AD9540PCB [ADI]

655 MHz Low Jitter Clock Generator; 655 MHz的低抖动时钟发生器
AD9540PCB
型号: AD9540PCB
厂家: ADI    ADI
描述:

655 MHz Low Jitter Clock Generator
655 MHz的低抖动时钟发生器

时钟发生器
文件: 总32页 (文件大小:483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
655 MHz Low Jitter Clock Generator  
AD9540  
FEATURES  
APPLICATIONS  
Excellent intrinsic jitter performance  
25 Mb/s write-speed serial I/O control  
200 MHz phase frequency detector inputs  
Clocking high performance data converters  
Base station clocking applications  
Network (SONET/SDH) clocking  
655 MHz programmable input dividers for the phase fre-  
quency detector (÷M, ÷N) {M, N = 1..16} (bypassable)  
Gigabit Ethernet (GbE) clocking  
Instrumentation clocking circuits  
Programmable RF divider (÷R) {R = 1, 2, 4, 8} (bypassable)  
8 programmable internal clock rates  
Programmable edge delay with 93 fS resolution  
1.8 V supply for device operation  
3.3 V supply for I/O, CML driver, and charge pump output  
Software controlled power-down  
48-lead LFCSP package  
Programmable charge pump current (up to 4 mA)  
Multichip synchronization  
Dual-mode PLL lock detect  
655 MHz CML-mode PECL-compliant driver  
FUNCTIONAL BLOCK DIAGRAM  
AVDD AGND DVDD DGND VCML VCP  
CP_RSET  
CP  
REF, AMP  
REFIN  
REFIN  
M DIVIDER  
N DIVIDER  
PHASE  
FREQUENCY  
DETECTOR  
CHARGE  
PUMP  
CP  
CLK2  
CLK2  
SYNC, PLL  
LOCK  
SYNC_IN/STATUS  
CLK1  
CLK1  
DRV_RSET  
OUT0  
CML  
DIVIDER  
1, 2, 4, 8  
OUT0  
VCML  
SCLK  
SDI/O  
SDO  
CS  
SERIAL  
CONTROL  
PORT  
CLK  
TIMING AND  
CONTROL LOGIC  
DIVCLK  
48  
14  
S2  
S1  
S0  
PHASE/  
FREQUENCY  
PROFILES  
IOUT  
IOUT  
10  
DDS  
DAC  
DAC_RSET  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9540  
TABLE OF CONTENTS  
Product Overview............................................................................. 3  
DDS and DAC ............................................................................ 20  
Modes of Operation....................................................................... 21  
Selectable Clock Frequencies and Selectable Edge Delay..... 21  
Synchronization Modes for Multiple Devices.............................. 21  
Serial Port Operation ..................................................................... 22  
Instruction Byte.......................................................................... 23  
Serial Interface Port Pin Description....................................... 23  
MSB/LSB Transfers .................................................................... 23  
Register Map and Description...................................................... 24  
Control Function Register Descriptions ................................. 27  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Specifications..................................................................................... 4  
Loop Measurement Conditions.................................................. 9  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Typical Application Circuits.......................................................... 18  
Application Circuit Descriptions ............................................. 18  
General Description....................................................................... 19  
PLL Circuitry .............................................................................. 19  
CML Driver................................................................................. 19  
REVISION HISTORY  
7/04—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
AD9540  
PRODUCT OVERVIEW  
The AD9540 is Analog Devices’ first dedicated clocking product  
specifically designed to support the extremely stringent clock-  
ing requirements of the highest performance data converters.  
The device features high performance PLL circuitry, including a  
flexible 200 MHz phase frequency detector and a digitally  
controlled charge pump current. The device also provides a low  
jitter, 655 MHz CML-mode, PECL-compliant output driver with  
programmable slew rates. External VCO rates up to 2.7 GHz are  
supported. Extremely fine tuning resolution (steps less than  
2.33 µHz) is another feature supported by this device. Informa-  
tion is loaded into the AD9540 via a serial I/O port that has a  
device write-speed of 25 Mb/s. The AD9540 frequency  
divider block can also be programmed to support a spread  
spectrum mode of operation.  
The AD9540 is specified to operate over the extended  
automotive range of −40°C to +85°C.  
Rev. 0 | Page 3 of 32  
 
AD9540  
SPECIFICATIONS  
AVDD = DVDD = 1.8 V 5ꢀ; DVDD_I/O = CP_VDD = 3.3 V 5ꢀ (@ TA = 25°C), DAC_RSET = 3.92 kΩ, CP_RSET = 3.09 kΩ,  
DRV_RSET = 4.02 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TOTAL SYSTEM JITTER AND PHASE NOISE FOR  
105 MHz ADC CLOCK GENERATION CIRCUIT  
Converter Limiting Jitter1  
Resultant SNR  
720  
59.07  
fS rms  
dB  
Phase Noise of Fundamental  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
80  
92  
101  
110  
147  
153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@ 100 kHz Offset  
≥1 MHz Offset  
TOTAL SYSTEM PHASE NOISE FOR 210 MHz  
ADC CLOCK GENERATION CIRCUIT  
Phase Noise of Fundamental  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
79.2  
86  
95  
105  
144  
151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@ 100 kHz Offset  
@ 1 MHz Offset  
TOTAL SYSTEM TIME JITTER FOR CLOCKS  
155.52 MHz Clock  
622.08 MHz Clock  
581  
188  
fS rms  
fS rms  
12 kHz to 1.3 MHz bandwidth  
12 kHz to 5 MHz bandwidth  
RF DIVIDER/CML DRIVER EQUIVALENT  
INTRINSIC TIME JITTER  
FIN = 414.72 MHz, FOUT = 51.84 MHz  
FIN = 1244.16 MHz, FOUT = 155.52 MHz  
FIN = 2488.32 MHz, FOUT = 622.08 MHz  
136  
101  
108  
fS rms  
fS rms  
fS rms  
R = 8, BW = 12 kHz to 400 kHz  
R = 8, BW = 12 kHz to 1.3 MHz  
R = 4, BW = 12 kHz to 5 MHz  
RF DIVIDER/CML DRIVER RESIDUAL PHASE NOISE  
FIN = 81.92 MHz, FOUT = 10.24 MHz  
RF Divider R = 8  
@ 10 Hz  
@ 100 Hz  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
≥1 MHz  
120  
128  
137  
145  
150  
153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
FIN = 983.04 MHz, FOUT = 122.88 MHz  
RF Divider R = 8  
@ 10 Hz  
@ 100 Hz  
@ 1 KHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
>3 MHz  
115  
125  
132  
142  
146  
151  
153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. 0 | Page 4 of 32  
 
