ADA4062-2BRZ [ADI]

Tiny, Low Power JFET-Input Op Amp; 微型,低功耗JFET输入运算放大器
ADA4062-2BRZ
型号: ADA4062-2BRZ
厂家: ADI    ADI
描述:

Tiny, Low Power JFET-Input Op Amp
微型,低功耗JFET输入运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tiny, Low Power JFET-Input Op Amp  
ADA4062-2  
PIN CONFIGURATIONS  
FEATURES  
Low input bias current: 50 pA maximum  
Offset voltage  
1.5 mV maximum for ADA4062-2 B grade  
2.5 mV maximum for ADA4062-2 A grade  
Offset voltage drift: 4 μV/°C typical  
Slew rate: 3.3 V/ꢀs typical  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4062-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Figure 1. 8-Lead Narrow-Body SOIC  
CMRR: 90 dB typical  
Low supply current: 165 μA typical  
High input impedance  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4062-2  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Unity-gain stable  
Packaging: SOIC, MSOP  
Figure 2. 8-Lead MSOP  
APPLICATIONS  
Power control and monitoring  
Active filters  
Industrial/process control  
Body probe electronics  
Data acquisition  
Integrators  
Input buffering  
GENERAL DESCRIPTION  
Table 1. Low Power Op Amps  
The ADA4062-2 is a dual JFET-input amplifier with industry-  
leading performance. It offers lower power, offset voltage, drift  
and ultralow bias current. The ADA4062-2 B grade features typical  
low offset voltage of 0.5 mV, offset drift of 4 μV/°C, and bias current  
of 2 pA. The ADA4062-2 is ideal for various applications, including  
process control, industrial and instrumentation equipment, active  
filtering, data conversion, buffering, and power control and  
monitoring. With a low supply current of 165 μA per amplifier,  
it is also very well suited for lower power applications. The  
ADA4062-2 is specified for the extended industrial temperature  
range of −40°C to +125°C and is available in lead-free SOIC and  
MSOP packages.  
Supply 40 V  
36 V  
12 V to 16 V  
AD8641  
AD8663  
AD8642  
AD8667  
5 V  
Single  
Dual  
OP97  
AD820  
AD8541  
OP297  
OP282  
AD8682  
AD822  
OP482  
AD8684  
AD824  
AD8542  
AD8544  
Quad  
OP497  
AD8643  
AD8669  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADA4062-2  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................4  
Typical Performance Characteristics ..............................................5  
Applications Information.............................................................. 14  
Notch Filter ................................................................................. 14  
High-Side Signal Conditioning ................................................ 14  
Micropower Instrumentation Amplifier................................. 14  
Phase Reversal ............................................................................ 14  
Schematic......................................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
Power Sequencing ........................................................................ 4  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADA4062-2  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
B Grade  
VOS  
0.5  
0.75  
2
1.5  
3
2.5  
5
50  
5
25  
2.5  
+15  
mV  
mV  
mV  
mV  
pA  
nA  
pA  
nA  
V
−40°C ≤ TA ≤ +125°C  
A Grade  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
Input Offset Current  
IB  
IOS  
0.5  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
B Grade  
−11.5  
CMRR  
VCM = −11.5 V to +11.5 V  
−40°C ≤ TA ≤ +125°C  
VCM = −11.5 V to +11.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −10 V to +10 V  
−40°C ≤ TA ≤ +125°C  
80  
80  
74  
70  
76  
72  
90  
90  
83  
dB  
dB  
dB  
dB  
dB  
dB  
A Grade  
Large-Signal Voltage Gain  
AVO  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
RIN  
CINDM  
CINCM  
4
μV/°C  
TΩ  
pF  
10  
1.5  
4.8  
pF  
VOH  
VOL  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
13  
12.5  
13.5  
V
V
V
V
Output Voltage Low  
−13.8 −13  
−12.5  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
4
mA  
Ω
f = 100 kHz, AV = 1  
Power Supply Rejection Ratio  
B Grade  
PSRR  
VSY  
−40°C ≤ TA ≤ +125°C  
VSY 4 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
=
4 V to 18 V  
80  
80  
74  
70  
90  
dB  
dB  
dB  
dB  
μA  
μA  
A Grade  
=
90  
Supply Current per Amplifier  
ISY  
165  
200  
220  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
SR  
tS  
GBP  
ΦM  
CS  
RL = 10 kΩ, CL = 100 pF, AV = 1  
To 0.01%, VIN = 2 V step, CL = 100 pF, RL = 5 kΩ, AV = 1  
RL = 10 kΩ, AV = 1  
RL = 10 kΩ, AV = 1  
f = 10 kHz  
3.3  
3.5  
1.4  
80  
V/μs  
μs  
MHz  
Degrees  
dB  
130  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.5  
36  
5
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. 0 | Page 3 of 20  
 
