ADA4850-2YCPZ-R2 [ADI]

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down; 高速,轨到轨输出运算放大器,具有超低省电
ADA4850-2YCPZ-R2
型号: ADA4850-2YCPZ-R2
厂家: ADI    ADI
描述:

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
高速,轨到轨输出运算放大器,具有超低省电

运算放大器 放大器电路 PC
文件: 总16页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Rail-to-Rail Output,  
Op Amp with Ultralow Power-Down  
ADA4850-1/ADA4850-2  
FEATURES  
PIN CONFIGURATIONS  
Ultralow power-down current: 150 nA/amp max  
Low quiescent current: 2.4 mA/amp  
High speed  
175 MHz −3 dB bandwidth  
220 V/µs slew rate  
ADA4850-1  
8
7
6
5
+V  
S
POWER DOWN  
1
2
3
4
OUTPUT  
NC  
NC  
–IN  
+IN  
–V  
S
85 ns settling time to 0.1%  
Excellent video specifications  
0.1 dB flatness: 14 MHz  
NC = NO CONNECT  
Figure 1. 8-Lead, 3 mm × 3 mm LFCSP  
Differential gain: 0.12%  
Differential phase: 0.09°  
Single-supply operation: 2.7 V to 6 V  
Rail-to-rail output  
Output swings to within 80 mV of either rail  
Low voltage offset: 0.6 mV  
ADA4850-2  
V
1
1
2
3
4
12 +V  
OUT  
S
–IN1  
+IN1  
11  
V
2
OUT  
APPLICATIONS  
Portable multimedia players  
Video cameras  
10 –IN2  
+IN2  
–V  
S
9
Digital still cameras  
Consumer video  
NC = NO CONNECT  
Figure 2. 16-Lead, 3 mm × 3 mm LFCSPP  
GENERAL DESCRIPTION  
The ADA4850-1, ADA4850-21 are low price, high speed,  
voltage feedback rail-to-rail output op amps with ultralow  
power-down. Despite their low price, the ADA4850-1/  
ADA4850-2 provide excellent overall performance and  
versatility. The 175 MHz −3 dB bandwidth and 220 V/µs  
slew rate make these amplifiers well-suited for many general-  
purpose, high speed applications.  
The ADA4850-1/ADA4850-2 are designed to work in the  
extended temperature range of −40°C to +125°C.  
2
1
0
–1  
–2  
–3  
The ADA4850-1/ADA4850-2 are designed to operate at supply  
voltages as low as 2.7 V and up to 6 V at 2.4 mA of supply  
current per amplifier. In power-down mode, the supply current  
is less than 150 nA, ideal for battery-powered applications.  
–4  
G = +1  
The ADA4850 family provides users with a true single-supply  
capability, allowing input signals to extend 200 mV below the  
negative rail and to within 2.2 V of the positive rail. The output  
of the amplifier can swing within 80 mV of either supply rail.  
V
= 5V  
S
–5  
–6  
R
= 1k  
L
V
= 0.1V p-p  
OUT  
1
10  
100  
1000  
FREQUENCY (MHz)  
With its combination of low price, excellent differential gain  
(0.12%), differential phase (0.09º), and 0.1 dB flatness out to  
14 MHz, these amplifiers are ideal for video applications.  
Figure 3. Small Signal Frequency Response  
1 Patent pending.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
 