AD9540  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF Divider R = 4  
FIN = 1966.08 MHz, FOUT = 491.52 MHz  
@ 10 Hz  
@ 100 Hz  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
>3 MHz  
105  
112  
122  
130  
141  
144  
146  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
FIN = 2488 MHz, FOUT = 622 MHz  
@ 10 Hz  
@ 100 Hz  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
≥3 MHz  
RF Divider R = 4  
100  
108  
115  
125  
135  
140  
142  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
PHASE FREQUENCY DETECTOR/CHARGE PUMP  
REFIN Input  
Input Frequency2  
÷M Set to Divide by at Least 4  
÷M Bypassed  
Input Voltage Levels  
Input Capacitance  
655  
200  
600  
10  
MHz  
MHz  
mV p-p  
pF  
200  
450  
Input Resistance  
1500  
CLK2 Input  
Input Frequency  
÷N Set to Divide by at Least 4  
÷N Bypassed  
Input Voltage Levels  
Input Capacitance  
655  
200  
600  
10  
MHz  
MHz  
mV p-p  
pF  
mA  
%
%
V
mA  
200  
0.5  
450  
Input Resistance  
1500  
Charge Pump Source/Sink Maximum Current  
Charge Pump Source/Sink Accuracy  
Charge Pump Source/Sink Matching  
Charge Pump Output Compliance Range3  
STATUS Drive Strength  
PHASE FREQUENCY DETECTOR NOISE FLOOR  
@ 50 kHz PFD Frequency  
@ 2 MHz PFD Frequency  
@ 100 MHz PFD Frequency  
@ 200 MHz PFD Frequency  
RF DIVIDER (CLK1 ) INPUT SECTION (÷R)  
RF Divider Input Range  
4
5
2
CPVDD − 0.5  
2
148  
133  
116  
113  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
1
2700  
MHz  
DDS SYSCLK not to  
exceed 400 MSPS  
Input Capacitance (DC)  
Input Impedance (DC)  
Input Duty Cycle  
Input Power/Sensitivity  
Input Voltage Level  
3
pF  
%
dBm  
mV p-p  
1500  
50  
42  
−10  
200  
58  
+4  
1000  
Single-ended, into a 50 Ω load4  
Rev. 0 | Page 5 of 32  
AD9540  
Parameter  
Min  
Typ  
720  
1.75  
Max  
Unit  
Test Conditions/Comments  
CML OUTPUT DRIVER (OUT0)  
Differential Output Voltage Swing5  
Maximum Toggle Rate  
Common-Mode Output Voltage  
Output Duty Cycle  
mV  
50 Ω load to supply, both lines  
655  
42  
V
%
58  
Output Current  
Continuous6  
Rising Edge Surge  
Falling Edge Surge  
Output Rise Time  
Output Fall Time  
7.2  
mA  
mA  
mA  
ps  
20.9  
13.5  
250  
250  
100 Ω terminated, 5 pF load  
100 Ω terminated, 5 pF load  
ps  
LOGIC INPUTS (SDI/O, I/O_RESET, RESET,  
I/O_UPDATE, S0, S1, S2, SYNC_IN)7  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Maximum Input Capacitance  
LOGIC OUTPUTS (SDO, SYNC_OUT, STATUS)8  
VOH, Output High Voltage  
VOH, Output Low Voltage  
IOH  
2.0  
2.7  
V
V
µA  
pF  
0.8  
5
1
3
V
V
µA  
µA  
0.4  
100  
100  
IOL  
POWER CONSUMPTION  
Total Power Consumed, All Functions On  
IAVDD  
IDVDD  
IDVDD_I/O  
400  
85  
45  
20  
15  
mW  
mA  
mA  
mA  
mA  
mW  
ICPVDD  
Power-Down Mode  
80  
WAKE-UP TIME (FROM POWER-DOWN MODE)  
Digital Power-Down (CFR1<7>)  
DAC Power-Down (CFR2<39>)  
RF Divider Power-Down (CFR2<23>)  
Clock Driver Power-Down (CFR2<20>)  
Charge Pump Full Power-Down (CFR2<4>)  
Charge Pump Quick Power-Down (CFR2<3>)  
CRYSTAL OSCILLATOR (ON REFIN INPUT)  
Operating Range  
12  
7
400  
6
10  
150  
ns  
µs  
ns  
µs  
µs  
ns  
20  
25  
30  
MHz  
Residual Phase Noise (@ 25 MHz)  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
120  
140  
157  
164  
168  
@ 100 kHz Offset  
>1 MHz Offset  
DIGITAL TIMING SPECIFICATIONS  
CS  
6
ns  
ns  
ns  
ns  
ns  
ns  
to SCLK Setup Time TPRE  
Period of SCLK (Write) TSCLKW  
Period of SCLK (Read) TSCLKR  
Serial Data Setup Time TDSU  
Serial Data Hold Time TDHD  
Data Valid Time TDV  
40  
400  
6.5  
0
40  
Rev. 0 | Page 6 of 32  
AD9540  
Parameter  
Min  
7
7
Typ  
Max  
Unit  
ns  
ns  
Test Conditions/Comments  
I/O Update to SYNC_CLK Setup Time  
PS<2:0> to SYNC_CLK Setup Time  
Latencies/Pipeline Delays  
I/O Update to DAC Frequency Change  
I/O Update to DAC Phase Change  
PS<2:0> to DAC Frequency Change  
PS<2:0> to DAC Phase Change  
I/O Update to CP_OUT Scaler Change  
33  
33  
29  
29  
4
SYSCLKCycles  
SYSCLKCycles  
SYSCLKCycles  
SYSCLKCycles  
SYSCLKCycles  
SYSCLK Cycles  
I/O Update to Frequency Accumulator  
Step Size Change  
4
DAC OUTPUT CHARACTERISTICS  
Resolution  
Full-Scale Output Current  
Gain Error  
10  
10  
Bits  
mA  
% FS  
µA  
15  
+10  
0.6  
−10  
Output Offset  
Output Capacitance  
5
pF  
Voltage Compliance Range  
Wideband SFDR (DC to Nyquist)  
10 MHz Analog Out  
40 MHz Analog Out  
80 MHz Analog Out  
AVDD − 0.50  
AVDD + 0.50  
65  
62  
57  
56  
54  
dBc  
dBc  
dBc  
dBc  
dBc  
120 MHz Analog Out  
160 MHz Analog Out  
Narrow-Band SFDR  
10 MHz Analog Out ( 1 MHz)  
10 MHz Analog Out ( 250 kHz)  
10 MHz Analog Out ( 50 kHz)  
40 MHz Analog Out ( 1 MHz)  
40 MHz Analog Out ( 250 kHz)  
40 MHz Analog Out ( 50 kHz)  
80 MHz Analog Out ( 1 MHz)  
80 MHz Analog Out ( 250 kHz)  
80 MHz Analog Out ( 50 kHz)  
120 MHz Analog Out ( 1 MHz)  
120 MHz Analog Out ( 250 kHz)  
120 MHz Analog Out ( 50 kHz)  
160 MHz Analog Out ( 1 MHz)  
160 MHz Analog Out ( 250 kHz)  
160 MHz Analog Out ( 50 kHz)  
DAC RESIDUAL PHASE NOISE  
19.7 MHz FOUT  
83  
85  
86  
82  
84  
87  
80  
82  
86  
80  
82  
84  
80  
82  
84  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
@ 100 kHz Offset  
>1 MHz Offset  
122  
134  
143  
150  
158  
160  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. 0 | Page 7 of 32  
AD9540  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
51.84 MHz FOUT  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
@ 100 kHz Offset  
> 1 MHz Offset  
105 MHz Analog Out  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
@ 100 kHz Offset  
>1 MHz Offset  
155.52 MHz Analog Out  
@ 10 Hz Offset  
@ 100 Hz Offset  
@ 1 kHz Offset  
@ 10 kHz Offset  
@ 100 kHz Offset  
>1 MHz Offset  
110  
121  
135  
142  
148  
153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
105  
115  
126  
132  
140  
145  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100  
112  
123  
131  
138  
144  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
1 The SNR of a 14-bit ADC was measured with an ENCODE rate of 105 MSPS and an AIN of 170 MHz. The resultant SNR was known to be limited by the jitter of the clock,  
not by the noise on the AIN signal. From this SNR value, the jitter affecting the measurement can be back calculated.  
2 Driving the PLLREF input buffer. The crystal oscillator section of this input stage performs up to only 30 MHz.  
3 The charge pump output compliance range is functionally 0.2 V to (CPVDD − 0.2 V). The value listed here is the compliance range for 5% matching.  
4 The input impedance of the CLK1 input is 1500 Ω. However, to provide matching on the clock line, an external 50 Ω load is used.  
5 Measured as peak-to-peak between DAC outputs.  
6 For a 4.02 kΩ resistor from DRV_RSET to GND.  
7 IBIS models for the digital I/O pins available upon request.  
8 Assumes a 1 mA load.  
Rev. 0 | Page 8 of 32  
 
AD9540  
LOOP MEASUREMENT CONDITIONS  
622 MHz OC-12 Clock  
105 MHz Converter Clock  
VCO = Sirenza 190-640T  
VCO = Sirenza 190-845T  
Reference = Wenzel 500-10116 (30.3 MHz)  
Loop Filter = 10 kHz BW, 60° Phase Margin  
Reference = Wenzel 500-10116 (30.3 MHz)  
Loop Filter = 10 kHz BW, 45° Phase Margin  
C1 = 170 nF, R1 = 14.4 Ω, C2 = 5.11 µF, R2 = 89.3 Ω,  
C3 Omitted  
C1 = 117 nF, R1 = 28 Ω, C2 = 1.6 µF, R2 = 57.1 Ω, C3 = 53.4 nF  
CP_OUT = 4 mA (Scaler = ×8)  
CP_OUT = 4 mA (Scaler = ×8)  
÷R = 2, ÷M = 1, ÷N = 1  
÷R = 8, ÷M = 1, ÷N = 1  
R2  
INPUT  
OUTPUT  
R1  
C2  
C1  
C3  
Figure 2. Generic Loop Filter  
Rev. 0 | Page 9 of 32  
 
AD9540  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
2 V  
2 V  
Analog Supply Voltage (AVDD)  
Digital Supply Voltage (DVDD)  
Digital I/O Supply Voltage  
(DVDD_I/0)  
3.6 V  
Charge Pump Supply Voltage  
(CPVDD)  
3.6 V  
Maximum Digital Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range  
(Soldering 10 sec)  
−0.5 V to DVDD_I/O + 0.5 V  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Junction Temperature  
Thermal Resistance (θJA)  
150°C  
26°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other condition s above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features proprie-  
tary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic  
discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
Rev. 0 | Page 10 of 32  
 
AD9540  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
AGND  
36 CP  
PIN 1  
INDICATOR  
2
AVDD  
35 VCP  
3
AGND  
34 AGND  
33 OUT0  
32 OUT0  
31 VCML  
30 AGND  
4
AVDD  
5
IOUT  
6
IOUT  
AD9540  
TOP VIEW  
7
8
AVDD  
AGND  
(Not to Scale)  
29  
28  
27  
26  
25  
CLK1  
CLK1  
AVDD  
AGND  
DVDD  
9
I/O_RESET  
RESET  
10  
11  
12  
DVDD  
DGND  
13 14 15 16 17 18 19 20 21 22 23 24  
Figure 3. 48-Lead LFCSP Pin Configuration  
NOTE: The exposed paddle on this package is an electrical connection (Pin 49) as well as a thermal enhancement. For the device to  
function properly, the paddle must be attached to analog ground.  
Rev. 0 | Page 11 of 32  
 
AD9540  
Table 3. 48-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3, 8, 26, 30,  
34, 37, 43, 49  
AGND  
Analog Ground.  
2, 4, 7, 27, 38,  
44, 48  
AVDD  
Analog Core Supply (1.8 V).  
5
6
9
IOUT  
IOUT  
DAC Analog Output.  
DAC Analog Complementary Output.  
I/O_RESET  
Resets the serial port when synchronization is lost in communications but does not reset the de-  
vice itself (active high). When not being used, this pin should be forced low, because it floats to the  
threshold value.  
10  
RESET  
DVDD  
DGND  
SDO  
Master RESET. Clears all accumulators and returns all registers to their default values (active high).  
Digital Core Supply (1.8 V).  
Digital Ground.  
11, 25  
12, 24  
13  
Serial Data Output. Used only when device is programmed for 3-wire serial data mode.  
14  
SDI/O  
Serial Data I/O. When the part is programmed for 3-wire serial data mode, this is input only; in  
2-wire mode, it serves as both the input and output.  
15  
16  
SCLK  
CS  
Serial Data Clock. Provides the clock signal for the serial data port.  
Active Low Signal That Enables Shared Serial Buses. When brought high, the serial port ignores the  
serial data clocks.  
17  
18  
19  
DVDD_I/O  
SYNC_OUT  
SYNC_IN/STATUS  
Digital Interface Supply (3.3 V).  
Synchronization Clock Output.  
Bidirectional Dual Function Pin. Depending on device programming, this pin is either the DDS’s  
synchronization input (allows alignment of multiple subclocks), or the PLL lock detect output signal.  
20  
I/O_UPDATE  
This input pin, when set high, transfers the data from the I/O buffers to the internal registers on the  
rising edge of the internal SYNC_CLK, which can be observed on SYNC_OUT.  
21, 22, 23  
S0, S1, S2  
CLK1  
Clock Frequency and Delay Select Pins. Specify one of eight clock frequency/delay profiles.  
RF Divider and Internal Clock Input.  
28  
29  
31  
32  
33  
35  
CLK1  
RF Divider and Internal Clock Input.  
CML Driver Supply Pin.  
CML Driver Complementary Output.  
VCML  
OUT0  
OUT0  
VCP  
CML Driver Output.  
Charge Pump Supply Pin (3.3 V). To minimize noise on the charge pump, isolate this supply from  
DVDD_I/O.  
36  
39  
40  
41  
42  
45  
46  
47  
CP  
REFIN  
REFIN  
Charge Pump Output.  
Phase Frequency Detector Reference Input.  
Phase Frequency Detector Reference Complementary Input.  
Phase Frequency Detector Oscillator (Feedback) Complementary Input.  
Phase Frequency Detector Oscillator (Feedback) Input.  
Charge Pump Current Set (Program Charge Pump Current with a Resistor to AGND).  
CML Driver Output Current Set (Program CML Output Current with a Resistor to AGND).  
DAC Output Current Set (Program DAC Output Current with a Resistor to AGND).  
CLK2  
CLK2  
CP_RSET  
DRV_RSET  
DAC_RSET  
NOTE: The exposed paddle on this package is an electrical connection (Pin 49) as well as a thermal enhancement. In order for the device  
to function properly, the paddle must be attached to analog ground.  
Rev. 0 | Page 12 of 32  
AD9540  
TYPICAL PERFORMANCE CHARACTERISTICS  
DELTA 1 [T1]  
–85.94dB  
RBW 100Hz RF ATT  
VBW 100Hz  
DELTA 1 [T1]  
–84.94dB  
2.10420842kHz  
RBW 100Hz RF ATT  
VBW 100Hz  
20dB  
dB  
20dB  
dB  
A
REF LVL  
0dBm  
REF LVL  
0dBm  
–2.10420842kHz  
SWT  
25s UNIT  
SWT  
25s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
1
A
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
1
1
–100  
–100  
CENTER 10.1MHz  
5kHz/  
SPAN 50kHz  
CENTER 40.1MHz  
5kHz/  
SPAN 50kHz  
Figure 4. AD9540 DAC Performance: 400 MSPS Clock,  
10 MHz FOUT, 50 kHz Span  
Figure 7. AD9540 DAC Performance: 400 MSPS Clock,  
40 MHz FOUT, 50 kHz Span  
DELTA 1 [T1]  
–86.03dB  
–368.73747495kHz  
RBW 500Hz RF ATT  
VBW 500Hz  
DELTA 1 [T1]  
–80.17dB  
–200.40080160kHz  
RBW 500Hz RF ATT  
VBW 500Hz  
20dB  
dB  
20dB  
dB  
REF LVL  
0dBm  
REF LVL  
0dBm  
SWT  
20s UNIT  
SWT  
20s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
1
A
A
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
1
1
–100  
–100  
CENTER 10.1MHz  
100kHz/  
SPAN 1MHz  
CENTER 40.1MHz  
100kHz/  
SPAN 1MHz  
Figure 5. AD9540 DAC Performance: 400 MSPS Clock,  
10 MHz FOUT, 1 MHz Span  
Figure 8. AD9540 DAC Performance: 400 MSPS Clock,  
40 MHz FOUT, 1 MHz Span  
DELTA 1 [T1]  
–64.54dB  
100.20040080MHz  
RBW 10kHz RF ATT  
VBW 10kHz  
DELTA 1 [T1]  
–61.61dB  
100.20040080MHz  
RBW 10kHz RF ATT  
VBW 10kHz  
20dB  
dB  
20dB  
dB  
REF LVL  
0dBm  
REF LVL  
0dBm  
SWT  
5s UNIT  
SWT  
5s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
1
A
A
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
1
1
–80  
–90  
–80  
–90  
–100  
–100  
START 0Hz  
20MHz/  
STOP 200MHz  
START 0Hz  
20MHz/  
STOP 200MHz  
Figure 6. AD9540 DAC Performance: 400 MSPS Clock,  
10 MHz FOUT, 200 MHz Span  
Figure 9. AD9540 DAC Performance: 400 MSPS Clock,  
40 MHz FOUT, 200 MHz Span (Nyquist)  
Rev. 0 | Page 13 of 32  
 
 
AD9540  
DELTA 1 [T1]  
–83.72dB  
–2.70541082kHz  
RBW 100Hz RF ATT  
VBW 100Hz  
DELTA 1 [T1]  
–85.98dB  
–2.90581162kHz  
RBW 100Hz RF ATT  
VBW 100Hz  
20dB  
dB  
20dB  
dB  
REF LVL  
0dBm  
REF LVL  
0dBm  
SWT  
25s UNIT  
SWT  
25s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
1
A
A
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
1
1
–100  
–100  
CENTER 100.1MHz  
5kHz/  
SPAN 50kHz  
CENTER 159.5MHz  
5kHz/  
SPAN 50kHz  
Figure 10. AD9540 DAC Performance: 400 MSPS Clock,  
100 MHz FOUT, 50 kHz Span  
Figure 13. AD9540 DAC Performance: 400 MSPS Clock,  
160 MHz FOUT, 50 kHz Span  
DELTA 1 [T1]  
–56.47dB  
–400.80160321kHz  
RBW 500Hz RF ATT  
VBW 500Hz  
DELTA 1 [T1]  
–82.83dB  
262.52505010kHz  
RBW 500Hz RF ATT  
VBW 500Hz  
20dB  
dB  
20dB  
dB  
REF LVL  
0dBm  
REF LVL  
0dBm  
SWT  
20s UNIT  
SWT  
20s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
A
A
1
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
1
–80  
–90  
–80  
–90  
1
–100  
–100  
CENTER 100.1MHz  
100kHz/  
SPAN 1kHz  
CENTER 159.5MHz  
100kHz/  
SPAN 1MHz  
Figure 11. AD9540 DAC Performance: 400 MSPS Clock,  
100 MHz FOUT,1 MHz Span  
Figure 14. AD9540 DAC Performance: 400 MSPS Clock,  
160 MHz FOUT, 1 MHz Span  
DELTA 1 [T1]  
–48.71dB  
–400.80160321kHz  
RBW 10kHz RF ATT  
VBW 10kHz  
DELTA 1 [T1]  
–54.90dB  
–78.55711423MHz  
RBW 10kHz RF ATT  
VBW 10kHz  
20dB  
dB  
20dB  
dB  
REF LVL  
0dBm  
REF LVL  
0dBm  
SWT  
5s UNIT  
SWT  
5s UNIT  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
1
1
A
A
1 AP  
1 AP  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
1
1
–80  
–90  
–80  
–90  
–100  
–100  
START 0Hz  
20MHz/  
STOP 200MHz  
START 0Hz  
20MHz/  
STOP 200MHz  
Figure 12. AD9540 DAC Performance: 400 MSPS Clock,  
100 MHz FOUT, 200 MHz Span  
Figure 15. AD9540 DAC Performance: 400 MSPS Clock,  
160 MHz FOUT, 200 MHz Span  
Rev. 0 | Page 14 of 32  
AD9540  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. AD9540 DDS/DAC Residual Phase Noise  
400 MHz Clock, 19.7 MHz Output  
Figure 19. AD9540 DDS/DAC Residual Phase Noise  
400 MHz Clock, 155.52 MHz Output  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M 2M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. AD9540 DDS/DAC Residual Phase Noise  
400 MHz Clock, 51.84 MHz Output  
Figure 20. RF Divider and CML Driver Residual  
Phase Noise (81.92 MHz In, 10.24 MHz Out)  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M 2M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. AD9540 DDS/DAC Residual Phase Noise  
400 MHz Clock, 105.3 MHz Output  
Figure 21. RF Divider and CML Driver Residual  
Phase Noise (157.6 MHz In, 19.7 MHz Out)  
Rev. 0 | Page 15 of 32  
AD9540  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. RF Divider and CML Driver Residual  
Phase Noise (410.4 MHz In, 51.3 MHz Out)  
Figure 25. RF Divider and CML Driver Residual  
Phase Noise (1240 MHz In, 155 MHz Out)  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–50  
–40  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–170  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. RF Divider and CML Driver Residual  
Phase Noise (842.4 MHz In, 105.3 MHz Out)  
Figure 26. RF Divider and CML Driver Residual  
Phase Noise (1680 MHz In, 210 MHz Out)  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–50  
–40  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–170  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. RF Divider and CML Driver Residual  
Phase Noise (983.04 MHz In, 122.88 MHz Out)  
Figure 27. RF Divider and CML Driver Residual  
Phase Noise (1966.08 MHz In, 491.52 MHz Out)  
Rev. 0 | Page 16 of 32  
AD9540  
0
–10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
20M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. RF Divider and CML Driver Residual  
Phase Noise (2488 MHz In, 622 MHz Out)  
Figure 30. Total System Phase Noise for 210 MHz Converter Clock  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–170  
–180  
10  
100  
1k  
10k  
100k  
1M  
20M  
10  
100  
1k  
10k  
100k  
1M  
20M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. Total System Phase Noise for 105 MHz Converter Clock  
Figure 31. Total System Phase Noise for 622 MHz OC-12 Clock  
Rev. 0 | Page 17 of 32  
AD9540  
TYPICAL APPLICATION CIRCUITS  
PHASE  
DETECTOR  
25MHz  
CRYSTAL  
÷M  
REFIN  
400MHz  
CHARGE  
PUMP  
VCO  
÷N  
CLK2  
CML  
DRIVER  
CLOCK1  
CLOCK1'  
÷R  
AD9540  
DDS  
DAC  
Figure 32. Dual Clock Configuration  
PHASE  
DETECTOR  
EXTERNAL  
REFERENCE  
÷
M
REFIN  
622MHz  
CHARGE  
VCO  
PUMP  
CLK2  
÷
N
÷
R
CML  
DRIVER  
CLOCK1  
CLOCK2  
AD9540  
DDS  
DAC  
Figure 33. Optical Networking Clock  
APPLICATION CIRCUIT DESCRIPTIONS  
Dual Clock Configuration: AD9540 Configured in a  
Dual-Clock Configuration  
In this loop, M = 1, N = 16, and R = 4. The DDS tuning word is  
also equals to ¼, so that the frequency of CLOCK 1’ equals the  
frequency of CLOCK 1. Phase adjustments in the DDS provide  
14-bit programmable rising edge delay capability of CLOCK 1’  
with respect to CLOCK 1 (see Figure 32).  
Optical Networking Clock: AD9540 Configured as an  
Optical Networking Clock  
The loop can be used to generate a 622 MHz clock for OC12.  
The DDS can be programmed to output 8 kHz to serve as a base  
reference for other circuits in the subsystem (see Figure 33).  
Rev. 0 | Page 18 of 32  
 
 
 
AD9540  
GENERAL DESCRIPTION  
PLL CIRCUITRY  
CML DRIVER  
The AD9540 includes an RF divider (divide-by-R), a 48-bit DDS  
core, a 14-bit programmable delay adjustment, a 10-bit DAC, a  
phase frequency detector, and a programmable output current  
charge pump. Incorporating these blocks together, users can  
generate many useful circuits for clock synthesis. A few simple  
examples are shown in the Typical Performance Characteristics  
section.  
An on-chip current mode logic (CML) driver is also included.  
This CML driver generates very low jitter clock edges. The  
outputs of the CML driver are current outputs that drive PECL  
levels when terminated into a 100 Ω load. The continuous  
output current of the driver is programmed by attaching a resis-  
tor from the DRV_RSET pin to ground (nominally 4.02 kΩ for  
a continuous current of 7.2 mA). An optional on-chip current  
programming resistor is enabled by setting a bit in the control  
register. The rising edge and falling edge slew rates are inde-  
pendently programmable to help control overshoot and ringing  
by the application of surge current during rising edge and  
falling edge transitions (see Figure 34). There is a default surge  
current of 7.6 mA on the rising edge and of 4.05 mA on the  
falling edge. Bits in the control register enable additional rising  
edge and falling edge surge current, as well disable the default  
surge current (see the Control Function Register Descriptions  
section for details). The CML driver can be driven by:  
The RF divider accepts differential or single-ended signals up to  
2.7 GHz on the CLK1 input pin. The RF divider also supplies  
the SYSCLK input to the DDS. Because the DDS operates only  
up to 400 MSPS, device function requires that for any CLK1  
signal > 400 MHz, the RF divider must be engaged. The RF di-  
vider can be programmed to take values of 1, 2, 4, or 8. The ratio  
for the divider is programmed in the control register. The out-  
put of the divider can be routed to the input of the on-chip  
CML driver. For lower frequency input signals, it is possible to  
use the divider to divide the input signal to the CML driver and  
to use the undivided input of the divider as the SYSCLK input  
to the DDS, or vice versa. In all cases, the clock to the DDS  
should not exceed 400 MSPS.  
RF divider input (CLK1 directly to the CML driver)  
RF divider output  
The on-chip phase frequency detector has two differential  
inputs, REFIN (the reference input) and CLK2 (the feedback or  
oscillator input). These differential inputs can be driven by  
single-ended signals. When doing so, tie the unused input  
through a 100 pF capacitor to the analog supply (AVDD). The  
maximum speed of the phase frequency detector inputs is  
200 MHz. Each of the inputs has a buffer and a divider (÷M on  
REFIN and ÷N on CLK2) that operates up to 655 MHz. If the  
signal exceeds 200 MHz, the divider must be used. The dividers  
are programmed through the control registers and take any  
integer value between 1 and 16.  
CLK2 input  
RISING EDGE SURGE  
I(t)  
CONTINUOUS  
CONTINUOUS  
The REFIN input also has the option of engaging an in-line  
oscillator circuit. Engaging this circuit means that the REFIN  
input can be driven with a crystal in the range of 20 MHz ≤  
REFIN ≤ 30 MHz.  
FALLING EDGE SURGE  
The charge pump outputs a current in response to an error  
signal generated in the phase frequency detector. The output  
current is programmed through by placing a resistor (CP_RSET  
from the CP_RSET pin to ground. The value is dictated by:  
t
)
~250ps  
~250ps  
Figure 34. Rising Edge and Falling Edge Surge Current Out of the  
CML Clock Driver, as Opposed to the Steady State Continuous Current  
1.55  
CP_IOUT =  
CP_R  
SET  
This sets the charge pump’s reference output current. Also, a  
programmable scaler multiplies this base value by any integer  
from 1 to 8, programmable through the CP current scale bits in  
the Control Function Register 2, CFR2<2:0>.  
Rev. 0 | Page 19 of 32  
 
 
 
AD9540  
Finally, the amplitude words are piped to a 10-bit DAC. Because  
the DAC is a sampled data system, the output is a reconstructed  
sine wave that needs to be filtered to take high frequency im-  
ages out of the spectrum. The DAC is a current steering DAC  
that is AVDD referenced. To get a measurable voltage output,  
the DAC outputs must be terminated through a load resistor to  
AVDD, typically 50 Ω. At positive full scale, IOUT sinks no cur-  
rent and the voltage drop across the load resistor is 0. However,  
DDS AND DAC  
The precision frequency division within the device is accom-  
plished using DDS technology. The DDS can control the digital  
phase relationships by clocking a 48-bit accumulator. The  
incremental value loaded into the accumulator, known as the  
frequency tuning word, controls the overflow rate of the  
accumulator. Similar to a sine wave completing a 2π radian  
revolution, the overflow of the accumulator is cyclical in nature  
and generates a fundamental frequency according to  
IOUT  
the  
output sinks the DAC’s programmed full-scale output  
current, causing the maximum output voltage drop across the  
load resistor. At negative full-scale, the situation is reversed and  
IOUT sinks the full-scale current (and generates the maximum  
FTW ×( fs )  
fo =  
{0 FTW 247 }  
248  
IOUT  
drop across the load resistor), while  
sinks no current  
The instantaneous phase of the sine wave is therefore the output  
of the phase accumulator block. This signal may be phase-offset  
by programming an additive digital phase that is added to each  
phase sample coming out of the accumulator.  
(and generates no voltage drop). At midscale, the outputs sink  
equal amounts of current, generating equal voltage drops.  
These instantaneous phase values are then piped through a  
phase-to-amplitude conversion (sometimes called an angle-to-  
amplitude conversion or AAC) block. This algorithm follows a  
cos(x) relationship, where x is the phase coming out of the  
phase offset block, normalized to 2π.  
Rev. 0 | Page 20 of 32  
 
