  
CROSSTALK  
60  
55  
50  
–100  
–120  
0
5
10  
15  
20  
25  
30  
40  
45  
50  
55  
60  
65  
FREQUENCY (MHz)  
ADC SAMPLE RATE (MSPS)  
Figure 5. Single-Tone FFT of Channel A Digitizing fIN = 12.5 MHz  
While Channel B Is Digitizing fIN = 10 MHz  
Figure 8. AD9248-65 Single-Tone SFDR/SNR vs. FS with fIN = 32.5 MHz  
0
100  
95  
SNR = 70.5dB  
SINAD = 69.4dB  
H2 = –92.3dBc  
H3 = –80.1dBc  
SFDR = 80.1dBc  
–20  
90  
SFDR  
85  
80  
75  
70  
65  
–40  
–60  
SNR  
THIRD HARMONIC  
SECOND  
HARMONIC  
–80  
CROSSTALK  
60  
55  
50  
–100  
–120  
0
5
10  
15  
20  
25  
30  
20  
25  
30  
ADC SAMPLE RATE (MSPS)  
35  
40  
FREQUENCY (MHz)  
Figure 6. Single-Tone FFT of Channel A Digitizing fIN = 70 MHz  
While Channel B Is Digitizing fIN = 76 MHz  
Figure 9. AD9248-40 Single-Tone SFDR/SNR vs. FS with fIN = 20 MHz  
100  
95  
0
SNR = 68.1dB  
SINAD = 68.0dB  
H2 = –83.4dBc  
H3 = –83.1dBc  
SFDR = 75.1dBc  
–20  
90  
SFDR  
85  
80  
–40  
–60  
75  
SNR  
70  
65  
SECOND HARMONIC  
CROSSTALK  
–80  
60  
55  
50  
–100  
–120  
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
30  
ADC SAMPLE RATE (MSPS)  
FREQUENCY (MHz)  
Figure 10. AD9248-20 Single-Tone SFDR/SNR vs. FS with fIN = 10 MHz  
Figure 7. Single-Tone FFT of Channel A Digitizing fIN = 120 MHz  
While Channel B Is Digitizing fIN = 126 MHz  
Rev. B | Page 12 of 48  
 
AD9248  
100  
90  
95  
90  
SFDR  
80  
70  
60  
85  
80  
75  
SFDR  
SNR  
SNR  
50  
40  
70  
65  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
0
0
0
20  
40  
60  
80  
100  
120  
140  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 11. AD9248-65 Single-Tone SFDR/SNR vs. AIN with fIN = 32.5 MHz  
Figure 14. AD9248-65 Single-Tone SFDR/SNR vs. fIN  
95  
90  
100  
90  
SFDR  
85  
80  
75  
80  
70  
60  
SFDR  
SNR  
SNR  
60  
70  
65  
50  
40  
20  
40  
80  
100  
120  
140  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 15. AD9248-40 Single-Tone SFDR/SNR vs. fIN  
Figure 12. AD9248-40 Single-Tone SFDR/SNR vs. AIN with fIN = 20 MHz  
95  
90  
85  
100  
90  
SFDR  
SFDR  
80  
70  
60  
80  
75  
SNR  
SNR  
70  
65  
50  
40  
20  
40  
60  
80  
100  
120  
140  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 16. AD9248-20 Single-Tone SFDR/SNR vs. fIN  
Figure 13. AD9248-20 Single-Tone SFDR/SNR vs. AIN with fIN = 10 MHz  
Rev. B | Page 13 of 48  
AD9248  
100  
95  
90  
85  
80  
75  
70  
0
SFDR  
–20  
–40  
–60  
IMD = –85dBc  
–80  
SNR  
–18  
–100  
65  
60  
–120  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–15  
–12  
–9  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 17. Dual-Tone FFT with fIN1 = 39 MHz and fIN2 = 40 MHz  
Figure 20. Dual-Tone SFDR/SNR vs. AIN with fIN1 = 45 MHz and fIN2 = 46 MHz  
0
100  
SFDR  
95  
90  
85  
80  
75  
70  
–20  
–40  
–60  
IMD =  
–83dBc  
SNR  
–80  
–100  
–120  
65  
60  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 18. Dual-Tone FFT with fIN1 = 70 MHz and fIN2 = 71 MHz  
Figure 21. Dual-Tone SFDR/SNR vs. AIN with fIN1 = 70 MHz and fIN2 = 71 MHz  
0
100  
95  
90  
–20  
SFDR  
–40  
–60  
85  
80  
75  
70  
–80  
SNR  
–100  
–120  
65  
60  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 19. Dual-Tone FFT with fIN1 = 200 MHz and fIN2 = 201 MHz  
Figure 22. Dual-Tone SFDR/SNR vs.  
IN with fIN1 = 200 MHz and fIN2 = 201 MHz  
A
Rev. B | Page 14 of 48  
AD9248  
74  
72  
12.0  
11.5  
11.0  
–65  
600  
SINAD –20  
500  
400  
SINAD –65  
SINAD –40  
–40  
300  
70  
68  
200  
100  
–20  
0
10  
20  
30  
40  
50  
60  
0
20  
40  
60  
SAMPLE RATE (MSPS)  
CLOCK FREQUENCY (MHz)  
Figure 26. Analog Power Consumption vs. FS  
Figure 23. SINAD vs. FS with Nyquist Input  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.5  
2.0  
DCS ON (SFDR)  
1.5  
DCS OFF (SFDR)  
DCS ON (SINAD)  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
DCS OFF (SINAD)  
30  
35  
40  
45  
50  
55  
60  
65  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
DUTY CYCLE (%)  
Figure 24. SINAD/SFDR vs. Clock Duty Cycle  
Figure 27. AD9248-65 Typical INL  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
1.0  
0.8  
SFDR  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SINAD  
–50  
0
50  
100  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
TEMPERATURE (°C)  
Figure 25. SINAD/SFDR vs. Temperature with fIN = 32.5 MHz  
Figure 28. AD9248-65 Typical DNL  
Rev. B | Page 15 of 48  
 
 
AD9248  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
CLK_A, CLK_B  
DCS, DFS,  
MUX_SELECT,  
SHARED_REF  
VIN+_A, VIN–_A,  
VIN+_B, VIN–_B  
Figure 31. Equivalent Digital Input Circuit  
Figure 29. Equivalent Analog Input Circuit  
DRVDD  
Figure 30. Equivalent Digital Output Circuit  
Rev. B | Page 1ꢀ of 48  
 