ADA4850-1/ADA4850-2  
TABLE OF CONTENTS  
Specifications with +3 V Supply..................................................... 3  
Headroom and Overdrive Recovery Considerations............ 12  
Specifications with +5 V Supply..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Circuit Description......................................................................... 12  
Operating the ADA4850-1/ADA4850-2 on  
Bipolar Supplies.......................................................................... 13  
Power-Down Pins....................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
4/05—Rev. 0 to Rev. A  
AddedADA4850-1..............................................................Universal  
Added 8-Lead LFCSP.........................................................Universal  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Figure 3.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Power-Down Pins Section and Table 5 ................... 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 14  
2/05—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
ADA4850-1/ADA4850-2  
SPECIFICATIONS WITH +3 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
160  
45  
14  
110  
80  
MHz  
MHz  
MHz  
V/µs  
ns  
G = +2, VO = 0.5 V p-p, RL = 150 Ω  
G = +2, VO = 0.5 V p-p, RL = 150 Ω  
G = +2, VO = 1 V Step  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VO = 1 V Step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VO = 2 V p-p, G = +3, RL = 150 Ω  
f = 100 kHz  
−72/−77  
10  
dBc  
nV/√Hz  
Input Current Noise  
f = 100 kHz  
2.5  
pA/√Hz  
%
Degrees  
Differential Gain  
Differential Phase  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
0.2  
0.2  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
4.1  
4.4  
mV  
µV/°C  
µA  
2.4  
4
nA/°C  
nA  
dB  
30  
100  
VO = 0.25 V to 0.75 V  
78  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +0.8  
60/50  
MΩ  
pF  
V
ns  
dB  
VIN = +3.5 V to −0.5 V, G = +1  
VCM = 0.5 V  
−76  
−108  
Power-Down Input Voltage  
Power-down ADA4850-1/ADA4850-2  
Enabled ADA4850-1/ADA4850-2  
<0.7/<0.6  
>0.8/>1.7  
0.7  
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
60  
Power-Down Bias Current/ Power Down Pin  
Enabled  
Power-Down  
Power-down = 3 V  
Power-down = 0 V  
37  
0.01  
55  
0.2  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +0.7 V to −0.1 V, G = +5  
Sinking/sourcing  
70/100  
0.06 to 2.83 0.03 to 2.92  
105/74  
ns  
V
mA  
Short-Circuit Current  
POWER SUPPLY  
Operating Range1  
2.7  
2.4  
15  
6
2.8  
150  
V
Quiescent Current/Amplifier  
Quiescent Current (Power-Down)/Amplifier  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
mA  
nA  
dB  
dB  
+VS = +3 V to +4 V, −VS = 0 V  
+VS = +3 V, −VS = 0 V to –1 V  
−83  
−83  
−100  
−102  
1 For operation on bipolar supplies, see the Operating the ADA4850-1/ADA4850-2 on Bipolar Supplies section.  
Rev. A | Page 3 of 16  
 
ADA4850-1/ADA4850-2  
SPECIFICATIONS WITH +5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 0.5 V p-p  
G = +2, VO = 1.4 V p-p, RL = 150 Ω  
G = +2, VO = 4 V Step  
G = +2, VO = 2 V Step  
175  
110  
9
220  
160  
85  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
G = +2, VO = 1 V Step, RL = 150 Ω  
fC = 1 MHz, VO = 2 V p-p, G = +2, RL = 150 Ω  
f = 100 kHz  
−81/−86  
10  
dBc  
nV/√Hz  
Input Current Noise  
f = 100 kHz  
2.5  
pA/√Hz  
%
Degrees  
dB  
Differential Gain  
Differential Phase  
Crosstalk(RTI)-ADA4850-2  
DC PERFORMANCE  
G = +3, NTSC, RL = 150 Ω  
G = +3, NTSC, RL = 150 Ω  
f = 4.5 MHz, RL = 150 Ω, VO = 2 V p-p  
0.12  
0.09  
60  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
4.2  
4.2  
mV  
µV/°C  
µA  
2.3  
4
nA/°C  
nA  
dB  
30  
105  
VO = 2.25 V to 2.75 V  
83  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +2.8  
50/40  
MΩ  
pF  
V
ns  
dB  
VIN = +5.5 V to −0.5 V, G = +1  
VCM = 2.0 V  
−85  
−110  
Power-Down Input Voltage  
Power-down ADA4850-1/ADA4850-2  
Enabled ADA4850-1/ADA4850-2  
<0.7/<0.6  
>0.8/>1.7  
0.7  
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
50  
Power-Down Bias Current/ Power Down Pin  
Enabled  
Power-Down  
Power-down = 5 V  
Power-down = 0 V  
0.05  
0.02  
0.13 mA  
0.2  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +1.1 V to −0.1 V, G = +5  
Sinking/sourcing  
60/70  
ns  
V
mA  
0.14 to 4.83 0.07 to 4.92  
118/94  
Short-Circuit Current  
POWER SUPPLY  
Operating Range1  
2.7  
2.5  
15  
6
2.9  
150  
V
Quiescent Current/Amplifier  
Quiescent Current (Power-Down)/Amplifier  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
mA  
nA  
dB  
dB  
+VS = +5 V to +6 V, −VS = 0 V  
+VS = +5 V, −VS = −0 V to −1 V  
−84  
−84  
−100  
−102  
1 For operation on bipolar supplies, see the Operating the ADA4850-1/ADA4850-2 on Bipolar Supplies section.  
Rev. A | Page 4 of 16  
 