AD9540  
MODES OF OPERATION  
SELECTABLE CLOCK FREQUENCIES AND SELECT-  
ABLE EDGE DELAY  
Automatic Synchronization  
In automatic synchronization mode, the device is placed in slave  
mode and automatically aligns the internal SYNC_CLK to a  
master SYNC_CLK signal, supplied on the SYNC_IN input.  
When this bit is enabled, the STATUS is not available as an  
output; however, an out-of-lock condition can be detected by  
reading Control Function Register 1 and checking the status of  
the STATUS_Error bit. The automatic synchronization function  
is enabled by setting the Control Function Register 1 automatic  
synchronization bit, CFR1<3>. To employ this function at  
higher clock rates (SYNC_CLK > 62.5 MHz, SYSCLK >  
250 MHz), the high speed sync enable bit (CFR1<0>) should be  
set as well.  
Because the precision driver is implemented using a DDS, it  
is possible to store multiple clock frequency words to enable  
externally switchable clock frequencies. The phase accumulator  
runs at a fixed frequency, according to the active profiles clock  
frequency word. Likewise, any delay applied to the rising and  
falling edges is a static value that comes from the delay shift  
word of the active profile. The device has eight different  
phase/frequency profiles, each with its own 48-bit clock fre-  
quency word and 14-bit delay shift word. Profiles are selected by  
applying their digital value on the clock select (S0, S1, and S2)  
pins. It is not possible to use the phase offset of one profile and  
the frequency tuning word of another.  
Manual Synchronization, Hardware Controlled  
In this mode, the user controls the timing relationship of the  
SYNC_CLK with respect to SYSCLK. When hardware manual  
synchronization is enabled, the SYNC_IN/ STATUS pin  
becomes a digital input. For each rising edge detected on the  
SYNC_IN input, the device advances the SYNC_IN rising edge  
by one SYSCLK period. When this bit is enabled, the STATUS is  
not available as an output; however, an out-of-lock condition  
can be detected by reading Control Function Register 1 and  
checking the status of the STATUS_Error bit. This synchro-  
nization function is enabled by setting the hardware manual  
synchronization enable bit, CFR1<1>.  
SYNCHRONIZATION MODES FOR MULTIPLE DEVICES  
In a DDS system, the SYNC_CLK is derived internally from the  
master system clock, SYSCLK, with a ÷4 divider. Because the  
divider does not power up to a known state, multiple devices  
in a system might have staggered clock phase relationships,  
because each device can potentially generate the SYNC_CLK  
rising edge from any one of four rising edges of SYSCLK. This  
ambiguity can be resolved by employing digital synchronization  
logic to control the phase relationships of the derived clocks  
among different devices in the system. Note that the synchroni-  
zation functions included on the AD9540 control only the  
timing relationships among different digital clocks. They do not  
compensate for the analog timing delay on the system clock due  
to mismatched phase relationships on the input clock, CLK1  
(see Figure 35).  
Manual Synchronization, Software Controlled  
In this mode, the user controls the timing relationship between  
SYNC_CLK and SYSCLK through software programming.  
When the software manual synchronization bit (CFR1<2>) is  
set high, the SYNC_CLK is advanced by one SYSCLK cycle.  
Once this operation is complete, the bit is cleared. The user can  
set this bit repeatedly to advance the SYNC_CLK rising edge  
multiple times. Because the operation does not use the  
SYNCHRONIZATION FUNCTIONS CAN ALIGN  
DIGITAL CLOCK RELATIONSHIPS, THEY  
CANNOT DESKEW THE EDGES OF CLOCKS  
2
SYSCLK DUT1  
0
1
3
0
SYNC_IN/ STATUS pin as a SYNC_IN input, the STATUS sig-  
nal can be monitored on the STATUS pin during this operation.  
SYNC CLK  
DUT1  
SYSCLK DUT2  
3
0
1
2
3
SYNC CLK DUT2 w/o  
SYNC_CLK ALIGNED  
SYNC CLK DUT2 w/  
SYNC_CLK ALIGNED  
Figure 35. Synchronization Functions: Capabilities and Limitations  
Rev. 0 | Page 21 of 32  
 
 
 
AD9540  
SERIAL PORT OPERATION  
register being accessed. For example, when accessing Control  
Function Register 2, which is four bytes wide, Phase 2 requires that  
four bytes be transferred. If accessing a frequency tuning word,  
which is six bytes wide, Phase 2 requires that six bytes be trans-  
ferred. After transferring all data bytes per the instruction, the  
communication cycle is completed.  
An AD9540 serial data-port communication cycle has two  
phases. Phase 1 is the instruction cycle, which is the writing of  
an instruction byte to the AD9540, coincident with the first  
eight SCLK rising edges. The instruction byte provides the  
AD9540 serial port controller with information regarding the  
data transfer cycle, which is Phase 2 of the communication cycle.  
The Phase 1 instruction byte defines whether the upcoming data  
transfer is read or write and the serial address of the  
register being accessed.  
At the completion of any communication cycle, the AD9540  
serial port controller expects the next eight rising SCLK edges  
to be the instruction byte of the next communication cycle. All  
data input to the AD9540 is registered on the rising edge of  
SCLK. All data is driven out of the AD9540 on the falling edge  
of SCLK. Figure 36 through Figure 39 are useful in understand-  
ing the general operation of the AD9540 serial port.  
The first eight SCLK rising edges of each communication cycle  
are used to write the instruction byte into the AD9540. The  
remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9540  
and the system controller. The number of bytes transferred  
during Phase 2 of the communication cycle is a function of the  
.
INSTRUCTION CYCLE  
CS  
DATA TRANSFER CYCLE  
SCLK  
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
0
SDI/O  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
Figure 36. Serial Port Write Timing—Clock Stall Low  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I
I
I
I
I
I
I
I
0
DON'T CARE  
SDI/O  
SDO  
7
6
5
4
3
2
1
D
D
D
D
D
D
D
D
O 0  
O 7  
O 6  
O 5  
O 4  
O 3  
O 2  
O 1  
Figure 37. 3-Wire Serial Port Read Timing—Clock Stall Low  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
0
SDI/O  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
Figure 38. Serial Port Write Timing−Clock Stall High  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
SDI/O  
7
6
5
4
3
2
1
0
O 7  
O 6  
O 5  
O 4  
O 3  
O 2  
O 1 O 0  
Figure 39. 2-Wire Serial Port Read Timing−Clock Stall High  
Rev. 0 | Page 22 of 32  
 
 
 
AD9540  
MSB/LSB TRANSFERS  
INSTRUCTION BYTE  
The AD9540 serial port can support both most significant bit  
(MSB) first or least significant bit (LSB) first data formats. This  
functionality is controlled by the LSB first bit in Control  
Register 1 (CFR1<15>). The default value of this bit is low (MSB  
first). When CFR1 <15> is set high, the AD9540 serial port is in  
LSB first format. The instruction byte must be written in the  
format indicated by CFR1 <15>. If the AD9540 is in LSB first  
mode, the instruction byte must be written from LSB to MSB.  
However, the instruction byte phase of the communications  
cycle still precedes the data transfer cycle.  
The instruction byte contains the following information:  
Table 4.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/Wb  
X
X
A4  
A3  
A2  
A1  
A0  
R/Wb—Bit 7 of the instruction byte determines whether a read  
or write data transfer occurs after the instruction byte write.  
Logic 1 indicates a read operation. Logic 0 indicates a write  
operation.  
For MSB first operation, all data written to (read from) the  
AD9540 are in MSB first order. If the LSB mode is active, all  
data written to (read from) the AD9540 are in LSB first order.  
X, X—Bits 6 and 5 of the instruction byte are Don’t Care.  
A4, A3, A2, A1, and A0—Bits 4, 3, 2, 1, and 0 of the instruction  
byte determine which register is accessed during the data  
transfer portion of the communications cycle.  
T
PRE  
T
SCLKW  
CS  
SERIAL INTERFACE PORT PIN DESCRIPTION  
T
DSU  
SCLK—Serial Clock. The serial clock pin is used to synchronize  
data to and from the AD9540 and to run the internal state  
machines. The SCLK maximum frequency is 25 MHz.  
SCLK  
SDI/O  
T
DHLD  
FIRST BIT  
SECOND BIT  
DEFINITION  
CS  
—Chip Select Bar.  
CS  
is the active low input that allows more  
SYMBOL  
MIN  
than one device on the same serial communications line. The  
SDO and SDI/O pins go to a high impedance state when this  
input is high. If driven high during any communications cycle,  
T
T
T
T
6ns  
CS SETUP TIME  
PRE  
40ns  
6.5ns  
0ns  
PERIOD OF SERIAL DATA CLOCK (WRITE)  
SERIAL DATA SETUP TIME  
SERIAL DATA HOLD TIME  
SCLKW  
DSU  
DHLD  
CS  
that cycle is suspended until  
is reactivated low. Chip select  
Figure 40. Timing Diagram for Data Write to AD9540  
can be tied low in systems that maintain control of SCLK.  
T
SCLKR  
CS  
SDI/O—Serial Data Input/Output. Data is always written to the  
AD9540 on this pin. However, this pin can be used as a bidirec-  
tional data line. CFR1<7> controls the configuration of this pin.  
The default value (0) configures the SDI/O pin as bidirectional.  
SCLK  
SDI/O  
SDO  
FIRST BIT  
SECOND BIT  
SDO—Serial Data Out. Data is read from this pin for protocols  
that use separate lines for transmitting and receiving data. When  
the AD9540 operates in a single bidirectional I/O mode, this pin  
does not output data and is set to a high impedance state.  
T
DV  
SYMBOL MAX DEFINITION  
T
T
40ns DATA VALID TIME  
400ns PERIOD OF SERIAL DATA CLOCK (READ)  
DV  
SCLKR  
Figure 41. Timing Diagram for Data Read to AD9540  
I/O_RESET—A high signal on this pin resets the I/O port state  
machines without affecting the addressable registers’ contents.  
An active high input on the I/O_RESET pin causes the current  
communication cycle to abort. After I/O_RESET returns low  
(0), another communication cycle can begin, starting with the  
instruction byte write. Note that when not in use, this pin  
should be forced low, because it floats to the threshold value.  
Rev. 0 | Page 23 of 32  
 
AD9540  
REGISTER MAP AND DESCRIPTION  
Table 5. Register Map  
Register  
Name (Serial  
Address)  
Default  
Value/  
Profile  
Bit  
Range  
<31:24> Open1  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Control  
Function  
Register 1  
(CFR1) (0x00)  
Open1  
Open1  
Open1  
Open1  
Open1  
Open1  
Open1  
STATUS_Error 0x00  
<23:16> LOAD SRR @ Auto-  
I/O_UPDATE Clear  
Freq.  
Auto-  
Clear  
Phase  
Enable  
Sine Out-  
put  
Clear  
Freq.  
Accum.  
Clear  
Phase  
Accum.  
Open1  
0x00  
Accum. Accum.  
<15:8>  
<7:0>  
LSB First  
SDI/O  
Input  
Only  
Open1  
Open1  
Open1  
Open1  
Open1  
Open1  
0x00  
0x00  
Dig. Power-  
Down  
PFD  
Input  
Power- Enable  
Down  
REFIN  
Cyrstal  
SYNC_CLK Auto  
Out Dis-  
able  
Sync  
Multiple Sync  
AD9540s  
Control  
Function  
<39:32> DAC Power- Open1  
Down  
Open1  
Open1  
Open1  
Open1  
Internal  
Band Gap Driver  
Internal CML  
0x00  
Register 2  
(CFR2) (0x01)  
Power-  
Down  
DRV_RSET  
<31:24> Clock Driver Rising Edge <31:29>  
Clock Driver Falling Edge Control PLL Lock  
PLL Lock  
Detect Mode  
0x00  
0x78  
<28:26>  
Detect  
Enable  
<23:16> RF Divider  
Power-  
RF Divider Ratio  
<22:21>  
Clock  
Clock Driver Input  
Select <19:18>  
Slew Rate RF Div CLK1  
Control Mux Bit  
Driver  
Power-  
Down  
Down  
<15:8>  
Divider M Control <15:12>  
Divider N Control <11:8>  
CP Current Scale <2:0>  
0x00  
0x07  
<7:0>  
Open1  
Open1  
CP  
CP Full PD CP Quick  
PD  
Polarity  
Rising Delta  
Frequency  
Tuning Word  
(RDFTW)  
<23:16>  
<15:8>  
<7:0>  
Rising Delta Frequency Tuning Word <23:16>  
Rising Delta Frequency Tuning Word <15:8>  
Rising Delta Frequency Tuning Word <7:0>  
0x00  
0x00  
0x00  
(0x02)  
Falling Delta  
Frequency  
Tuning Word  
(FDFTW)  
<23:16>  
<15:8>  
<7:0>  
Falling Delta Frequency Tuning Word <23:16>  
Falling Delta Frequency Tuning Word <15:8>  
Falling Delta Frequency Tuning Word <7:0>  
0x00  
0x00  
0x00  
(0x03)  
Rising Sweep  
Ramp Rate  
(RSRR) (0x04)  
<15:8>  
<7:0>  
Rising Sweep Ramp Rate <15:8>  
Rising Sweep Ramp Rate <7:0>  
0x00  
0x00  
Falling Sweep <15:8>  
Rising Sweep Ramp Rate <15:8>  
Rising Sweep Ramp Rate <7:0>  
0x00  
0x00  
Ramp Rate  
<7:0>  
(FSRR) (0x05)  
1 In all cases, Open bits must be written to 0.  
Rev. 0 | Page 24 of 32  
 
 
AD9540  
Default  
Value/  
Profile  
Register Name  
(Serial Address)  
Bit  
Range  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Open1  
Bit 5  
Bit 4  
Phase Offset Word 0 (POW0) <13:8>  
Phase Offset Word 0 (POW0) <7:0>  
Bit 3  
Bit 2  
Bit 1  
Profile Control  
Register 0 (PCR0)  
(0x06)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Frequency Tuning Word 0 (FTW0) <47:40>  
Frequency Tuning Word 0 (FTW0) <39:32>  
Frequency Tuning Word 0 (FTW0) <31:24>  
Frequency Tuning Word 0 (FTW0) <23:16>  
Frequency Tuning Word. 0 (FTW0) <15:8>  
Frequency Tuning Word 0 (FTW0) <7:0>  
Phase Offset Word 1 (POW1) <13:8>  
<7:0>  
Profile Control  
Register 1 (PCR1)  
(0x07)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Open1  
Open1  
Open1  
Phase Offset Word 1 (POW1) <7:0>  
Frequency Tuning Word 1 (FTW1) <47:40>  
Frequency Tuning Word 1 (FTW1) <39:32>  
Frequency Tuning Word 1 (FTW1) <31:24>  
Frequency Tuning Word 1 (FTW1) <23:16>  
Frequency Tuning Word 1 (FTW1) <15:8>  
Frequency Tuning Word 1 (FTW1) <7:0>  
Phase Offset Word 2 (POW2) <13:8>  
<7:0>  
Profile Control  
Register 2 (PCR2)  
(0x08)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Phase Offset Word 2 (POW2) <7:0>  
Frequency Tuning Word 2 (FTW1) <47:40>  
Frequency Tuning Word 2 (FTW2) <39:32>  
Frequency Tuning Word 2 (FTW2) <31:24>  
Frequency Tuning Word 2 (FTW2) <23:16>  
Frequency Tuning Word 2 (FTW2) <15:8>  
Frequency Tuning Word 2 (FTW2) <7:0>  
Phase Offset Word 3 (POW3) <13:8>  
<7:0>  
Profile Control  
Register 3 (PCR3)  
(0x09)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Phase Offset Word 3 (POW3) <7:0>  
Frequency Tuning Word 3 (FTW3) <47:40>  
Frequency Tuning Word 3 (FTW3) <39:32>  
Frequency Tuning Word 3 (FTW3) <31:24>  
Frequency Tuning Word 3 (FTW3) <23:16>  
Frequency Tuning Word 3 (FTW3) <15:8>  
Frequency Tuning Word 3 (FTW3) <7:0>  
<7:0>  
1 In all cases, Open bits must be written to 0.  
Rev. 0 | Page 25 of 32  
 
AD9540  
Register Name  
(Serial Address)  
Default  
Value/  
Profile  
Bit  
Range  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Profile Control  
Register 4 (PCR4)  
(0x0A)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Open1  
Phase Offset Word 4 (POW4) <13:8>  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Phase Offset Word 4 (POW4) <7:0>  
Frequency Tuning Word. 4 (FTW4) <47:40>  
Frequency Tuning Word 4 (FTW4) <39:32>  
Frequency Tuning Word 4 (FTW4) <31:24>  
Frequency Tuning Word 4 (FTW4) <23:16>  
Frequency Tuning Word 4 (FTW4) <15:8>  
Frequency Tuning Word 4 (FTW4) <7:0>  
Phase Offset Word 5 (POW5) <13:8>  
<7:0>  
Profile Control  
Register 5 (PCR5)  
(0x0B)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Open1  
Open1  
Open1  
Phase Offset Word 5 (POW5) <7:0>  
Frequency Tuning Word 5 (FTW5) <47:40>  
Frequency Tuning Word 5 (FTW5) <39:32>  
Frequency Tuning Word 5 (FTW5) <31:24>  
Frequency Tuning Word 5 (FTW5) <23:16>  
Frequency Tuning Word 5 (FTW5) <15:8>  
Frequency Tuning Word 5 (FTW5) <7:0>  
Phase Offset Word 6 (POW6) <13:8>  
<7:0>  
Profile Control  
Register 6 (PCR6)  
(0x0C)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Phase Offset Word 6 (POW6) <7:0>  
Frequency Tuning Word 6 (FTW6) <47:40>  
Frequency Tuning Word 6 (FTW6) <39:32>  
Frequency Tuning Word 6 (FTW6) <31:24>  
Frequency Tuning Word 6 (FTW6) <23:16>  
Frequency Tuning Word 6 (FTW6) <15:8>  
Frequency Tuning Word 6 (FTW6) <7:0>  
Phase Offset Word 7 (POW7) <13:8>  
<7:0>  
Profile Control  
Register 7 (PCR7)  
(0x0D)  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
<31:24>  
<23:16>  
<15:8>  
Phase Offset Word 7 (POW7) <7:0>  
Frequency Tuning Word 7 (FTW7) <47:40>  
Frequency Tuning Word 7 (FTW7) <39:32>  
Frequency Tuning Word 7 (FTW7) <31:24>  
Frequency Tuning Word 7 (FTW7) <23:16>  
Frequency Tuning Word 7 (FTW7) <15:8>  
Frequency Tuning Word 7 (FTW7) <7:0>  
<7:0>  
1 In all cases, Open bits must be written to 0.  
Rev. 0 | Page 26 of 32  
 
 
AD9540  
CFR1 <22> = 0 (default). Issuing an I/O_UPDATE has no effect  
on the current state of the frequency accumulator.  
CONTROL FUNCTION REGISTER DESCRIPTIONS  
Control Function Register 1 (CFR1)  
This control register is comprised of four bytes, which must be  
written during a write operation involving CFR1. CFR1 is used  
to control various functions, features, and operating modes of  
the AD9540. The functionality of each bit(s) is described below.  
In general, the bit is named for the function it serves when the  
bit is set.  
CFR1 <22> = 1. Issuing an I/O_UPDATE signal to the part  
clears the current contents of the frequency accumulator for  
one sync-clock period.  
CFR1 <21> Auto-Clear Phase Accumulator  
This bit enables the auto-clear function for the phase accumula-  
tor. The auto-clear function serves as a reset function for the  
phase accumulator, which then begins accumulating from a  
known phase value of 0.  
CFR1<31:25> Open  
Unused locations. Write a Logic 0.  
CFR1<21> = 0 (default). Issuing an I/O_UPDATE has no effect  
on the current state of the phase accumulator.  
CFR1<24> STATUS_Error (Read-Only)  
When the device is operating in automatic synchronization  
mode or hardware manual synchronization mode the  
SYNC_IN/STATUS pin behaves as the SYNC_IN. To determine  
whether or not the PLL has become unlocked while in  
synchronization mode, this bit serves as a flag to indicate that  
an unlocked condition has occurred within the phase frequency  
detector. Once set, the flag stays high until it is cleared by a  
readback of the value even though the loop might have  
relocked. Readback of the CFR1 register clears this bit.  
CFR1<21> = 1. Issuing an I/O_UPDATE clears the current con-  
tents of the phase accumulator for one SYNC_CLK period.  
CFR1 <20> Enable Sine Output  
Two different trigonometric functions can be used to convert  
the phase angle to an amplitude value, cosine or sine. This bit  
selects the function used.  
CFR1<20> = 0 (default). The phase-to-amplitude conversion  
block uses a cosine function.  
CFR1<24> = 0 indicates that the loop has maintained lock since  
the last readback.  
CFR1<20> = 1. The phase-to-amplitude conversion block uses a  
sine function.  
CFR1<24> = 1 indicates that the loop became unlocked at some  
point since the last readback of this bit.  
CFR1 <19> Clear Frequency Accumulator  
CFR1<23> Load Sweep Ramp Rate at I/O_UPDATE, also  
known as Load SRR @ I/O_UPDATE  
This bit serves as a static-clear, or a clear-and-hold bit for the  
frequency accumulator. It prevents the frequency accumulator  
from incrementing the value as long as it is set.  
The sweep ramp rate is set by entering a value to a down-  
counter that is clocked by the SYNC_CLK. Each time a new step  
is taken in the linear sweep algorithm, the ramp rate value is  
passed from the linear sweep ramp rate register to this down-  
counter. When set, CFR1<23> enables the user to force the part  
to restart the countdown sequence for the current linear sweep  
step by toggling the I/O_UPDATE pin.  
CFR1 <19> = 0 (default). The frequency accumulator operates  
normally.  
CFR1 <19> = 1. The frequency accumulator is cleared and held at 0.  
CFR1 <18> Clear Phase Accumulator  
CFR1<23> = 0 (default). The linear sweep ramp rate countdown  
value is loaded only upon completion of a countdown sequence.  
This bit serves as a static clear, or a clear-and-hold bit for the  
phase accumulator. It prevents the phase accumulator from  
incrementing the value as long as it is set.  
CFR1<23> = 1. The linear sweep ramp rate countdown value is  
reloaded, if an I/O_UPDATE signal is sent to the part during a  
sweep.  
CFR1 <18> = 0 (default). The phase accumulator operates normally.  
CFR1 <18> = 1. The phase accumulator is cleared and held at 0.  
CFR1<22> Auto-Clear Frequency Accumulator  
CFR1 <17:16> Open  
This bit enables the auto-clear function for the frequency accu-  
mulator. The auto-clear function serves as a clear and release func-  
tion for the frequency accumulator (which performs the linear  
sweep operation) that then begins sweeping from a known value of  
FTW0.  
Unused locations. Write a Logic 0.  
Rev. 0 | Page 27 of 32  
 
AD9540  
CFR1 <15> LSB First Serial Data Mode  
CFR1<5> = 1. The reference input oscillator circuit is enabled,  
allowing the use of a crystal for the reference of the phase  
frequency detector.  
The serial data transfer to the device can be either MSB first or  
LSB first. This bit controls that operation.  
CFR1<15> = 0 (default). Serial data transfer to the device is in  
MSB first mode.  
CFR1<4> SYNC_CLK Disable  
If synchronization of multiple devices is not required, the spec-  
tral energy resulting from this signal can be reduced by gating  
the output buffer off. This function gates the internal clock ref-  
erence SYNC_CLK (SYSCLK ÷ 4) off of the SYNC_OUT pin.  
CFR1<15> = 1. Serial data transfer to the device is in LSB first mode.  
CFR1<14> SDI/O Input Only (3-Wire Serial Data Mode)  
The serial port on the AD9540 can act in 2-wire mode (SCLK  
and SDI/O) or 3-wire mode (SCLK, SDI/O, and SDO). This bit  
toggles the serial port between these two modes.  
CFR1<4> = 0 (default). The SYNC_CLK signal is present on the  
SYNC_OUT pin and is ready to be ported to other devices.  
CFR1<4> = 1. The SYNC_CLK signal is gated off, putting the  
SYNC_OUT pin into a high impedance state.  
CFR1<14> = 0 (default). Serial data transfer to the device is in  
2-wire mode. The SDI/O pin is bidirectional.  
CFR1<3> Automatic Synchronization  
CFR1<14> = 1. Serial data transfer to the device is in 3-wire  
mode. The SDI/O pin is input only.  
One of the synchronization modes of the AD9540 forces the  
DDS core to derive the internal reference from an external ref-  
erence supplied on the SYNC_IN pin. For details on synchroni-  
zation modes for the DDS core, see the Synchronization Modes  
for Multiple Devices section.  
CFR1<13:8> Open  
Unused locations. Write a Logic 0.  
CFR1<3> = 0 (default). The automatic synchronization function  
of the DDS core is disabled.  
CFR1<7> Digital Power-Down  
This bit powers down the digital circuitry not directly related  
to the I/O port. The I/O port functionality is not suspended,  
regardless of the state of this bit.  
CFR1<3> = 1. The automatic synchronization function is on.  
The device is slaved to an external reference and adjusts the  
internal SYNC_CLK to match the external reference, which is  
supplied on the SYNC_IN input.  
CFR1<7> = 0 (default). Digital logic operating as normal.  
CFR1<7> = 1. All digital logic not directly related to the I/O  
port is powered down. Internal digital clocks are suspended.  
CFR1<2> Software Manual Synchronization  
Rather than relying on the part to automatically synchronize the  
internal clocks, the user can program the part to advance the  
internal SYNC_CLK one system clock cycle. This bit is self  
clearing and can be set multiple times.  
CFR1<6> Phase Frequency Detector Input Power-Down  
This bit controls the input buffers on the phase frequency  
detector. It provides a way to gate external signals from the  
phase frequency detector.  
CFR1<2> = 0 (default). The SYNC_CLK stays in the current  
timing relationship to SYSCLK.  
CFR1<6> = 0 (default). Phase frequency detector input buffers  
are functioning normally.  
CFR1<2> = 1. The SYNC_CLK advances the rising and falling  
edges by one SYSCLK cycle. This bit is then self-cleared.  
CFR1<6> = 1. Phase frequency detector input buffers are  
powered down, isolating the phase frequency detector from the  
outside world.  
CFR1<1> Hardware Manual Synchronization  
Similar to the software manual synchronization (CFR1<2>),  
this function enables the user to advance the SYNC_CLK rising  
edge by one system clock period. This bit enables the  
SYNC_IN/STATUS pin as a digital input. Once enabled, every  
rising edge on the SYNC_IN input advances the SYNC_CLK by  
one SYCLK period. While enabled, the STATUS signal is not  
available on an external pin. However, loop out-of-lock events  
trigger a flag in the control register (CFR1<24>).  
CFR1<5> REFIN Crystal Enable  
The AD9540 phase frequency detector has an on-chip oscillator  
circuit. When enabled, the reference input to the phase fre-  
PLLREF  
quency detector (REFIN/  
) can be driven by a crystal.  
CFR1<5> = 0 (default). The phase frequency detector reference  
input operates as a standard analog input.  
Rev. 0 | Page 28 of 32  
AD9540  
CFR1<1> = 0 (default). The hardware manual synchronization  
function is disabled. Either the part is outputting the STATUS  
(CFR1<3> = 0) or it is using the SYNC_IN to slave the  
SYNC_CLK signal to an external reference provided on  
SYNC_IN (CFR1<3> = 1).  
CFR2<32> = 0 (default). The DRV_RSET pin is enabled, and an  
external resistor must be attached to the CP_RSET pin to  
program the output current.  
CFR2<32> = 1. The CML current is programmed by the inter-  
nal resistor and ignores the resistor on the DRV_RSET pin.  
CFR1<1> = 1. The SYNC_IN/STATUS pin is set as a digital  
input. Each subsequent rising edge on this pin advances the  
SYNC_CLK rising edge by one SYSCLK period.  
CFR2<31:29> Clock Driver Rising Edge  
These bits control the slew rate of the CML clock driver outputs  
rising edge. When these bits are on, additional current is sent to  
the output driver to increase the rising edge slew rate capability.  
Table 6 describes how the bits increase the current. Note that  
the additional current is on only during the rising edge of the  
waveform for approximately 250 ps, not during the entire  
transition.  
CFR1<0> High Speed Synchronization Enable Bit  
This bit enables extra functionality in the auto synchronization  
algorithm, which enables the device to synchronize high speed  
clocks (SYNC_CLK > 62.5 MHz).  
CFR1<0> = 0 (default). High speed synchronization is disabled.  
CFR1<0> = 1. High speed synchronization is enabled.  
Table 6. CML Clock Driver Rising Edge Slew Rate Control  
Bits and Associated Surge Current  
Control Function Register 2 (CFR2)  
CFR2<31> = 1  
CFR2<30> = 1  
CFR2<29> = 1  
7.6 mA  
3.8 mA  
1.9 mA  
The Control Register 2 is comprised of five bytes, which must  
be written during a write operation involving CFR2. With some  
minor exceptions, the CFR2 primarily controls analog and  
timing functions on the AD9540.  
CFR2<28:26> Clock Driver Falling Edge Control  
These bits control the slew rate of the CML clock driver outputs  
falling edge. When these bits are on, additional current is sent to  
the output driver to increase the rising edge slew rate capability.  
Table 7 describes how the bits increase the current. Note that  
the additional current is on only during the rising edge of the  
waveform, for approximately 250 ps, not during the entire  
transition.  
CFR2<39> DAC Power-Down Bit  
This bit powers down the DAC portion of the AD9540 and puts  
it into the lowest power dissipation state.  
CFR2<39> = 0 (default). DAC is powered on and operating.  
CFR2<39> = 1. DAC is powered down and the output is in a  
high impedance state.  
Table 7. CML Clock Drive Falling Edge Slew Rate Control  
Bits and Associated Surge Current  
CFR2<38:34> Open  
CFR2<28> = 1  
CFR2<30> = 1  
CFR2<29> = 1  
5.4 mA  
2.7 mA  
1.35 mA  
Unused locations. Write a Logic 0.  
CFR2<33> Internal Band Gap Power-Down  
To shut off all internal quiescent current, the band gap needs to  
be powered down. This is normally not done because it takes a  
long time (~10 ms) for the band gap to power up and settle to  
its final value.  
CFR2<25> PLL Lock Detect Enable  
This bit enables the SYNC_IN/STATUS pin as a lock detect  
output for the PLL.  
CFR2<33> = 0. Even when all other sections are powered down,  
the band gap is powered up and is providing a regulated voltage.  
CFR2<25> = 0 (default).The STATUS_DETECT signal is  
disabled.  
CFR2<33> = 1. The band gap is powered down.  
CFR2<25> = 1. The STATUS_DETECT signal is enabled.  
CFR2<32> Internal CML Driver DRV_RSET  
CFR2<24> PLL Lock Detect Mode  
To program the CML drivers output current, a resistor must  
be placed between the DRV_RSET pin and ground. This bit  
enables an internal resistor to program the output current  
of the driver.  
This bit toggles the modes of the PLL lock detect function. The  
lock detect can either be a status indicator (locked or unlocked)  
or it can indicate a lead-lag relationship between the two phase  
frequency detector inputs.  
Rev. 0 | Page 29 of 32  
 
 
AD9540  
CFR2<24> = 0 (default). The lock detect acts as a status indica-  
tor (PLL is locked 0 or unlocked 1).  
rising edge and a 4.05 mA surge current to the falling edge. This  
bit disables all slew rate enhancement surge current, including  
the default values.  
CFR2<24> = 1. The lock detect acts as a lead-lag indicator. A 1  
on the STATUS pin means that the CLK2 pin lags the  
reference. A 0 means that the CLK2 pin leads the reference.  
CFR2<17> = 0 (default). The CML driver applies default surge  
current to rising and falling edges.  
CFR2<17> = 1. Driver applies no surge current during  
transitions. The only current is the continuous current.  
CFR2<23> RF Divider Power-Down  
This bit powers down the RF divider to save power when  
not in use.  
CFR2<16> RF Divider CLK1 Mux  
CFR2<23> = 0 (default). The RF divider is on.  
This bit toggles the mux to control whether the RF divider out-  
put or input is supplying SYSCLK to the device.  
CFR2<23> = 1. The RF divider is powered down and an alter-  
nate path between the CLK1 inputs and SYSCLK is enabled.  
CFR2<16> = 0 (default). The RF divider output supplies the  
DDS SYSCLK.  
CFR2<22:21> RF Divider Ratio  
CFR2<16> = 1. The RF divider input supplies the DDS SYSCLK  
(bypass the divider). Note that regardless of the condition of the  
configuration of the clock input, the DDS SYSCLK must not  
exceed the maximum rated clock speed.  
These two bits control the RF divider ratio (÷R).  
CFR2<22:21> = 11 (default). RF Divider R = 8.  
CFR2<22:21> = 10. RF Divider R = 4.  
CFR2<22:21> = 01. RF Divider R = 2.  
CFR2<15:12> REFIN Divider (÷M) Control Bits  
These four bits set the REFIN divider (÷M) ratio where M is a  
value = 1 to 16 and CFR2<15:12> = 0000 means that M = 1 and  
CFR2<15:12> = 1111 means that M = 16 or simply, M =  
CFR2<15:12> + 1.  
CFR2<22:21> = 00. RF Divider R = 1. Note that this is not the  
same as bypassing the RF divider.  
CFR2<20> Clock Driver Power-Down  
Table 8. REFIN Divider Values (÷M)  
This bit powers down the CML clock driver circuit.  
CFR2<15:12> =  
M =  
CFR2<15:12> =  
M =  
9
CFR2<20> =1 (default). The CML clock driver circuit is  
powered down.  
0000  
1
1000  
0001  
2
1001  
10  
11  
12  
13  
14  
15  
16  
0010  
0011  
0100  
0101  
0110  
0111  
3
4
5
6
7
8
1010  
1011  
1100  
1101  
1110  
1111  
CFR2<20> = 0. The CML clock driver is powered up.  
CFR2<19:18> Clock Driver Input Select  
These bits control the mux on the input for the CML clock  
driver.  
CFR2<19:18> = 00. The CML clock driver is disconnected from  
all inputs (and does not toggle).  
CFR2<11:8> CLK2 Divider (÷N) Control Bits  
These 4 bits set the CLK2 divider (÷N) ratio where N is a value  
= 1 to 16 and CFR2<11:8> = 0000 means that N = 1 and  
CFR2<11:8> = 1111 means that N = 16 or N = CFR2<11:8> + 1.  
CFR2<19:18> = 01. The CML clock driver is driven by the  
CLK2 input pin.  
Table 9. CLK2 Input Divider Values (÷N)  
CFR2<19:18> = 10 (default). The CML clock driver is driven by  
the output of the RF divider.  
CFR2<15:12> =  
N =  
CFR2<11:8> =  
N =  
9
0000  
1
1000  
CFR2<19:18> = 11. The CML clock driver is driven by the input  
of the RF divider  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
2
3
4
5
6
7
8
1001  
1010  
1011  
1100  
1101  
1110  
1111  
10  
11  
12  
13  
14  
15  
16  
CFR2<17> Slew Rate Control Bit  
Even without the additional surge current supplied by the rising  
edge slew rate control bits and the falling edge slew rate control  
bits, the device applies a default 7.6 mA surge current to the  
Rev. 0 | Page 30 of 32  
AD9540  
CFR2<7:6> Open  
CFR2<4> = 1. The charge pump is powered down completely.  
Unused locations. Write a Logic 0.  
CFR2<3> Charge Pump Quick Power-Down  
CFR2<5> CP Polarity  
Rather than power down the charge pump, which can take a  
long time to recover from, a quick power-down mode that pow-  
ers down only the charge pump output buffer is included. While  
this does not reduce the power consumption significantly, it  
does shut off the output to the charge pump and allows it to  
come back on rapidly.  
This bit sets the polarity of the charge pump in response to a  
ground referenced or a supply referenced VCO.  
CFR2<5> = 0 (default). The charge pump is configured to  
operate with a supply referenced VCO. If CLK2 lags REFIN, the  
charge pump attempts to drive the VCO control node voltage  
higher. If CLK2 leads REFIN, the charge pump attempts to drive  
the VCO control node voltage lower.  
CFR2<3> = 0 (default). The charge pump is powered on and  
operating normally.  
CFR2<3> = 1. The charge pump is on and running, but the  
output buffer is powered down.  
CFR2<5> = 1. The charge pump is configured to operate with a  
ground referenced VCO. If CLK2 lags REFIN, the charge pump  
attempts to drive the VCO control node voltage lower. If CLK2  
leads REFIN, the charge pump attempts to drive the VCO  
control node voltage higher.  
CFR2<2:0> Charge Pump Current Scale  
A base output current from the charge pump is determined by a  
resistor connected from the CP_RSET pin to ground (see the  
PLL Circuitry section). However, it is possible to multiply the  
charge pump output current by a value from 1:8 by program-  
ming these bits. The charge pump output current is scaled by  
CFR2<2:0> +1.  
CFR2<4> Charge Pump Full Power-Down  
This bit, when set, puts the charge pump into a full power-down  
mode.  
CFR2<4> = 0 (default). The charge pump is powered on and  
operating normally.  
CFR2<2:0> = 000 (default)  
Scale factor = 1 to CFR2<2:0> = 111 (8).  
Rev. 0 | Page 31 of 32  
AD9540  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 42. 48-Lead Lead Frame Chip Scale [LFCSP]  
7 mm × 7 mm Body (CP-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9540BCPZ1  
AD9540BCPZ-REEL1  
AD9540/PCB  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-48  
CP-48  
48-Lead Lead Frame Chip Scale Package (LFCSP)  
48-Lead Lead Frame Chip Scale Package (LFCSP) Tape and Reel  
Evaluation Board  
1 Z = Pb-free part.  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective owners.  
D04947–0–7/04(0)  
Rev. 0 | Page 32 of 32  
 
 
 

相关型号:

AD9542

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9542BCPZ

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9542BCPZ-REEL7

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9543

Quad Input, 10-Output, Dual DPLL/IEEE 1588 Synchronizer and Jitter Cleaner
ADI

AD9543BCPZ

Quad Input, 10-Output, Dual DPLL/IEEE 1588 Synchronizer and Jitter Cleaner
ADI

AD9543BCPZ-REEL7

Quad Input, 10-Output, Dual DPLL/IEEE 1588 Synchronizer and Jitter Cleaner
ADI

AD9544

Quad Input, 10-Output, Dual DPLL, 1 pps Synchronizer and Jitter Cleaner
ADI

AD9544BCPZ

Quad Input, 10-Output, Dual DPLL, 1 pps Synchronizer and Jitter Cleaner
ADI

AD9544BCPZ-REEL7

Quad Input, 10-Output, Dual DPLL, 1 pps Synchronizer and Jitter Cleaner
ADI

AD9545

Quad Input, 10-Output, Dual DPLL/IEEE 1588 1 pps Synchronizer and Jitter Cleaner
ADI

AD9545BCPZ

Quad Input, 10-Output, Dual DPLL/IEEE 1588 1 pps Synchronizer and Jitter Cleaner
ADI

AD9545BCPZ-REEL7

Quad Input, 10-Output, Dual DPLL/IEEE 1588 1 pps Synchronizer and Jitter Cleaner
ADI