AD9248  
THEORY OF OPERATION  
In IF under-sampling applications, any shunt capacitors  
The AD9248 consists of two high performance ADCs that are  
based on the AD9235 converter core. The dual ADC paths are  
independent, except for a shared internal band gap reference  
source, VREF. Each of the ADC paths consists of a proprietary  
front end SHA followed by a pipelined switched-capacitor ADC.  
The pipelined ADC is divided into three sections, consisting  
of a 4-bit first stage, followed by eight 1.5-bit stages, and a final  
3-bit flash. Each stage provides sufficient overlap to correct for  
flash errors in the preceding stages. The quantized outputs from  
each stage are combined through the digital correction logic  
block into a final 14-bit result. The pipelined architecture  
permits the first stage to operate on a new input sample, while  
the remaining stages operate on preceding samples. Sampling  
occurs on the rising edge of the  
should be removed. In combination with the driving source  
impedance, they limit the input bandwidth. For best dynamic  
performance, the source impedances driving VIN+ and VIN−  
should be matched such that common-mode settling errors are  
symmetrical. These errors are reduced by the common-mode  
rejection of the ADC.  
H
T
T
5pF  
5pF  
VIN+  
C
PAR  
respective clock.  
T
VIN–  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC and a residual multiplier to drive the next  
stage of the pipeline. The residual multiplier uses the flash ADC  
output to control a switched-capacitor digital-to-analog converter  
(DAC) of the same resolution. The DAC output is subtracted from  
the stage’s input signal and the residual is amplified (multiplied)  
to drive the next pipeline stage. The residual multiplier stage is  
also called a multiplying DAC (MDAC). One bit of redundancy  
is used in each one of the stages to facilitate digital correction of  
flash errors. The last stage simply consists of a flash ADC.  
C
PAR  
T
H
Figure 32. Switched-Capacitor Input  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, respectively, that  
define the span of the ADC core. The output common mode of  
the reference buffer is set to midsupply, and the REFT and  
REFB voltages and span are defined as:  
The input stage contains a differential SHA that can be  
configured as ac- or dc-coupled in differential or single-ended  
modes. The output-staging block aligns the data, carries out the  
error correction, and passes the data to the output buffers. The  
output buffers are powered from a separate supply, allowing  
adjustment of the output voltage swing.  
REFT = ½(AVDD + VREF  
)
REFB = ½(AVDD VREF  
)
Span = 2 × (REFT REFB) = 2 × VREF  
The equations above show that the REFT and REFB voltages are  
symmetrical about the midsupply voltage and, by definition, the  
input span is twice the value of the VREF voltage.  
ANALOG INPUT  
The analog input to the AD9248 is a differential, switched-  
capacitor SHA that has been designed for optimum perfor-  
mance while processing a differential input signal. The SHA  
input accepts inputs over a wide common-mode range. An  
input common-mode voltage of midsupply is recommended  
to maintain optimal performance.  
The internal voltage reference can be pin-strapped to fixed values  
of 0.5 V or 1.0 V or adjusted within the same range as discussed  
in the Internal Reference Connection section. Maximum SNR  
performance is achieved with the AD9248 set to the largest  
input span of 2 V p-p. The relative SNR degradation is 3 dB  
when changing from 2 V p-p mode to 1 V p-p mode.  
The SHA input is a differential switched-capacitor circuit. In  
Figure 32, the clock signal alternatively switches the SHA  
between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can be  
placed across the inputs to provide dynamic charging currents.  
This passive network creates a low-pass filter at the ADC input;  
therefore, the precise values are dependent on the application.  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined as:  
VCMMIN = VREF/2  
VCMMAX = (AVDD + VREF)/2  
Rev. B | Page 1ꢁ of 48  
 
 
AD9248  
The minimum common-mode input level allows the AD9248 to  
accommodate ground-referenced inputs. Although optimum  
performance is achieved with a differential input, a single-ended  
source may be driven into VIN+ or VIN−. In this configuration,  
one input accepts the signal, while the opposite input should be  
set to midscale by connecting it to an appropriate reference. For  
example, a 2 V p-p signal may be applied to VIN+, while a 1 V  
reference is applied to VIN−. The AD9248 then accepts an  
input signal varying between 2 V and 0 V. In the single-ended  
configuration, distortion performance may degrade significantly  
as compared to the differential case. However, the effect is less  
noticeable at lower input frequencies and in the lower speed grade  
models (AD9248-40 and AD9248-20).  
CLOCK INPUT AND CONSIDERATIONS  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensitive  
to the clock duty cycle. Commonly, a 5% tolerance is required  
on the clock duty cycle to maintain dynamic performance  
characteristics.  
The AD9248 provides separate clock inputs for each channel. The  
optimum performance is achieved with the clocks operated at the  
same frequency and phase. Clocking the channels asynchronously  
may degrade performance significantly. In some applications, it  
is desirable to skew the clock timing of adjacent channels. The  
AD9248s separate clock inputs allow for clock timing skew  
(typically 1 ns) between the channels without significant  
performance degradation.  
Differential Input Configurations  
As previously detailed, optimum performance is achieved while  
driving the AD9248 in a differential input configuration. For  
baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
The AD9248-65 contains two clock duty cycle stabilizers, one  
for each converter, that retime the nonsampling edge, providing  
an internal clock with a nominal 50% duty cycle. When proper  
track-and-hold times for the converter are required to maintain  
high performance, maintaining a 50% duty cycle clock is  
particularly important in high speed applications. It may be  
difficult to maintain a tightly controlled duty cycle on the input  
clock on the PCB (see Figure 24). DCS can be enabled by tying  
the DCS pin high.  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9248. This is especially true in IF  
under-sampling applications where frequencies in the 70 MHz  
to 200 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration, as shown in Figure 33.  
The duty cycle stabilizer uses a delay-locked loop to create the  
nonsampling edge. As a result, any changes to the sampling  
frequency require approximately 2 μs to 3 μs to allow the DLL  
to acquire and settle to the new rate.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to aperture jitter (tJ) can be  
calculated as  
AVDD  
50Ω  
VINA  
10pF  
2V p-p  
49.9Ω  
AD9248  
50Ω  
VINB  
AGND  
1
SNR = 20 × log  
10pF  
(
2 × π × fINPUT ×t j  
)
1kΩ  
1kΩ  
0.1μF  
In the equation, the rms aperture jitter, tJ , represents the root-  
sum square of all jitter sources, which includes the clock input,  
analog input signal, and ADC aperture jitter specification.  
Under-sampling applications are particularly sensitive to jitter.  
Figure 33. Differential Transformer Coupling  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
For optimal performance, especially in cases where aperture  
jitter may affect the dynamic range of the AD9248, it is important  
to minimize input clock jitter. The clock input circuitry should  
use stable references; for example, use analog power and ground  
planes to generate the valid high and low digital levels for the  
AD9248 clock input. Power supplies for clock drivers should be  
separated from the ADC output driver supplies to avoid modulating  
the clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated from  
another type of source (by gating, dividing, or other methods), it  
should be retimed by the original clock at the last step.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is a  
degradation in SFDR and distortion performance due to the  
large input common-mode swing. However, if the source  
impedances on each input are matched, there should be little  
effect on SNR performance.  
Rev. B | Page 18 of 48  
 