ADA4850-1/ADA4850-2  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the die  
due to the ADA4850-1/ADA4850-2 drive at the output. The  
quiescent power is the voltage between the supply pins (VS)  
times the quiescent current (IS).  
Table 3.  
Parameter  
Rating  
Supply Voltage  
12.6 V  
Power Dissipation  
See Figure 4  
(−VS + 6) V  
(−VS − 0.5 ) V to (+VS + 0.5) V  
+VS to −VS  
−65°C to +125°C  
−40°C to +125°C  
300°C  
Power Down Pin Voltage  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature  
Operating Temperature Range  
PD = Quiescent Power + (Total Drive Power Load Power)  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS × IS  
)
+
×
2
RL  
Lead Temperature Range  
(Soldering 10 sec)  
RMS output voltages should be considered. If RL is referenced  
to −VS, as in single-supply operation, the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider  
the worst case, when VOUT = VS/4 for RL to midsupply.  
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS/4  
RL  
)
PD =  
(
VS × IS +  
)
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
THERMAL RESISTANCE  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads and  
exposed paddle from metal traces, through holes, ground, and  
power planes reduce θJA.  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for the device soldered in the circuit board for surface-  
mount packages.  
Table 4. Thermal Resistance  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the LFCSP (91°C/W)  
package on a JEDEC standard 4-layer board. θJA values are  
approximations.  
Package Type  
16-Lead LFCSP  
8-Lead LFCSP  
θJA  
91  
80  
Unit  
°C/W  
°C/W  
2.5  
Maximum Power Dissipation  
The maximum safe power dissipation for the ADA4850-1/  
ADA4850-2 is limited by the associated rise in junction  
temperature (TJ) on the die. At approximately 150°C, which is  
the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
may change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
ADA4850-1/ADA4850-2. Exceeding a junction temperature of  
150°C for an extended period of time can result in changes in  
silicon devices, potentially causing degradation or loss of  
functionality.  
2.0  
LFCSP-8  
LFCSP-16  
1.5  
1.0  
0.5  
0
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
 
ADA4850-1/ADA4850-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
1
4
6pF  
G = +1  
= 5V  
V
R
V
= 5V  
= 150  
S
V
3
S
L
0
R
V
= 1kΩ  
= 0.1V p-p  
L
OUT  
= 0.1V p-p  
2
OUT  
G = –1  
–1  
–2  
–3  
–4  
–5  
–6  
1
0
G = +2  
1pF  
0pF  
–1  
–2  
–3  
–4  
–5  
–6  
G = +10  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
Figure 5. Small Signal Frequency Response for Various Gains  
Figure 8. Small Signal Frequency Response for Various Capacitor Loads  
6.2  
2
1
V
= 5V  
S
G = +2  
= 150  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
R
= 150  
L
R
L
0
–1  
–2  
–3  
–4  
V
= 5V, V  
= 2V p-p  
= 1.4V p-p  
= 3V, V = 0.5V p-p  
OUT  
S
OUT  
R
= 1kΩ  
L
V
= 5V, V  
OUT  
S
V
S
V
= 5V, V  
= 0.1V p-p  
OUT  
S
V
= 5V  
S
G = +1  
= 0.1V p-p  
–5  
–6  
V
OUT  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Loads  
Figure 9. 0.1 dB Flatness Response  
3
2
1
0
V
= 5V  
S
G = +1  
V
= 0.5V p-p  
OUT  
V
= 3V  
S
1
–1  
–2  
–3  
–4  
–5  
R
= 150Ω  
L
0
–1  
–2  
–3  
–4  
–5  
–6  
R
= 1kΩ  
L
V
= 5V  
S
G = +1  
–6  
–7  
R
= 150Ω  
L
V
= 0.1V p-p  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Large Frequency Response for Various Loads  
Figure 7. Small Signal Frequency Response for Various Supplies  
Rev. A | Page 6 of 16  
 