ADA4062-2  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. It was  
measured using a standard 2-layer board.  
Parameter  
Rating  
18 V  
VSY  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration to GND Indefinite  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
VSY  
Table 4. Thermal Resistance  
Package Type  
8-Lead SOIC  
8-Lead MSOP  
θJA  
θJC  
43  
45  
Unit  
°C/W  
°C/W  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
158  
210  
Lead Temperature (Soldering, 60 sec) 300°C  
POWER SEQUENCING  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
The op amp supply voltages must be established simultaneously  
with, or before, any input signals are applied. If this is not  
possible, the input current must be limited to 10 mA.  
ESD CAUTION  
Rev. 0 | Page 4 of 20  
 
ADA4062-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
280  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= ±15V  
= 0V  
V
V
= ±5V  
= 0V  
SY  
CM  
SY  
CM  
240  
200  
160  
120  
80  
40  
0
–3  
–2  
–1  
0
1
2
3
–4  
–3  
–2  
–1  
0
1
2
3
4
V
(mV)  
V
(mV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
–40°C T +125°C  
–40°C T +125°C  
A
A
–2  
0
2
4
6
8
10  
–2  
0
2
4
6
8
10  
TCV  
(µV/°C)  
TCV (µV/°C)  
OS  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
5
4
5
4
V
= ±15V  
V
= ±5V  
SY  
SY  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 5 of 20  
 
ADA4062-2  
10000  
10000  
1000  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
1000  
100  
10  
1
1
0.1  
–50  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. Input Bias Current vs. Temperature  
5
4
3
2
1
0
3
2
V
= ±15V  
V
= ±5V  
SY  
SY  
1
0
–1  
–2  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Input Bias Current vs. Input Common-Mode Voltage  
Figure 13. Input Bias Current vs. Input Common-Mode Voltage  
10  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
V
– V  
V
V
– V  
V
CC  
OH  
CC  
OH  
1
1
– V  
EE  
– V  
EE  
OL  
OL  
0.1  
0.01  
0.1  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Figure 14. Output Voltage to Supply Rail vs. Load Current  
Rev. 0 | Page 6 of 20  
ADA4062-2  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
R
= ±15V  
V
= ±5V  
SY  
L
SY  
L
= 10k  
R
= 10k  
V
– V  
OH  
CC  
V
– V  
OH  
CC  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Output Voltage to Supply Rail vs. Temperature  
Figure 18. Output Voltage to Supply Rail vs. Temperature  
120  
100  
80  
120  
100  
80  
120  
100  
80  
120  
100  
80  
V = ±5V  
SY  
V
= ±15V  
SY  
PHASE  
PHASE  
60  
60  
60  
60  
40  
40  
40  
40  
GAIN  
GAIN  
20  
20  
20  
20  
0
0
0
0
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
50  
50  
V
= ±5V  
SY  
V
= ±15V  
SY  
A
A
= +100  
= +10  
V
A
A
= +100  
= +10  
V
40  
30  
40  
30  
V
V
20  
20  
10  
10  
A
= +1  
V
A
= +1  
V
0
0
–10  
–20  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Closed-Loop Gain vs. Frequency  
Figure 17. Closed-Loop Gain vs. Frequency  
Rev. 0 | Page 7 of 20  
ADA4062-2  
1000  
1000  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
100  
10  
1
A
= +100  
= +10  
V
A
= +100  
= +10  
V
A
V
A
V
A
= +1  
V
A
= +1  
V
1
0.1  
100  
0.1  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Output Impedance vs. Frequency  
Figure 24. Output Impedance vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. CMRR vs. Frequency  
Figure 25. CMRR vs. Frequency  
120  
100  
80  
140  
120  
100  
80  
V
= ±5V  
V
= ±15V  
SY  
SY  
60  
PSRR+  
60  
PSRR+  
40  
40  
PSRR–  
20  
PSRR–  
20  
0
0
–20  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. PSRR vs. Frequency  
Figure 23. PSRR vs. Frequency  
Rev. 0 | Page 8 of 20  
ADA4062-2  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
A
R
= ±5V  
= +1  
V
A
R
= ±15V  
= +1  
SY  
SY  
V
L
V
L
= 10kΩ  
= 10k  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
C
(pF)  
C
(pF)  
L
L
Figure 27. Small-Signal Overshoot vs. Load Capacitance  
Figure 30. Small-Signal Overshoot vs. Load Capacitance  
V
V
A
R
C
= ±5V  
= 4V p-p  
= +1  
V
V
A
R
C
= ±15V  
= 20V p-p  
= +1  
SY  
IN  
SY  
IN  
V
L
L
V
L
L
= 10k  
= 100pF  
= 10kΩ  
= 100pF  
TIME (4µs/DIV)  
TIME (10µs/DIV)  
Figure 31. Large-Signal Transient Response  
Figure 28. Large-Signal Transient Response  
V
V
A
R
C
= ±15V  
= 100mV p-p  
= +1  
V
V
A
R
C
= ±5V  
SY  
IN  
SY  
IN  
V
L
L
= 100mV p-p  
= +1  
V
L
L
= 10kΩ  
= 10kΩ  
= 100pF  
= 100pF  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 32. Small-Signal Transient Response  
Figure 29. Small-Signal Transient Response  
Rev. 0 | Page 9 of 20  
ADA4062-2  
4
4
2
0
V
= ±15V  
SY  
V
= ±5V  
SY  
2
INPUT  
INPUT  
0
OUTPUT  
0
OUTPUT  
0
–5  
–2  
–4  
–6  
–10  
–15  
–20  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 33. Negative Overload Recovery  
Figure 36. Negative Overload Recovery  
2
0
2
0
V
= ±15V  
V
= ±5V  
SY  
SY  
INPUT  
INPUT  
–2  
–2  
15  
10  
5
4
2
OUTPUT  
OUTPUT  
0
0
–5  
–2  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 34. Positive Overload Recovery  
Figure 37. Positive Overload Recovery  
V
= ±15V  
V
= ±5V  
SY  
SY  
INPUT  
INPUT  
IDEAL STEP  
FUNCTION  
OF 10V  
+2mV  
0V  
+10mV  
OUTPUT  
OUTPUT  
ERROR  
BAND  
0V  
ERROR BAND  
–10mV  
–2mV  
TIME (1µs/DIV)  
TIME (2µs/DIV)  
Figure 35. Positive Settling Time to 0.01%  
Figure 38. Positive Settling Time to 0.01%  
Rev. 0 | Page 10 of 20  
ADA4062-2  
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
+2mV  
0V  
+10mV  
0V  
OUTPUT  
ERROR BAND  
OUTPUT  
ERROR  
BAND  
–2mV  
–10mV  
TIME (2µs/DIV)  
TIME (1µs/DIV)  
Figure 39. Negative Settling Time to 0.01%  
Figure 42. Negative Settling Time to 0.01%  
1000  
100  
10  
1000  
100  
10  
V
= ±5V  
V
= ±15V  
SY  
SY  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40. Voltage Noise Density  
Figure 43. Voltage Noise Density  
V
= ±15V  
V
= ±5V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 41. 0.1 Hz to 10 Hz Noise  
Figure 44. 0.1 Hz to 10 Hz Noise  
Rev. 0 | Page 11 of 20  
ADA4062-2  
410  
390  
370  
350  
330  
310  
290  
270  
410  
390  
370  
350  
330  
310  
290  
125°C  
85°C  
V
= ±15V  
SY  
V
= ±5V  
SY  
25°C  
–40°C  
–50  
–25  
0
25  
50  
75  
100  
125  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Figure 45. Supply Current vs. Supply Voltage  
Figure 48. Supply Current vs. Temperature  
0
–20  
0
–20  
V
V
R
= ±5V  
V
V
R
= ±15V  
SY  
IN  
L
SY  
IN  
L
= 5V p-p  
= 10V p-p  
= 10k  
= 10k  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46. Channel Separation vs. Frequency  
Figure 49. Channel Separation vs. Frequency  
100  
10  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
f = 1kHz  
f = 1kHz  
R
= 10kΩ  
R = 10kΩ  
L
L
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 47. THD + N vs. Amplitude  
Figure 50. THD + N vs. Amplitude  
Rev. 0 | Page 12 of 20  
ADA4062-2  
10  
1
10  
1
V
V
= ±15V  
V
V
= ±5V  
SY  
IN  
L
SY  
IN  
L
= 0.5 V rms  
= 10kΩ  
= 0.5 V rms  
= 10kΩ  
R
R
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51. THD + N vs. Frequency  
Figure 52. THD + N vs. Frequency  
Rev. 0 | Page 13 of 20  
ADA4062-2  
APPLICATIONS INFORMATION  
NOTCH FILTER  
HIGH-SIDE SIGNAL CONDITIONING  
There are many applications that require the sensing of signals  
near the positive rail. The ADA4062-2 can be used in high-side  
current sensing applications. Figure 55 shows a high-side signal  
conditioning circuit using the ADA4062-2. The ADA4062-2 has  
an input common-mode range that includes the positive supply  
(−11.5 V ≤ VCM ≤ +15 V). In the circuit, the voltage drop across  
a low value resistor, such as the 0.1 Ω shown in Figure 55, is  
amplified by a factor of 5 using the ADA4062-2.  
A notch filter rejects a specific interfering frequency and can  
be implemented using a single op amp. Figure 53 shows a 60 Hz  
notch filter that uses the twin T network with the ADA4062-2  
configured as a voltage follower. The ADA4062-2 works as a buffer  
that provides high input resistance and low output impedance.  
The low bias current (2 pA typical) and high input resistance  
(10 TΩ typical) of the ADA4062-2 enable large resistors and  
small capacitors to be used.  
0.1ꢀ  
+15V  
Alternatively, different combinations of resistors and capacitors  
values can be used to achieve the desired notch frequency.  
However, the major drawback to this circuit topology is the  
need to ensure that all the resistors and capacitors be closely  
matched. If they are not closely matched, the notch frequency  
offset and drift cause the circuit to attenuate at a frequency  
other than the ideal notch frequency.  
500kꢀ  
R
L
100kꢀ  
+15V  
100kꢀ  
500kꢀ  
V
1/2  
O
ADA4062-2  
–15V  
Figure 55. High-Side Signal Conditioning  
Therefore, to achieve the desired performance, 1% or better com-  
ponent tolerances are usually required. In addition, a notch filter  
requires an op amp with a bandwidth of at least 100 to 200 times  
the center frequency. Hence, using the ADA4062-2 with a  
bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter.  
Figure 54 shows the gain of the notch filter with respect to  
frequency. At 60 Hz, the notch filter has about 50 dB atten-  
uation of signal.  
MICROPOWER INSTRUMENTATION AMPLIFIER  
The ADA4062-2 is a dual amplifier and is perfectly suited for  
applications that require lower supply currents. For supply voltages  
of 15 V, the supply current per amplifier is 165 μA typical. The  
ADA4062-2 also offers a typical low offset voltage drift of 4 μV/°C  
and a very low bias current of 2 pA, which makes it well suited for  
instrumentation amplifiers.  
Figure 56 shows the classic 2-op-amp instrumentation amplifier  
with four resistors using the ADA4062-2. The key to high CMRR  
for this instrumentation amplifier are resistors that are well  
matched to both the resistive ratio and relative drift. For true  
difference amplification, matching of the resistor ratio is very  
important, where R3/R4 = R1/R2. Assuming perfectly matched  
resistors, the gain of the circuit is 1 + R2/R1, which is approxi-  
mately 100. Tighter matching of two op amps in one package,  
as is the case with the ADA4062-2, offers a significant boost in  
performance over the 3-op-amp configuration. Overall, the circuit  
only requires about 330 μA of supply current.  
+V  
SY  
R1  
R2  
1/2  
–V  
V
O
804k  
804kꢀ  
IN  
ADA4062-2  
C3  
6.6nF  
R3  
SY  
402kꢀ  
C1  
3.3nF  
C2  
3.3nF  
1
fO  
=
2π R  
C
1
1
R1 = R2 = 2R3  
C3  
C1 = C2 =  
2
R3  
10.1kꢀ  
R2  
1Mꢀ  
Figure 53. Notch Filter Circuit  
+15V  
R4  
+15V  
1Mꢀ  
20  
10  
R1  
10.1kꢀ  
1/2  
1/2  
V
O
ADA4062-2  
0
ADA4062-2  
–15V  
V1  
V2  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–15V  
V
= 100(V2 – V1)  
O
TYPICAL: 0.5mV < V2 – V1< 135mV  
TYPICAL: –13.8V < V < +13.5V  
USE MATCHED RESISTORS  
O
Figure 56. Micropower Instrumentation Amplifier  
PHASE REVERSAL  
Phase reversal occurs in some amplifiers when the input common-  
mode voltage range is exceeded. When the voltage driving the  
input to these amplifiers exceeds the maximum input common-  
mode voltage range, the output of the amplifiers changes polarity.  
10  
100  
1k  
FREQUENCY (Hz)  
Figure 54. Notch Filter: Gain vs. Frequency  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
ADA4062-2  
Most JFET input amplifiers have phase reversal if either input  
exceeds the input common-mode range.  
V
IN  
V
= ±15V  
SY  
For the ADA4062-2, the output does not phase reverse if one or  
both of the inputs exceeds the input voltage range but stays below  
the positive supply rail and 0.5 V above the negative supply rail.  
With a supply voltage of 15 V, phase reversal occurs when the  
input voltage is a negative signal greater than −14.5 V. This is due  
to saturation of the input stage leading to forward biasing of the  
gate-drain diode. Phase reversal in ADA4062-2 can be prevented  
by using a Schottky diode to clamp the input terminals to each  
other. In the simple buffer circuit in Figure 57, D1 protects the  
op amp against phase reversal and R limits the input current  
that flows into the op amp.  
V
OUT  
TIME (40µs/DIV)  
Figure 58. No Phase Reversal  
+V  
SY  
R
10kꢀ  
D1  
IN5711  
1/2  
V
O
IN  
ADA4062-2  
–V  
SY  
Figure 57. Phase Reversal Solution Circuit  
Rev. 0 | Page 15 of 20  
 
ADA4062-2  
SCHEMATIC  
V
CC  
OUT A/  
OUT B  
+IN A/  
+IN B  
–IN A/  
–IN B  
V
EE  
Figure 59. Simplified Schematic  
Rev. 0 | Page 16 of 20  
 
ADA4062-2  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 60. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 61. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. 0 | Page 17 of 20  
 
ADA4062-2  
ORDERING GUIDE  
Model  
ADA4062-2ARMZ1  
ADA4062-2ARMZ-RL1  
ADA4062-2ARZ1  
ADA4062-2ARZ-R71  
ADA4062-2ARZ-RL1  
ADA4062-2BRZ1  
ADA4062-2BRZ-R71  
ADA4062-2BRZ-RL1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
Branding  
A25  
A25  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
ADA4062-2  
NOTES  
Rev. 0 | Page 19 of 20  
ADA4062-2  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07670-0-10/08(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADA4062-2BRZ-R7

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2BRZ-RL

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-4

22 μA, RRIO, CMOS, 18 V
ADI

ADA4062-4A

Operational Amplifiers Selection Guide
ADI

ADA4062-4ACPZ-R2

QUAD OP-AMP, 5000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, QCC16, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED-6, LFCSP-16
ROCHESTER

ADA4062-4ACPZ-R2

Quad, Low Power JFET-Input Op Amp
ADI

ADA4062-4ACPZ-R7

Quad, Low Power JFET-Input Op Amp
ADI

ADA4062-4ACPZ-RL

Quad, Low Power JFET-Input Op Amp
ADI

ADA4062-4ARUZ

QUAD OP-AMP, 5000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, PDSO14, ROHS COMPLIANT, MO-153AB-1, TSSOP-14
ROCHESTER

ADA4062-4ARUZ

Quad, Low Power JFET-Input Op Amp
ADI

ADA4062-4ARUZ-RL

暂无描述
ADI

ADA4075-2

Ultralow Noise Amplifier at Lower Power
ADI