 
AD9248  
A single channel can be powered down for moderate power  
POWER DISSIPATION AND STANDBY MODE  
savings. The powered-down channel shuts down internal  
circuits, but both the reference buffers and shared reference  
remain powered on. Because the buffer and voltage reference  
remain powered on, the wake-up time is reduced to several  
clock cycles.  
The power dissipated by the AD9248 is proportional to its  
sampling rates. The digital (DRVDD) power dissipation is  
determined primarily by the strength of the digital drivers and  
the load on each output bit. The digital drive current can be  
calculated by  
DIGITAL OUTPUTS  
IDRVDD = VDRVDD × CLOAD × fCLOCK × N  
The AD9248 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
where N is the number of bits changing, and CLOAD is the average  
load on the digital pins that changed.  
The analog circuitry is optimally biased so that each speed  
grade provides excellent performance while affording reduced  
power consumption. Each speed grade dissipates a baseline  
power at low sample rates that increases with clock frequency.  
Either channel of the AD9248 can be placed into standby mode  
independently by asserting the PDWN_A or PDWN_B pins.  
The data format can be selected for either offset binary or twos  
complement. See the Data Format section for more information.  
It is recommended that the input clock(s) and analog input(s)  
remain static during either independent or total standby, which  
results in a typical power consumption of 1 mW for the ADC.  
Note that if DCS is enabled, it is mandatory to disable the clock  
of an independently powered-down channel. Otherwise,  
significant distortion results on the active channel. If the clock  
inputs remain active while in total standby mode, typical power  
dissipation of 12 mW results.  
TIMING  
The AD9248 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propa-  
gation delay (tPD) after the rising edge of the clock signal. Refer  
to Figure 2 for a detailed timing diagram.  
The internal duty cycle stabilizer can be enabled on the AD9248  
using the DCS pin. This provides a stable 50% duty cycle to  
internal circuits.  
The minimum standby power is achieved when both channels  
are placed into full power-down mode (PDWN_A = PDWN_B =  
HI). Under this condition, the internal references are powered  
down. When either or both of the channel paths are enabled  
after a power-down, the wake-up time is directly related to the  
recharging of the REFT and REFB decoupling capacitors and to  
the duration of the power-down. Typically, it takes approximately  
5 ms to restore full operation with fully discharged 0.1 μF and  
10 μF decoupling capacitors on REFT and REFB.  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9248.  
These transients can detract from the converter’s dynamic  
performance. The lowest typical conversion rate of the AD9248  
is 1 MSPS. At clock rates below 1 MSPS, dynamic performance  
may degrade.  
A
A
ANALOG INPUT  
ADC A  
A
1
0
8
A
2
A
–1  
A
7
A
3
A
A
6
4
A
5
B
B
B
1
0
8
B
ANALOG INPUT  
ADC B  
2
B
–1  
B
7
B
3
B
B
6
4
B
5
CLK_A = CLK_B =  
MUX_SELECT  
D0_A TO  
D11_A  
B
A
B
–7  
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
1
–8  
–7  
–6  
–6  
–5  
–5  
–4  
–4  
–3  
–3  
–2  
–2  
–1  
–1  
0
0
tPD  
tPD  
Figure 34. Multiplexed Data Format Using the Channel A Output and the Same Clock Tied to CLK_A, CLK_B, and MUX_SELECT  
Rev. B | Page 19 of 48  
 
 
AD9248  
DATA FORMAT  
gain and offset matching performance. If the ADCs are to  
function independently, the reference decoupling can be  
treated independently and can provide superior isolation  
between the dual channels. To enable shared reference mode,  
the SHARED_REF pin must be tied high and the external  
differential references must be externally shorted. (REFT_A  
must be externally shorted to REFT_B, and REFB_A must be  
shorted to REFB_B.)  
The AD9248 data output format can be configured for either  
twos complement or offset binary. This is controlled by the data  
format select pin (DFS). Connecting DFS to AGND produces  
offset binary output data. Conversely, connecting DFS to AVDD  
formats the output data as twos complement.  
The output data from the dual ADCs can be multiplexed onto a  
single 14-bit output bus. The multiplexing is accomplished by  
toggling the MUX_SELECT bit, which directs channel data to  
the same or opposite channel data port. When MUX_SELECT  
is logic high, the Channel A data is directed to the Channel A  
output bus, and the Channel B data is directed to the Channel B  
output bus. When MUX_SELECT is logic low, the channel data  
is reversed, that is, the Channel A data is directed to the  
Internal Reference Connection  
A comparator within the AD9248 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, which are summarized in Table 7. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 35), setting VREF to 1 V.  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected, as shown in Figure 36, the switch is again set to the  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as  
Channel B output bus, and the Channel B data is directed to the  
Channel A output bus. By toggling the MUX_SELECT bit,  
multiplexed data is available on either of the output data ports.  
If the ADCs run with synchronized timing, this same clock can  
be applied to the MUX_SELECT pin. Any skew between  
CLK_A, CLK_B, and MUX_SELECT can degrade AC  
performance. It is recommended to keep the clock skew  
<100 pS. After the MUX_SELECT rising edge, either data port  
has the data for its respective channel; after the falling edge, the  
alternate channel’s data is placed on the bus. Typically, the other  
unused bus would be disabled by setting the appropriate OEB  
high to reduce power consumption and noise. Figure 34 shows  
an example of multiplex mode. When multiplexing data, the  
data rate is two times the sample rate. Note that both channels  
must remain active in this mode and that each channels power-  
down pin must remain low.  
VREF = 0.5 × (1 + R2/R1)  
In all reference configurations, REFT and REFB drive the ADC  
core and establish its input span. The input range of the ADC  
always equals twice the voltage at the reference pin for either an  
internal or an external reference.  
VIN+  
VIN–  
REFT  
0.1μF  
ADC  
CORE  
0.1μF  
10μF  
VOLTAGE REFERENCE  
REFB  
0.1μF  
A stable and accurate 0.5 V voltage reference is built into the  
AD9248. The input range can be adjusted by varying the  
reference voltage applied to the AD9248, using either the  
internal reference with different external resistor configurations  
or an externally applied reference voltage. The input span of the  
ADC tracks reference voltage changes linearly. If the ADC is  
being driven differentially through a transformer, the reference  
voltage can be used to bias the center tap (common-mode  
voltage).  
VREF  
10μF  
SELECT  
LOGIC  
0.1μF  
0.5V  
SENSE  
AD9248  
The shared reference mode allows the user to connect the  
references from the dual ADCs together externally for superior  
Figure 35. Internal Reference Configuration  
Table 7. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
AVDD  
N/A  
2 × External Reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
VREF  
±.2 V to VREF  
AGND to ±.2 V  
±.5  
1.±  
±.5 × (1 + R2/R1)  
1.±  
2 × VREF (See Figure 3ꢀ)  
2.±  
Rev. B | Page 2± of 48  
 