ADA4850-1/ADA4850-2  
3
2
300  
250  
200  
150  
100  
50  
G = +2  
= 5V  
V
= 3V  
S
+125°C  
+85°C  
V
G = +1  
R
V
S
R
= 1k  
= 1kΩ  
L
NEGATIVE SLEW RATE  
L
= 0.1V p-p  
OUT  
1
0
POSITIVE SLEW RATE  
+25°C  
–40°C  
–1  
–2  
–3  
–4  
–5  
0
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
OUTPUT VOLTAGE STEP (V)  
Figure 11. Small Signal Frequency Response for Various Temperatures  
Figure 14. Slew Rate vs. Output Voltage  
3
10k  
1k  
V
= 5V  
S
G = +1  
R
V
2
1
= 1kΩ  
L
+125°C  
+85°C  
= 0.1V p-p  
OUT  
V
= 3V, 5V, ADA4850-2  
S
0
100  
10  
–1  
–2  
–3  
–4  
–5  
+25°C  
–40°C  
V
= 3V, 5V, ADA4850-1 ENABLE  
S
V
= 3V, 5V, ADA4850-1 POWER DOWN  
S
1
0.1  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
POWER-DOWN VOLTAGE (V)  
Figure 12. Small Signal Frequency Response for Various Temperatures  
Figure 15. Supply Current vs. Power-Down Voltage  
140  
120  
100  
80  
0
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = +2  
V
= 5V  
S
V
= 5V  
S
–30  
R
= 150Ω  
L
V
= 2V p-p  
OUT  
–60  
PHASE  
–90  
V
2 TO V  
OUT  
1
OUT  
60  
–120  
–150  
–180  
–210  
–240  
40  
GAIN  
V
1 TO V 2  
OUT  
OUT  
20  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Figure 16. Crosstalk vs. Frequency  
Rev. A | Page 7 of 16  
ADA4850-1/ADA4850-2  
–40  
2.575  
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
10pF  
0pF  
G = +1  
G = +1  
V
V
= 5V  
V
= 5V  
S
S
–50  
–60  
= 500mV p-p  
R
= 150  
OUT  
L
R
= 1kHD2  
L
–70  
R
= 150HD2  
L
–80  
R
= 1kHD3  
L
–90  
R
= 150HD3  
–100  
–110  
L
0.1  
1
10  
100  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (MHz)  
Figure 17. Harmonic Distortion vs. Frequency for Various Loads  
Figure 20. Small Signal Transient Response for Capacitive Load  
–50  
3.25  
G = +2  
G = +2  
V
= 5V  
R
V
= 1kΩ  
S
L
= 5V  
R
= 1kΩ  
S
L
–60  
–70  
V
= 500mV p-p  
HD2  
OUT  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
V
= 200mV p-p  
HD2  
OUT  
–80  
–90  
V
= 200mV p-p  
OUT  
HD3  
–100  
–110  
–120  
V
= 500mV p-p  
OUT  
HD3  
0.1  
1
10  
100  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
TIME (ns)  
Figure 18. Harmonic Distortion vs. Frequency for Various VOUT  
Figure 21. Large Signal Transient Response  
0.65  
2.875  
2.750  
2.625  
2.500  
2.375  
2.250  
2.125  
0.875  
G = +2  
G = +1  
= 1k  
R
= 1kΩ  
L
S
R
L
V
= 5V  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
V
= 5V  
S
V
= 3V  
S
0
50  
100  
150  
200  
0
50  
100  
150  
200  
TIME (ns)  
TIME (ns)  
Figure 19. Small Signal Transient Response for Various Supplies  
Figure 22. Large Signal Transient Response for Various Supplies  
Rev. A | Page 8 of 16  
ADA4850-1/ADA4850-2  
6
5
1000  
100  
10  
G = +2  
V
= 5V  
S
f
= 400kHz  
IN  
V
4
DISABLE  
3
2
1
0
V
OUT  
–1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
15  
30  
45  
TIME (µs)  
FREQUENCY (Hz)  
Figure 23. Enable/Disable Time  
Figure 26. Voltage Noise vs. Frequency  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
1
G = +1  
V
= 5V  
S
INPUT  
R
= 150Ω  
L
f = 1MHz  
OUTPUT  
–0.5  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 24. Input Overdrive Recovery  
Figure 27. Current Noise vs. Frequency  
3.5  
3.0  
350  
300  
250  
200  
150  
100  
50  
G = +5  
V
= 5V  
S
V
= 3V  
S
N = 1720  
x = 450µV  
σ = 750µV  
R
= 150Ω  
L
OUTPUT  
f = 1MHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5 × INPUT  
–0.5  
0
–4  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
–3  
–2  
–1  
0
1
2
3
4
V
(mV)  
OFFSET  
Figure 25. Output Overdrive Recovery  
Figure 28. Input Offset Voltage Distribution  
Rev. A | Page 9 of 16  
ADA4850-1/ADA4850-2  
400  
380  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
+I  
B
V
= 5V  
S
360  
340  
320  
300  
280  
260  
240  
220  
200  
V
= 5V  
S
–I  
B
V
= 3V  
S
–1.0 –0.5  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
3.0  
3.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
CM  
Figure 29. Input Offset Voltage vs. Common-Mode Voltage  
Figure 32. Input Bias Current vs. Temperature for Various Supplies  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
95  
V
R
= 5V  
= 1kΩ  
S
L
V
= 3V  
S
90  
85  
80  
75  
70  
65  
+V  
SAT  
+V – V  
OUT  
S
–V  
SAT  
–V – V  
S
OUT  
V
= 5V  
S
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 30. Output Saturation Voltage vs. Load Current  
(Voltage Differential from Rails)  
Figure 33. Output Saturation Voltage vs. Temperature  
(Voltage Differential from Rails)  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
V
= 3V  
S
V
= 5V  
S
V
= 3V  
S
V
= 5V  
S
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (  
°
TEMPERATURE (°C)  