 
 
 
 
AD9248  
1.2  
1.0  
External Reference Operation  
The use of an external reference may be necessary to  
enhance the gain accuracy of the ADC or to improve thermal  
drift characteristics. When multiple ADCs track one another, a  
single reference (internal or external) may be necessary to  
reduce gain matching errors to an acceptable level. A high  
precision external reference may also be selected to provide  
lower gain and offset temperature drift. Figure 37 shows the  
typical drift characteristics of the internal reference in both  
1 V and 0.5 V modes. When the SENSE pin is tied to AVDD,  
the internal reference is disabled, allowing the use of an  
external reference. An internal reference buffer loads the  
external reference with an equivalent 7 kΩ load. The internal  
buffer still generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. The input span  
is always twice the value of the reference voltage; therefore, the  
external reference must be limited to a maximum of 1 V. If the  
internal reference of the AD9248 is used to drive multiple  
converters to improve gain matching, the loading of the  
reference by the other converters must be considered. Figure 38  
depicts how the internal reference voltage is affected by loading.  
VREF = 1V  
0.8  
0.6  
0.4  
VREF = 0.5V  
0.2  
0
–30 –20 –10  
0
20 30  
TEMPERATURE (°C)  
50 60 70 80  
–40  
10  
40  
Figure 37. Typical VREF Drift  
0.05  
0
–0.05  
–0.10  
–0.15  
0.5V ERROR  
VIN+  
1V ERROR  
VIN–  
REFT  
0.1μF  
–0.20  
–0.25  
ADC  
CORE  
0.1μF  
10μF  
REFB  
0.1μF  
0.5  
1.0  
1.5  
LOAD (mA)  
2.0  
3.0  
0
2.5  
VREF  
R2  
Figure 38. VREF Accuracy vs. Load  
10μF  
10μF  
SENSE  
SELECT  
LOGIC  
0.5V  
R1  
AD9248  
Figure 36. Programmable Reference Configuration  
Rev. B | Page 21 of 48  
 
 
 
AD9248  
AD9248 LQFP EVALUATION BOARD  
The evaluation board supports both the AD9238 and AD9248  
and has five main sections: clock circuitry, inputs, reference  
circuitry, digital control logic, and outputs. A description of  
each section follows. Table 8 shows the jumper settings and  
notes assumptions in the comment column.  
The common-mode level for both input options is set to  
midsupply by a resistor divider off the AVDD supply but can  
also be overdriven with an external supply using the (test  
points) TP12, TP13 for the AD8138s, and TP14, TP15 for the  
XFMRs. For low distortion of full-scale input signals when  
using an AD8138, put Jumper JP17 and Jumper JP22 in  
Position B and put an external negative supply on the TP10 and  
TP11 testpoints.  
Four supply connections to TB1 are necessary for the evaluation  
board: the analog supply of the DUT, the on-board analog  
circuitry supply, the digital driver DUT supply, and the on-  
board digital circuitry supply. Separate analog and digital  
supplies are recommended, and on each supply 3 V is nominal.  
Each supply is decoupled on-board, and each IC, including the  
DUT, is decoupled locally. All grounds should be tied together.  
For best performance, use low jitter input sources and a high  
performance band-pass filter after the signal source, before the  
evaluation board (see Figure 39). For XFMR inputs, use solder  
Jumper JP13 and Jumper JP14 for Channel A, and Jumper JP20  
and Jumper JP21 for Channel B. For AD8138 inputs, use solder  
Jumper JP15 and Jumper JP16 for Channel A, and Jumper JP18  
and Jumper JP19 for Channel B. Remove all solder from the  
jumpers not being used.  
CLOCK CIRCUITRY  
The clock circuitry is designed for a low jitter sine wave source  
to be ac-coupled and level shifted before driving the 74VHC04  
hex inverter chips (U8 and U9) whose output provides the clock  
to the part. The POT (R32 and R31) on the level shifting  
circuitry allows the user to vary the duty cycle if desired. The  
amplitude of the sine wave must be large enough for the trip  
points of the hex inverter and within the supplies to avoid noise  
from clipping. To ensure a 50% duty cycle internal to the part,  
the AD9248-65 has an on-chip duty cycle stabilizer circuit that  
is enabled by putting in Jumper JP11. The duty cycle stabilizer  
circuitry should only be used at clock rates above 40 MSPS.  
REFERENCE CIRCUITRY  
The evaluation board circuitry allows the user to select a  
reference mode through a series of jumpers and provides an  
external reference if necessary. Please refer to Table 9 to find the  
jumper settings for each reference mode. The external reference  
on the board is a simple resistor divider/zener diode circuit  
buffered by an AD822 (U4). The POT (R4) can be used to  
change the level of the external reference to fine adjust the ADC  
full scale.  
Each channel has its own clock circuitry, but normally both  
clock pins are driven by a single 74VHC04, and the solder  
Jumper JP24 is used to tie the clock pins together. When the  
clock pins are tied together and only one 74VHC04 is being  
used, the series termination resistor for the other channel must  
be removed (either R54 or R55, depending on which inverter is  
being used).  
DIGITAL CONTROL LOGIC  
The digital control logic on the evaluation board is a series of  
jumpers and pull-down resistors used as digital inputs for the  
following pins on the AD9248: the power-down and output  
enable bar for each channel, the duty cycle restore circuitry, the  
twos complement output mode, the shared reference mode, and  
the MUX_SELECT pin. Refer to Table 8 for normal operating  
jumper positions.  
A data capture clock for each channel is created and sent to the  
output buffers in order to be used in the data capture system if  
needed. Jumper JP25 and Jumper JP26 are used to invert the  
data clock, if necessary, and can be used to debug data capture  
timing problems.  
OUTPUTS  
The outputs of the AD9248 (and the data clock discussed  
earlier) are buffered by 74VHC541s (U2, U3, U7, U10) to  
ensure the correct load on the outputs of the DUT, as well as the  
extra drive capability to the next part of the system. The  
74VHC541s are latches, but on this evaluation board, they are  
wired and function as buffers. Jumper JP30 can be used to tie  
the data clocks together if desired. If the data clocks are tied, the  
R39 or R40 resistor must be removed, depending on which  
clock circuitry is being used.  
ANALOG INPUTS  
The AD9248 achieves the best performance with a differential  
input. The evaluation board has two input options for each  
channel, a transformer (XFMR) and an AD8138, both of which  
perform single-ended-to-differential conversions. The XFMR  
allows for the best high frequency performance, and the  
AD8138 is ideal for dc evaluation, low frequency inputs, and  
driving an ADC differentially without loading the single-ended  
signal.  
Rev. B | Page 22 of 48  
 