Figure 31. Power-Down Bias Current vs. Temperature for Various Supplies  
Figure 34. Current vs. Temperature for Various Supplies  
Rev. A | Page 10 of 16  
ADA4850-1/ADA4850-2  
–20  
–30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
= 5V  
V
= 5V  
S
S
–40  
–50  
+PSR  
CHANNEL 1  
–60  
–70  
CHANNEL 2  
–PSR  
–80  
–90  
–100  
–110  
–120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 35. Power Supply Rejection (PSR) vs. Frequency  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
V
= 3V  
S
–0.1  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 36. Input Offset Voltage vs. Temperature for Various Supplies  
Rev. A | Page 11 of 16  
ADA4850-1/ADA4850-2  
CIRCUIT DESCRIPTION  
The ADA4850-1/ADA4850-2 feature a high slew rate input  
stage that is a true single-supply topology, capable of sensing  
signals at or below the negative supply rail. The rail-to-rail  
output stage can swing to within 80 mV of either supply rail  
when driving light loads and within 0.17 V when driving 150 Ω.  
High speed performance is maintained at supply voltages as low  
as 2.7 V.  
Higher frequency signals require more headroom than the  
lower frequencies to maintain distortion performance. Figure 39  
illustrates how the rising edge settling time for the amplifier  
configured as a unity-gain follower stretches out as the top of a  
1 V step input approaches and exceeds the specified input  
common-mode voltage limit.  
3.6  
V
= 5V  
S
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
G = +1  
R
HEADROOM AND OVERDRIVE RECOVERY  
CONSIDERATIONS  
Input  
= 1kΩ  
L
The ADA4850-1/ADA4850-2 are designed for use in low  
voltage systems. To obtain optimum performance, it is useful to  
understand the behavior of the amplifier as input and output  
signals approach the amplifiers headroom limits. The input  
common-mode voltage range extends 200 mV below the  
negative supply voltage or ground for single-supply operation to  
within 2.2 V of the positive supply voltage. Therefore, in a gain  
of +3, the ADA4850-1/ADA4850-2 can provide full rail-to-rail  
output swing for supply voltage as low as 3.3 V, assuming the  
input signal swing is from −VS (or ground) to 1.1 V.  
V
= 2V TO 3V  
STEP  
V
= 2.1V TO 3.1V  
STEP  
V
= 2.2V TO 3.2V  
= 2.3V TO 3.3V  
STEP  
V
STEP  
V
= 2.4V TO 3.4V  
STEP  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 39. Pulse Response, Input Headroom Limits  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the amplifiers positive input lies within the amplifiers input  
common-mode range.  
The recovery time from input voltages 2.2 V or closer to the  
positive supply is approximately 50 ns, which is limited by the  
settling artifacts caused by transistors in the input stage coming  
out of saturation.  
The input stage sets the headroom limit for signals when the  
amplifier is used in a gain of +1 for signals approaching the  
positive rail. For high speed signals, however, there are other  
considerations. Figure 38 shows −3 dB bandwidth vs. dc input  
voltage for a unity-gain follower. As the common-mode voltage  
approaches the positive supply, the bandwidth begins to drop  
when within 2 V of +VS. This can manifest itself in increased  
distortion or settling time.  
The ADA4850-1/ADA4850-2 do not exhibit phase reversal, even  
for input voltages beyond the voltage supply rails. Going more than  
0.6 V beyond the power supplies turns on protection diodes at the  
input stage, which greatly increase the current draw of the devices.  
Output  
For signals approaching the negative supply and inverting gain,  
and high positive gain configurations, the headroom limit is the  
output stage. The ADA4850-1/ADA4850-2 amplifiers use a  
common-emitter output stage. This output stage maximizes the  
available output range, limited by the saturation voltage of the  
output transistors. The saturation voltage increases with drive  
current, due to the output transistor collector resistance.  
2
V
V
V
V
= 3V  
CM  
CM  
CM  
CM  
1
0
= 3.1V  
= 3.2V  
= 3.3V  
–1  
–2  
–3  
–4  
–5  
–6  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, higher frequency signals  
require a bit more headroom than the lower frequency signals.  
V
= 5V  
S
G = +1  
= 1kΩ  
R
L
Output overload recovery is typically within 40 ns after the  
amplifiers input is brought to a nonoverloading value.  
V
= 0.1V p-p  
OUT  
0.1  
1
10  
100  
1000  
Figure 40 shows the output recovery transients for the amplifier  
recovering from a saturated output from the top and bottom  
supplies to a point at midsupply.  
FREQUENCY (MHz)  
Figure 38. Unity-Gain Follower Bandwidth vs.  
Frequency for Various Input Common-Mode  
Rev. A | Page 12 of 16  
 