AD9248  
Table 9. Reference Jumpers  
Reference Mode  
1 V Internal  
±.5 V Internal  
External  
JP1  
Out  
Out  
In  
JP2  
In  
Out  
Out  
JP3  
Out  
In  
JP4  
JP5  
Out  
Out  
In  
Table 8. PCB Jumpers  
Out  
Out  
Out  
Normal  
Setting Comment  
JP Description  
Out  
1
2
3
4
5
8
9
Reference  
Reference  
Reference  
Reference  
Out  
In  
1 V Reference Mode  
1 V Reference Mode  
1 V Reference Mode  
1 V Reference Mode  
1 V Reference Mode  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
In  
SINE SOURCE  
LOW JITTER  
(HP8644)  
Reference  
SINE SOURCE  
LOW JITTER  
(HP8644)  
Shared Reference  
Shared Reference  
PDWN B  
AD9248  
EVALUATION BOARD  
PDWN A  
CLOCK  
CIRCUITRY  
1± Shared Reference  
11 Duty Cycle  
Duty Cycle Restore On  
12 Twos Complement Out  
OUTPUT  
BUFFERS  
INPUT  
BAND-PASS  
FILTERS  
AD9248  
CIRCUITRY  
13 Input  
In  
Using XFMR Input  
Using XFMR Input  
Using XFMR Input  
Using XFMR Input  
Using XFMR Input  
Using XFMR Input  
14 Input  
In  
15 Input  
1ꢀ Input  
1ꢁ AD8138 Supply  
18 Input  
19 Input  
Out  
Out  
A
Out  
Out  
In  
REFERENCE MODE  
SELECTION/EXTERNAL  
REFERENCE/CONTROL  
LOGIC  
Figure 39. PCB Test Setup  
2± Input  
21 Input  
In  
22 AD8138 Supply  
23 Mux Select  
24 Tie Clocks  
25 Data Clock  
2ꢀ Data Clock  
2ꢁ Mux Select  
28 OEB_A  
29 Mux Select  
3± Data Clock  
35 OEB_B  
A
Out  
In  
A
Out  
In  
Out  
Out  
Out  
Out  
Using One Signal for Clock  
Using One Signal for Clock  
Rev. B | Page 23 of 48  
 
 
 
AD9248  
LQFP EVALUATION BOARD BILL OF MATERIALS (BOM)  
Table 10.  
No. Quantity Reference Designator  
Device  
Package  
ACASE  
±8±5  
±ꢀ±3  
±ꢀ±3  
DCASE  
12±ꢀ  
ACASE  
±2±1  
±8±5  
±ꢀ±3  
Value  
1± μF  
±.1 μF  
±.±±1 μF  
±.1 μF  
22 μF  
±.1 μF  
ꢀ.3 V  
±.±1 μF  
1
2
3
18  
23  
C1, C2, C11, C12, C2ꢁ, C28, C33, C34, C5±, C51, Cꢁ3 to Cꢁꢀ, C8ꢁ to C9±  
C3 to C1±, C29 to C31, C5ꢀ, Cꢀ1 to Cꢀ5, Cꢁꢁ, Cꢁ9, C8±, C84 to C8ꢀ  
C13, C15, C18, C19, C21, C23, C25  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
Capacitors  
AD158±  
4
5
15  
4
Cꢀ, C14, C1ꢀ, C1ꢁ, C2±, C22, C24, C2ꢀ, C32, C35 to C4±  
C41 to C44  
4
C45 to C48  
2
C49, C53  
8
2
C52, C5ꢁ  
9
4
C54, C55, Cꢀ8, Cꢀ9  
1±  
11  
12  
13  
14  
15  
1ꢀ  
1ꢁ  
18  
19  
2±  
21  
22  
23  
24  
25  
2ꢀ  
2ꢁ  
28  
29  
3±  
31  
32  
33  
34  
35  
3ꢀ  
3ꢁ  
38  
39  
4±  
41  
42  
43  
44  
4
2
1
1
14  
13  
4
4
1
1
8
2
4
2
4
2
2
2
1ꢀ  
C58, C59 ,Cꢁ±, Cꢁ1  
Cꢀ±, Cꢁ2  
D1  
J1  
JP1 to JP5, JP8 to JP12, JP23, JP28, JP29, JP35  
JPꢀ, JPꢁ, JP13, JP14 to JP1ꢀ, JP18 to JP21, JP24, JP2ꢁ, JP3±  
JP1ꢁ, JP22, JP25, JP2ꢀ  
L1 to L4  
R1, R2, R13, R14, R23, R2ꢁ  
R3  
DNP  
2± pF  
±ꢀ±3  
SOT-23CAN 1.2 V  
SAM±8±UPM  
JPRBLK±2  
JPRSLD±2  
JPRBLK±3  
LC121±  
12±ꢀ  
12±ꢀ  
RV3299UP  
±8±5  
12±ꢀ  
±8±5  
12±ꢀ  
12±ꢀ  
12±ꢀ  
RV3299W  
±8±5  
12±ꢀ  
±8±5  
IND121±  
Resistors  
Resistor  
1± μH  
33 Ω  
5.49 kΩ  
1± kΩ  
5 kΩ  
49.9 Ω  
1 kΩ  
499 Ω  
523 Ω  
4± Ω  
1± kΩ  
5±± Ω  
1± kΩ  
22 Ω  
± Ω  
22 Ω  
R4  
Resistor  
R5, Rꢀ, R38, R41, R43, R44, R51  
Rꢁ, R8, R19, R2±, R52, R53  
R9, R18, R29, R3±, R4ꢁ to R5±  
R1±, R12, R15, R24, R25, R28  
R11, R2ꢀ  
R1ꢀ, R1ꢁ, R21, R22  
R31, R32  
R33 to R35, R42  
R3ꢀ, R3ꢁ  
R39, R4±  
R54, R55  
RP1 to RP1ꢀ  
S1 to Sꢀ  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistor Pack  
12±ꢀ  
RCAꢁ42±4  
SMA2±±UP  
DIP±ꢀRCUP  
2
1
4
4
2
1
4
T1, T2  
TB1  
TP1, TP3, TP5, TPꢁ  
TP2, TP4, TPꢀ, TP8  
TP9, TP12 to TP1ꢁ  
TP1±, TP11  
T1-1T  
TBLK±ꢀREM  
RED  
BLK  
WHT  
LOOPTP  
LOOPTP  
LOOPMINI  
LOOPMINI  
ꢀ4LQFPꢁXꢁ  
SOL2±  
SOIC-8  
SO8NCꢁ  
TSSOP-14  
RED  
U1  
AD9248  
ꢁ4VHC541  
AD822  
AD8138  
ꢁ4VHC±4  
U2, U3, Uꢁ, U1±  
U4  
U5, Uꢀ  
1
2
2
U8, U9  
Rev. B | Page 24 of 48  
 
AD9248  
LQFP EVALUATION BOARD SCHEMATICS  
Figure 40. Evaluation Board Schematic  
Rev. B | Page 25 of 48  
 
AD9248  
Figure 41. Evaluation Board Schematic (Continued)  
Rev. B | Page 2ꢀ of 48  
AD9248  
Figure 42. Evaluation Board Schematic (Continued)  
Rev. B | Page 2ꢁ of 48  
AD9248  
C28  
10μF  
6.3V  
C75  
10μF  
6.3V  
C8  
0.1μF  
C3  
0.1μF  
C10  
0.1μF  
C9  
0.1μF  
DVDD  
1
19  
20  
10  
R40  
22Ω  
G1  
G2  
VCC  
GND  
DATACLKA  
U10  
2
4
1
3
RP1 22Ω  
1
8
74VHC541  
1RP9 22Ω  
8
2
18  
17  
16  
15  
14  
13  
12  
11  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
RP9  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
2
3
4
1
2
3
4
7
6
5
8
7
6
5
RP1  
RP1  
RP1  
RP2  
RP2  
RP2  
RP2  
RP3  
RP3  
RP3  
RP3  
RP4  
RP4  
RP4  
RP4  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
7
6
5
8
7
6
5
8
7
6
5
8
7
6
5
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
3
6
5
OTRA  
DA13  
DA12  
DA11  
DA10  
DA9  
RP9  
4
5
6
7
8
9
8
7
RP9  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
9
RP10  
RP10  
RP10  
RP10  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
DA8  
20  
10  
1
19  
G1  
G2  
VCC  
GND  
U7  
74VHC541  
1
2
3
4
1
2
3
4
RP11  
RP11  
RP11  
RP11  
RP12  
RP12  
RP12  
RP12  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
8
2
18  
17  
16  
15  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
3
4
5
6
7
8
9
7
6
5
8
7
6
5
14  
13  
12  
11  
J1  
SAM080UPM  
JP30  
C27  
10μF  
6.3V  
C76  
C7  
0.1μF  
C6  
0.1μF  
C4  
0.1μF  
C5  
0.1μF  
10μF  
6.3V  
DVDD  
1
20  
10  
VCC  
GND  
G1  
G2  
19  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
41  
U2  
22Ω  
8
1 RP13  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
74VHC541  
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
RP5  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
8
7
2
3
4
1
2
3
4
1
18  
RP13  
RP13  
RP13  
RP14  
RP14  
RP14  
RP14  
RP15  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
2
3
4
5
6
7
8
9
7
6
5
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Y1  
OTRB  
DA13  
DA12  
DA11  
DA10  
DA9  
17  
16  
15  
14  
13  
12  
11  
RP5  
RP5  
RP5  
RP6  
RP6  
RP6  
RP6  
RP7  
RP7  
RP7  
RP7  
RP8  
RP8  
RP8  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
6
5
8
7
6
5
8
7
6
5
8
7
6
8
7
6
5
8
DA8  
DA7  
20  
10  
1
G1  
G2  
VCC  
GND  
19  
U3  
74VHC541  
18  
17  
16  
15  
14  
13  
12  
11  
2
3
4
1
2
3
4
RP15  
RP15  
RP15  
RP16  
RP16  
RP16  
RP16  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
22Ω  
7
6
5
8
7
6
5
2
3
4
5
6
7
8
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
4
RP8 22Ω 5  
J1  
SAM080UPM  
Y7  
Y8  
9
R39  
22Ω  
DATACLKB  
Figure 43. Evaluation Board Schematic (Continued)  
Rev. B | Page 28 of 48  
AD9248  
LQFP PCB LAYERS  
Figure 44. PCB Top Layer  
Rev. B | Page 29 of 48  
 
AD9248  
Figure 45. Bottom Layer  
Rev. B | Page 3± of 48  
AD9248  
Figure 46. PCB Ground Plane  
Rev. B | Page 31 of 48  
AD9248  
Figure 47. PCB Split Power Plane  
Rev. B | Page 32 of 48  
AD9248  
Figure 48. PCB Top Silkscreen (Note that the PCB Supports Both the AD9238 and AD9248 LQFP)  
Rev. B | Page 33 of 48  
AD9248  
Figure 49. PCB Bottom Silkscreen  
Rev. B | Page 34 of 48  
AD9248  
DUAL ADC LFCSP PCB  
CLOCK  
The PCB requires a low jitter clock source, analog sources, and  
power supplies. The PCB interfaces directly with Analog Devices  
standard dual-channel data capture board (HSC-ADC-EVAL-DC),  
which together with ADIs ADC Analyzer™ software allows for  
quick ADC evaluation.  
The clock inputs are buffered on the board at U5 and U6. These  
gates provide buffered clocks to the on-board latches, U2 and  
U4, ADC input clocks, and DRA, DRB that are available at the  
output Connector P3, P8. The clocks can be inverted at the  
timing jumpers labeled with the respective clocks. The clock  
paths also provide for various termination options. The ADC  
input clocks can be set to bypass the buffers at solder bridges  
P2, P9 and P10, P12. An optional clock buffer U3, U7 can also  
be placed. The clock inputs can be bridged at TIEA, TIEB (R20,  
R40) to allow one to clock both channels from one clock source;  
however, optimal performance is obtained by driving J2 and J3.  
POWER CONNECTOR  
Power is supplied to the board via three detachable 4-lead  
power strips.  
Table 11. Power Connector  
Terminal  
VCC1 3.± V  
VDD1 3.± V  
VDL1 3.± V  
VREF  
Comments  
Analog supply for ADC  
Output supply for ADC  
Supply circuitry  
Optional external VREF  
Optional op amp supply  
Optional op amp supply  
Table 12. Jumpers  
Terminal  
Comments  
OEB A  
PDWN A  
MUX  
Output Enable for A Side  
Power-Down A  
Mux Input  
+5 V  
−5 V  
1VCC, VDD, and VDL are the minimum required power connections.  
SHARED REF  
DR A  
LATA  
ENC A  
OEB B  
PDWN B  
DFS  
SHARED REF  
DR B  
LATB  
ENC B  
Shared Reference Input  
Invert DR A  
Invert A Latch Clock  
Invert Encode A  
Output Enable for B Side  
Power-Down B  
Data Format Select  
Shared Reference Input  
Invert DR B  
Invert B Latch Clock  
Invert Encode B  
ANALOG INPUTS  
The evaluation board accepts a 2 V p-p analog input signal  
centered at ground at two SMB connectors, Input A and  
Input B. These signals are terminated at their respective  
transformer primary side. T1 and T2 are wideband RF  
transformers that provide the single-ended-to-differential  
conversion, allowing the ADC to be driven differentially,  
minimizing even-order harmonics. The analog signals can be  
low-pass filtered at the transformer secondary to reduce high  
frequency aliasing.  
VOLTAGE REFERENCE  
OPTIONAL OPERATIONAL AMPLIFIER  
The ADC SENSE pin is brought out to E41, and the internal  
reference mode is selected by placing a jumper from E41 to  
ground (E27). External reference mode is selected by placing a  
jumper from E41 to E25 and E30 to E2. R56 and R45 allow for  
programmable reference mode selection.  
The PCB has been designed to accommodate an optional  
AD8139 op amp that can serve as a convenient solution for  
dc-coupled applications. To use the AD8139 op amp, remove  
C14, R4, R5, C13, R37, and R36. Place R22, R23, R30, and R24.  
DATA OUTPUTS  
The ADC outputs are latched on the PCB at U2, U4. The ADC  
outputs have the recommended series resistors in line to limit  
switching transient effects on ADC performance.  
Rev. B | Page 35 of 48  
 
 
AD9248  
LFCSP EVALUATION BOARD BILL OF MATERIALS (BOM)  
Table 13.  
No.  
Quantity  
Reference Designator  
C1, C3  
C2, C5, Cꢁ, C9, C1±, C22, C3ꢀ  
C4, Cꢀ, C8, C11 to C15, C2±, C21,  
C24 to C2ꢁ, C29 to C35, C39 to Cꢀ1  
Device  
Package  
±2±1  
±8±5  
Value  
2± pF  
1± μF  
±.1 μF  
1
2
3
2
44  
Capacitors  
Capacitors  
Capacitors  
±4±2  
4
5
8
9
1±  
11  
12  
13  
14  
15  
1ꢀ  
2
3
3
2
4
4
9
2
2ꢁ  
C1ꢀ to C19, C3ꢁ, C38  
C23, C28  
J1 to Jꢀ  
P1, P4, P11  
P1, P4, P11  
P31, P8  
R1, R2, R32, R34  
R3, Rꢀ, Rꢁ, R8, R11, R14, R33, R42, R51, Rꢀ1  
R4, R5, R3ꢀ, R3ꢁ  
Capacitors  
Capacitors  
SMBs  
Power Connector Posts  
Detachable Connectors  
Connectors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
TAJD  
±2±1  
1± μF  
±.1 μF  
Z5.531.3425.±  
25.ꢀ±2.5453.±  
Wieland  
Wieland  
±4±2  
±4±2  
±4±2  
±4±2  
±4±2  
±4±2  
±4±2  
3ꢀ Ω  
5± Ω  
33 Ω  
± Ω  
499 Ω  
525 Ω  
1 kΩ  
R9, R1±, R12, R13, R2±, R35, R38, R4±, R43  
R15, R1ꢀ, R18, R2ꢀ, R29, R31  
R1ꢁ, R25  
Resistors  
Resistors  
R19, R21, R2ꢁ, R28, R39, R41, R44,  
R4ꢀ to R49, R52, R54, R55, R5ꢁ to Rꢀ±, Rꢀ2 to Rꢁ±  
1ꢁ  
18  
19  
2±  
21  
22  
23  
24  
25  
2ꢀ  
2ꢁ  
4
2
1
8
2
1
2
2
2
2
4
R22 to R24, R3±  
R45, R5ꢀ  
R5±  
RZ1 to RZꢀ, RZ9, RZ1±  
T1, T2  
U1  
U2, U425  
U32, Uꢁ  
U5, Uꢀ  
U11, U12  
Rꢀ, R8, R33, R42  
Resistors  
Resistors  
Resistor  
Resistor Pack  
Transformers  
AD9248  
SNꢁ4LVTH1ꢀ23ꢁ4  
SNꢁ4LVC1G±4  
SNꢁ4VCX8ꢀ  
AD8139  
±4±2  
±4±2  
±4±2  
4± Ω  
1± kΩ  
22 Ω  
22± Ω  
AWT-1WT  
LFCSP-ꢀ4  
TSSOP-48  
SOT-ꢁ±  
SO-14  
Mini-Circuits®  
SO-8/EP  
±4±2  
Resistors  
1±± Ω  
1 P3, P8 implemented as one 8±-pin connector SAMTEC TSW-14±-±8-L-D-RA.  
2 U3, Uꢁ not placed.  
Rev. B | Page 3ꢀ of 48  
 
AD9248  
LFCSP PCB SCHEMATICS  
7 A D  
A D 8  
9 A D  
7 _ D A  
8 _ D A  
9 _ D A  
D D 2 D R V  
B D 7  
B D 6  
B D 5  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
7 _ D B  
6 _ D B  
5 _ D B  
3 2  
3 1  
3 0  
D D D R V  
2 9  
D R G N D  
2 8  
D R G N D 2  
1 0 D A  
1 1 D A  
1 2 D A  
1 3 D A  
T R O A  
1 0 D _ A  
1 1 D _ A  
1 2 D _ A  
1 3 D _ A  
O T R _ A  
O E B _ A  
_ A N W P D  
X _ U S M E L  
E F _ R S H  
B D 4  
B D 3  
B D 2  
B D 1  
B D 0  
4 _ D B  
2 7  
2 6  
2 5  
2 4  
2 3  
3 _ D B  
2 _ D B  
1 _ D B  
0 _ D B  
O E B _ B  
2 2  
_ B N W P D  
2 1  
D F S  
2 0  
D C S  
1 9  
6 2  
6 3  
6 4  
A
C L K _  
D D A 5 V  
E P A  
N E C A  
D V  
N E C B  
V D  
B
C L K _  
1 8  
1 7  
D D A 3 V  
D
6 5  
Figure 50. PCB Schematic (1 of 3)  
Rev. B | Page 3ꢁ of 48  
 
AD9248  
Figure 51. PCB Schematic (2 of 3)  
Rev. B | Page 38 of 48  
AD9248  
Figure 52. PCB Schematic (3 of 3)  
Rev. B | Page 39 of 48  
AD9248  
LFCSP PCB LAYERS  
Figure 53. PCB Top-Side Silkscreen  
Rev. B | Page 4± of 48  
 
AD9248  
Figure 54. PCB Top-Side Copper Routing  
Rev. B | Page 41 of 48  
AD9248  
Figure 55. PCB Ground Layer  
Rev. B | Page 42 of 48  
AD9248  
Figure 56. PCB Split Power Plane  
Rev. B | Page 43 of 48  
AD9248  
Figure 57. PCB Bottom-Side Copper Routing  
Rev. B | Page 44 of 48  
AD9248  
Figure 58. PCB Bottom-Side Silkscreen  
THERMAL CONSIDERATIONS  
The AD9248 LFCSP has an integrated heat slug  
that improves the thermal and electrical properties of the  
package when locally attached to a ground plane at the PCB.  
A thermal (filled) via array to a ground plane beneath the  
part provides a path for heat to escape the package, lowering  
junction temperature. Improved electrical performance  
also results from the reduction in package parasitics due to  
proximity of the ground plane. Recommended array is 0.3 mm  
vias on 1.2 mm pitch. θJA = 26.4°C/W with this recommended  
configuration. Soldering the slug to the PCB is a requirement  
for this package.  
Figure 59. Thermal Via Array  
Rev. B | Page 45 of 48  
 
AD9248  
OUTLINE DIMENSIONS  
9.20  
0.75  
0.60  
0.45  
9.00 SQ  
8.80  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
7.20  
7.00 SQ  
6.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.15  
0.05  
16  
33  
SEATING  
PLANE  
17  
32  
0.08  
COPLANARITY  
VIEW A  
0.23  
0.18  
0.13  
0.40  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBD  
Figure 60. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-1)  
Dimensions shown in millimeters  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
4.85  
4.70 SQ  
4.55  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
33  
32  
16  
0.40  
0.30  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.50 BSC  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 61. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-1)  
Dimensions shown in millimeters  
Rev. B | Page 4ꢀ of 48  
 
AD9248  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
AD9248BSTZ-20  
AD9248BSTZ-40  
AD9248BSTZ-65  
AD9248BSTZRL-20  
AD9248BSTZRL-40  
AD9248BSTZRL-65  
AD9248BCPZ-20  
AD9248BCPZ-40  
AD9248BCPZ-65  
AD9248BCPZRL-20  
AD9248BCPZRL-40  
AD9248BCPZRL-65  
AD9248BST-65EBZ  
AD9248BCP-65EBZ  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Low Profile Quad Flat Package (LQFP)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board with AD9248BSTZ-65  
ST-64-1  
ST-64-1  
ST-64-1  
ST-64-1  
ST-64-1  
ST-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
Evaluation Board with AD9248BCPZ-65  
1 Z = RoHS Compliant Part.  
Rev. B | Page 47 of 48  
 
AD9248  
NOTES  
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04446–0–11/10(B)  
Rev. B | Page 48 of 48  

相关型号:

AD9248BSTZRL-40

14-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9248BSTZRL-65

14-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9249

16 Channel, 14-Bit, 65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9249-65EBZ

16 Channel, 14-Bit, 65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9249BBCZ-65

16 Channel, 14-Bit, 65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9249BBCZRL7-65

16 Channel, 14-Bit, 65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9250

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI

AD9250-170EBZ

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI

AD9250-250EBZ

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI

AD9250BCPZ-170

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI

AD9250BCPZ-250

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI

AD9250BCPZRL7-170

14-Bit, 170 MSPS/250 MSPS, JESD204B,Dual Analog-to-Digital Converter
ADI