 
 
ADA4850-1/ADA4850-2  
6.5  
5.5  
OPERATING THE ADA4850-1/ADA4850-2 ON  
BIPOLAR SUPPLIES  
V
= 5V  
S
V
= +2.5V TO 0V  
G = –1  
R
OUT  
= 1kΩ  
L
The ADA4850-1/ADA4850-2 can operate on bipolar supplies  
up to 5 V. The only restriction is that the voltage between −VS  
and the power-down pin must not exceed 6 V. Voltage  
differences greater than 6 V can cause permanent damage to the  
amplifier. For example, when operating on 5 V supplies, the  
power-down pin must not exceed +1 V.  
4.5  
3.5  
INPUT  
VOLTAGE  
EDGES  
2.5  
1.5  
0.5  
POWER-DOWN PINS  
V
= –2.5V TO 0V  
OUT  
–0.5  
–1.5  
The ADA4850-1/ADA4850-2 feature an ultralow power-down  
mode that lowers the supply current to less than 150 nA. When  
a power-down pin is brought to within 0.6 V of the negative  
supply, the amplifier is powered down. Table 5 outlines the  
power-down pin functionality. To ensure proper operation, the  
power-down pins (PD) should not be left floating.  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
Figure 40. Overload Recovery  
Table 5. Power-Down Pins Functionality  
3 V and 5 V  
Supply Voltage  
Powered Down  
Enabled  
ADA4850-1  
0 V to 0.7 V  
0.8 to +VS  
ADA4850-2  
0 V to 0.6 V  
1.7 V to +VS  
Rev. A | Page 13 of 16  
 
 
ADA4850-1/ADA4850-2  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
8
PIN 1  
INDICATOR  
0.45  
1
PIN 1  
INDICATOR  
1.89  
1.74  
1.59  
2.75  
BSC SQ  
1.50  
REF  
TOP  
VIEW  
EXPOSED  
PAD  
0.50  
BSC  
(BOTTOM VIEW)  
4
5
0.25  
MIN  
1.60  
1.45  
1.30  
0.80 MAX  
0.65TYP  
0.90  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 41. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
1
0.45  
1.50 SQ  
1.35  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 42. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Outline  
CP-8-2  
CP-8-2  
Branding  
HWB  
HWB  
HWB  
HTB  
ADA4850-1YCPZ-R21  
ADA4850-1YCPZ-RL1  
ADA4850-1YCPZ-RL71  
ADA4850-2YCPZ-R21  
ADA4850-2YCPZ-RL1  
ADA4850-2YCPZ-RL71  
8-Lead Lead Frame Chip Scale Package (LFCSP_VD)  
8-Lead Lead Frame Chip Scale Package (LFCSP_VD)  
8-Lead Lead Frame Chip Scale Package (LFCSP_VD)  
CP-8-2  
16-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-16-3  
16-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-16-3  
16-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-16-3  
HTB  
HTB  
1 Z = Pb-free part.  
Rev. A | Page 14 of 16  
 
 
 
ADA4850-1/ADA4850-2  
NOTES  
Rev. A | Page 15 of 16  
ADA4850-1/ADA4850-2  
NOTES  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05320–0−4/05(A)  
Rev. A | Page 16 of 16  

相关型号:

ADA4850-2YCPZ-RL

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
ADI

ADA4850-2YCPZ-RL7

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
ADI

ADA4851-1

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1ART-R2

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1ART-REEL

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1ART-REEL7

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1WYRJZ-R7

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1YRJ-EBZ

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1YRJZ-R2

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
ROCHESTER

ADA4851-1YRJZ-RL7

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI