ADG5462FBRUZ [ADI]

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector;
ADG5462FBRUZ
型号: ADG5462FBRUZ
厂家: ADI    ADI
描述:

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector

文件: 总29页 (文件大小:634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
User Defined Fault Protection and  
Detection,10 Ω RON, Quad Channel Protector  
Data Sheet  
ADG5462F  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
SS  
DD  
User defined secondary supplies set overvoltage level  
Overvoltage protection up to −55 V and +55 V  
Power-off protection up to −55 V and +55 V  
Overvoltage detection on source pins  
D1  
D2  
S1  
S2  
Minimum secondary supply level: 4.5 V single-supply  
Interrupt flag indicates fault status  
Low on resistance: 10 Ω typical  
On-resistance flatness: 0.5 Ω maximum  
4 kV human body model (HBM) ESD rating  
Latch-up immune under any circumstance  
D3  
D4  
S3  
S4  
V
V
OUT  
IN  
FF  
ADG5462F  
POSFV NEGFV DR  
V
SS to VDD analog signal range  
Figure 1.  
5 V to 22 V dual supply operation  
8 V to 44 V single-supply operation  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
APPLICATIONS  
Analog input/output modules  
Process control/distributed control systems  
Data acquisition  
Instrumentation  
Avionics  
Automatic test equipment  
Communication systems  
The low on-resistance of these switches, combined with the  
on-resistance flatness over a significant portion of the signal  
range make them an ideal solution for data acquisition and  
instrumentation applications where excellent linearity and low  
distortion are critical.  
GENERAL DESCRIPTION  
The ADG5462F contains four channels that are overvoltage  
protected. The channel protector is placed in series with the signal  
path and protects sensitive components from overvoltage faults  
in that path. The channel protector prevents overvoltages when  
powered and unpowered, and it is ideal for use in applications  
where correct power supply sequencing cannot always be guaranteed.  
The primary supply voltages define the on-resistance profile,  
while the secondary supply voltages define the voltage level at  
which the overvoltage protection engages.  
PRODUCT HIGHLIGHTS  
1. Source pins (Sx) are protected against voltages greater than  
the secondary supply rails (POSFV and NEGFV), up to  
−55 V and +55 V.  
2. In an unpowered state, source pins (Sx) are protected  
against voltages from −55 V to +55 V.  
3. Overvoltage detection with digital output indicates the  
operating state of the channels.  
4. Trench isolation guards against latch-up.  
When no power supplies are present, the channel remains in the off  
condition, and the channel inputs are high impedance. Under  
normal operating conditions, if the analog input signal levels on  
any Sx pin exceed positive fault voltage (POSFV) or negative fault  
voltage (NEGFV) by a threshold voltage (VT), the channel turns  
off and that Sx pin becomes high impedance. If the DR pin is  
driven low, the drain pin (Dx) is pulled to the secondary supply  
voltage that was exceeded. The output profile for each DR voltage  
level is shown in Figure 49. Input signal levels up to −55 V or  
+55 V relative to ground are blocked in both the powered and  
unpowered conditions.  
5. Optimized for low on-resistance and on-resistance flatness.  
6. The ADG5462F operates from a dual power supply range of  
5 V to 22 V or a single power supply range of 8 V to 44 V.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG5462F  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 23  
Theory of Operation ...................................................................... 24  
Switch Architecture.................................................................... 24  
User Defined Fault Protection.................................................. 25  
Applications Information .............................................................. 27  
Power Supply Rails ..................................................................... 27  
Power Supply Sequencing Protection...................................... 27  
Power Supply Recommendations............................................. 27  
User Defined Signal Range ....................................................... 27  
Low Impedance Channel Protection....................................... 27  
High Voltage Surge Suppression .............................................. 27  
Intelligent Fault Detection ........................................................ 28  
Large Voltage, High Frequency Signals................................... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
20 V Dual Supply ....................................................................... 5  
12 V Single Supply........................................................................ 7  
36 V Single Supply........................................................................ 9  
Continuous Current per Channel, Sx or Dx........................... 10  
Absolute Maximum Ratings.......................................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions ......................... 12  
Typical Performance Characteristics ........................................... 13  
Test Circuits..................................................................................... 19  
REVISION HISTORY  
1/16—Rev. A to Rev. B  
Changes to General Description Section ...................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Channel On Leakage, ID (On), IS (On) Maximum  
Parameter, Table 2.............................................................................. 5  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 9  
5/15—Rev. 0 to Rev. A  
Added 16-Lead LFCSP Package........................................Universal  
Changes to Drain Leakage Current, ID, with Overvoltage  
Parameter Test Condition/Comment, Table 3.............................. 7  
Changes to Drain Leakage Current, ID, with Overvoltage  
Parameter Test Condition/Comment, Table 4.............................. 9  
Changes to Table 5.......................................................................... 10  
Changes to Table 6.......................................................................... 11  
Added Figure 3; Renumbered Sequentially ................................ 12  
Changes to Table 7.......................................................................... 12  
Added Figure 54.............................................................................. 29  
Updated Outline Dimensions....................................................... 29  
Changes to Ordering Guide .......................................................... 29  
1/15—Revision 0: Initial Version  
Rev. B | Page 2 of 29  
 
Data Sheet  
ADG5462F  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = 15 V 10%, VSS = −15 V 10%, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 1.  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
VDD to VSS  
16.5  
16  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = +13.5 V, VSS = −13.5 V, see Figure 35  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
V
10  
11.2  
9.5  
10.7  
0.05  
0.5  
0.05  
0.35  
0.6  
0.9  
0.1  
0.4  
0.7  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
14  
13.5  
0.6  
0.5  
1.1  
0.5  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
0.7  
0.5  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
1.1  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Channel On Leakage, ID (On), IS (On)  
See Figure 23  
VDD = +16.5 V, VSS = −16.5 V  
VS = VD = 10 V, see Figure 36  
0.3  
1.5  
nA typ  
nA max  
2.0  
4.5  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
78  
40  
µA typ  
µA typ  
VDD = +16.5 V, VSS = −16.5 V, GND = 0 V,  
VS = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or floating,  
GND = 0 V, VS = 55 V, see Figure 38  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or VDD  
VDD = +16.5 V, VSS = −16.5 V, GND = 0 V,  
VS = 55 V, see Figure 37  
2.0  
nA typ  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
VS = 55 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS = 55 V, see Figure 38  
DIGITAL INPUTS/OUTPUTS (DR/FF)  
Input Voltage High, VINH  
Input Voltage Low, VINL  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
Input Current, IINL or IINH  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
5.0  
2.0  
0.8  
V max  
Rev. B | Page 3 of 29  
 
 
ADG5462F  
Data Sheet  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
Overvoltage Response Time, tRESPONSE  
460  
585  
720  
930  
4
ns typ  
ns max  
ns typ  
ns max  
µs typ  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
RL = 1 kΩ, CL = 2 pF, see Figure 43  
CL = 12 pF, see Figure 47  
615  
630  
Overvoltage Recovery Time, tRECOVERY  
1050  
1100  
Drain Pull-Up/Pull-Down Time Following  
Overvoltage, tRESPONSE (DR)  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
85  
60  
600  
−90  
0.0015  
115  
85  
ns typ  
µs typ  
ns typ  
dB typ  
% typ  
CL = 12 pF, see Figure 44  
CL = 12 pF, see Figure 45  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 46  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 39  
RL = 10 kΩ, VS = 15 V p-p,  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
f = 20 Hz to 20 kHz, see Figure 41  
−3 dB Bandwidth  
Insertion Loss  
CD (On), CS (On)  
318  
–0.8  
24  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 40  
dB typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = POSFV = +16.5 V, VSS = NEGFV = −16.5 V,  
GND = 0 V  
Normal Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.9  
0.1  
1.2  
0.4  
0.55  
0.5  
0.1  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
1.3  
0.6  
ISS  
INEGFV  
ISS + INEGFV  
Fault Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.65  
0.7  
VS = 55 V  
1.2  
0.1  
1.6  
0.8  
1.0  
0.5  
0.1  
1.0  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
V min  
1.8  
1.1  
ISS  
INEGFV  
ISS + INEGFV  
VDD/VSS  
1.8  
5
GND = 0 V  
GND = 0 V  
22  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 4 of 29  
Data Sheet  
ADG5462F  
20 V DUAL SUPPLY  
VDD = 20 V 10%, VSS = −20 V 10%, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 2.  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
VDD to VSS  
16.5  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = +18 V, VSS = −18 V, see Figure 35  
V
10  
11.5  
9.5  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 15 V, IS = −10 mA  
14.5  
14  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
11  
16.5  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.05  
0.35  
0.05  
0.35  
1.0  
1.4  
0.1  
0.4  
0.7  
0.5  
0.5  
1.5  
0.5  
0.5  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
0.5  
1.5  
VS = 13.5 V, IS = −10 mA  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Channel On Leakage, ID (On), IS (On)  
See Figure 23  
VDD = +22 V, VSS = −22 V  
VS = VD = 15 V, see Figure 36  
0.3  
1.5  
nA typ  
nA max  
2.0  
4.5  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
78  
40  
µA typ  
µA typ  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
VS = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, VS = 55 V,  
see Figure 38  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or VDD  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
VS = 55 V, see Figure 37  
5.0  
nA typ  
1.0  
10  
1.0  
1.0  
µA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
VS = 55 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS = 55 V, see Figure 38  
DIGITAL INPUTS/OUTPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
5.0  
2.0  
0.8  
V max  
Rev. B | Page 5 of 29  
 
ADG5462F  
Data Sheet  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
Overvoltage Response Time, tRESPONSE  
370  
480  
840  
1200  
4
ns typ  
ns max  
ns typ  
ns max  
µs typ  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
RL = 1 kΩ, CL = 2 pF, see Figure 43  
CL = 12 pF, see Figure 47  
500  
515  
Overvoltage Recovery Time, tRECOVERY  
1400  
1700  
Drain Pull-Up/Pull-Down Time Following  
Overvoltage, tRESPONSE (DR)  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
85  
60  
600  
−90  
0.001  
115  
85  
ns typ  
µs typ  
ns typ  
dB typ  
% typ  
CL = 12 pF, see Figure 44  
CL = 12 pF, see Figure 45  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 46  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 39  
RL = 10 kΩ, VS = 20 V p-p,  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
f = 20 Hz to 20 kHz, see Figure 41  
−3 dB Bandwidth  
Insertion Loss  
CD (On), CS (On)  
POWER REQUIREMENTS  
Normal Mode  
IDD  
310  
–0.8  
23  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 40  
dB typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
VS = 0 V, f = 1 MHz  
VDD = POSFV = +22 V, VSS = NEGFV = −22 V  
0.9  
0.1  
1.2  
0.4  
0.55  
0.5  
0.1  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
IPOSFV  
IDD + IPOSFV  
IGND  
1.3  
0.6  
ISS  
INEGFV  
ISS + INEGFV  
Fault Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.65  
0.7  
VS = 55 V  
1.2  
0.1  
1.6  
0.8  
1.0  
0.5  
0.1  
1.0  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
V min  
1.8  
1.1  
ISS  
INEGFV  
ISS + INEGFV  
VDD/VSS  
1.8  
5
22  
GND = 0 V  
GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 6 of 29  
Data Sheet  
ADG5462F  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 3.  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
0 V to VDD  
37  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = +10.8 V, VSS = 0 V, see Figure 35  
VS = 0 V to +10 V, IS = −10 mA  
VS = +3.5 V to +8.5 V, IS = −10 mA  
VS = 0 V to +10 V, IS = −10 mA  
VS = +3.5 V to +8.5 V, IS = −10 mA  
VS = 0 V to +10 V, IS = −10 mA  
VS = +3.5 V to +8.5 V, IS = −10 mA  
V
22  
24.5  
10  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
31  
11.2  
14  
16.5  
0.7  
On-Resistance Match Between Channels, ∆RON 0.05  
0.5  
0.05  
0.5  
12.5  
14.5  
0.6  
0.6  
0.6  
19  
0.7  
On-Resistance Flatness, RFLAT(ON)  
23  
0.9  
0.7  
1.1  
1.3  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Channel On Leakage, ID (On), IS (On)  
See Figure 23  
VDD = +13.2 V, VSS = 0 V  
VS = VD = 1 V/10 V, see Figure 36  
0.3  
1.5  
nA typ  
nA max  
2.0  
4.5  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
78  
40  
µA typ  
µA typ  
VDD = +13.2 V, VSS = 0 V, GND = 0 V,  
VS = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or floating,  
GND = 0 V, VS = 55 V, see Figure 38  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or VDD  
VDD = +13.2 V, VSS = 0 V, GND = 0 V, VS = 55 V,  
see Figure 37  
2.0  
nA typ  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
VS = 55 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating,  
GND = 0 V, VS = 55 V, see Figure 38  
DIGITAL INPUTS/OUTPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
5.0  
2.0  
0.8  
V max  
Rev. B | Page 7 of 29  
 
ADG5462F  
Data Sheet  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
Overvoltage Response Time, tRESPONSE  
560  
660  
640  
800  
4
ns typ  
ns max  
ns typ  
ns max  
µs typ  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
RL = 1 kΩ, CL = 2 pF, see Figure 43  
CL = 12 pF, see Figure 47  
700  
865  
720  
960  
Overvoltage Recovery Time, tRECOVERY  
Drain Pull-Up/Pull-Down Time Following  
Overvoltage, tRESPONSE (DR)  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
85  
60  
600  
−90  
0.007  
115  
85  
ns typ  
µs typ  
ns typ  
dB typ  
% typ  
CL = 12 pF, see Figure 44  
CL = 12 pF, see Figure 45  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 46  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 39  
RL = 10 kΩ, VS = 6 V p-p,  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
f = 20 Hz to 20 kHz, see Figure 41  
−3 dB Bandwidth  
Insertion Loss  
CD (On), CS (On)  
284  
–0.9  
25  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 40  
dB typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
VS = 6 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = +13.2 V, VSS = 0 V,  
digital inputs = 0 V, 5 V, or VDD  
Normal Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.9  
0.1  
1.2  
0.4  
0.55  
0.5  
0.1  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
1.3  
0.6  
ISS  
INEGFV  
ISS + INEGFV  
Fault Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.65  
0.7  
VS = 55 V  
1.2  
0.1  
1.6  
0.8  
1.0  
0.5  
0.1  
1.0  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max VS = 55 V, VD = 0 V  
V min  
V max  
1.8  
1.1  
ISS  
INEGFV  
ISS + INEGFV  
VDD  
Digital inputs = 5 V  
1.8  
8
44  
GND = 0 V  
GND = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 8 of 29  
Data Sheet  
ADG5462F  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 4.  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
0 V to VDD  
37  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = +32.4 V, VSS = 0 V, see Figure 35  
VS = 0 V to +30 V, IS = −10 mA  
VS = +4.5 V to +28 V, IS = −10 mA  
VS = 0 V to +30 V, IS = −10 mA  
VS = +4.5 V to +28 V, IS = −10 mA  
VS = 0 V to +30 V, IS = −10 mA  
VS = +4.5 V to +28 V, IS = −10 mA  
V
22  
24.5  
10  
11  
0.05  
0.5  
0.05  
0.35  
12.5  
14.5  
0.1  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
31  
14  
16.5  
0.7  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.6  
0.5  
19  
0.5  
23  
0.4  
0.7  
0.5  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Channel On Leakage, ID (On), IS (On)  
See Figure 23  
VDD = +39.6 V, VSS = 0 V  
VS = VD = 1 V/30 V, see Figure 36  
0.3  
1.5  
nA typ  
nA max  
2.0  
4.5  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
78  
40  
µA typ  
µA typ  
VDD = +39.6 V, VSS = 0 V, GND = 0 V,  
VS = −40 V to +55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, VS = +55 V, −40 V,  
see Figure 38  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or VDD  
VDD = +39.6 V, VSS = 0 V, GND = 0 V,  
VS = −40 V to +55 V, see Figure 37  
2.0  
nA typ  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
VS = −40 V to +55 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS = −40 V to +55 V, see Figure 38  
DIGITAL INPUTS/OUTPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
5.0  
2.0  
0.8  
V max  
Rev. B | Page 9 of 29  
 
ADG5462F  
Data Sheet  
−40°C to −40°C to  
Parameter  
+25°C +85°C  
+125°C  
Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
Overvoltage Response Time, tRESPONSE  
250  
350  
1500  
2000  
4
ns typ  
ns max  
ns typ  
ns max  
µs typ  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
RL = 1 kΩ, CL = 2 pF, see Figure 43  
CL = 12 pF, see Figure 47  
360  
375  
Overvoltage Recovery Time, tRECOVERY  
2300  
2700  
Drain Pull-Up/Pull-Down Time Following  
Overvoltage, tRESPONSE (DR)  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
85  
60  
600  
−90  
0.001  
115  
85  
ns typ  
µs typ  
ns typ  
dB typ  
% typ  
CL = 12 pF, see Figure 44  
CL = 12 pF, see Figure 45  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 46  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 39  
RL = 10 kΩ, VS = 18 V p-p,  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
f = 20 Hz to 20 kHz, see Figure 41  
−3 dB Bandwidth  
Insertion Loss  
CD (On), CS (On)  
321  
–0.8  
23  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 40  
dB typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
VS = 18 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = 39.6 V, VSS = 0 V,  
digital inputs = 0 V, 5 V, or VDD  
Normal Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.9  
0.1  
1.2  
0.4  
0.55  
0.5  
0.1  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
1.3  
0.6  
ISS  
INEGFV  
ISS + INEGFV  
Fault Mode  
IDD  
IPOSFV  
IDD + IPOSFV  
IGND  
0.65  
0.7  
VS = −40 V to +55 V  
1.2  
0.1  
1.6  
0.8  
1.0  
0.5  
0.1  
1.0  
mA typ  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA typ  
mA max  
V min  
1.8  
1.1  
ISS  
INEGFV  
ISS + INEGFV  
VDD  
1.8  
8
GND = 0 V  
GND = 0 V  
44  
V max  
1 Guaranteed by design; not subject to production test.  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 5.  
Parameter  
25°C  
85°C  
125°C  
Unit  
Test Conditions/Comments  
16-Lead TSSOP  
θJA = 112.6°C/W  
83  
64  
59  
48  
39  
29  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
16-Lead LFCSP  
θJA = 30.4°C/W  
152  
118  
99  
81  
61  
53  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
Rev. B | Page 10 of 29  
 
 
Data Sheet  
ADG5462F  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
Rating  
VDD to VSS  
VDD to GND  
VSS to GND  
48 V  
−0.3 V to +48 V  
−48 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3V to +0.3 V  
−55 V to +55 V  
80 V  
POSFV to GND  
NEGFV to GND  
Sx Pins to GND  
Sx to VDD or VSS  
VS to VD  
Only one absolute maximum rating can be applied at any  
one time.  
ESD CAUTION  
80 V  
Dx Pins1, 2 to GND  
NEGFV − 0.7 V to POSFV +  
0.7 V or 30 mA, whichever  
occurs first  
Digital Input (DR pin) to GND  
Peak Current, Sx or Dx Pins  
GND − 0.7 V to 48 V or 30 mA,  
whichever occurs first  
288 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Continuous Current, Sx or Dx Pins  
Digital Output (FF pin)  
Data3 + 15%  
GND − 0.7V to 6 V or 30 mA,  
whichever occurs first  
Dx Pins, Overvoltage State,  
DR = GND, Load Current  
1 mA  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Thermal Impedance, θJA  
16-Lead TSSOP (4-Layer Board)  
16-Lead LFCSP (4-Layer Board)  
112.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb-Free  
As per JEDEC J-STD-020  
ESD (HBM: ESDA/JEDEC JS-001-2011)  
Input/Output Port to Supplies  
Input/Output Port to  
Input/Output Port  
4 kV  
4 kV  
All Other Pins  
4 kV  
1 Overvoltages at the Dx pins are clamped by internal diodes. Limit current to  
the maximum ratings given.  
2 POSFV and NEGFV must not exceed VDD and VSS, respectively.  
3 See Table 5.  
Rev. B | Page 11 of 29  
 
 
ADG5462F  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
S1  
1
2
3
4
12 S2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NEGFV  
D1  
POSFV  
D2  
V
11  
10  
9
V
DD  
ADG5462F  
SS  
TOP VIEW  
GND  
FF  
S3  
(Not to Scale)  
S1  
S2  
S4  
ADG5462F  
TOP VIEW  
(Not to Scale)  
V
V
DD  
SS  
GND  
S4  
FF  
S3  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. DO NOT  
CONNECT TO THIS PIN.  
2. THE EXPOSED PAD IS CONNECTED INTERNALLY.  
FOR INCREASED RELIABILITY OF THE SOLDER  
JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE PAD BE SOLDERED  
D4  
D3  
NIC  
DR  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
TO THE LOWEST SUPPLY VOLTAGE, V  
.
SS  
Figure 2. TSSOP Pin Configuration  
Figure 3. LFCSP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP  
Mnemonic  
Description  
1
15  
NEGFV  
Negative Fault Voltage. This pin provides the negative supply voltage that determines the overvoltage  
protection level. If a secondary supply is not used, connect this pin to VSS.  
2
3
4
5
6
7
8
16  
1
2
3
4
D1  
S1  
VSS  
GND  
S4  
Drain Terminal 1. This pin can be an input or an output.  
Overvoltage Protected Source Terminal 1. This pin can be an input or an output.  
Most Negative Power Supply Potential.  
Ground (0 V) Reference.  
Overvoltage Protected Source Terminal 4. This pin can be an input or an output.  
Drain Terminal 4. This pin can be an input or an output.  
Drain Response Digital Input. Tying this pin to GND enables the drain to pull to POSFV or NEGFV during an  
overvoltage fault condition. The default condition of the drain is open-circuit when the pin is left  
floating or if it is tied to VDD.  
5
6
D4  
DR  
9
7
8
9
10  
NIC  
D3  
S3  
Not Internally Connected.  
Drain Terminal 3. This pin can be an input or an output.  
Overvoltage Protected Source Terminal 3. This pin can be an input or an output.  
Fault Flag Digital Output. This pin has a high output (nominally 3 V) when the device is in normal  
operation or a low output when a fault condition occurs on any of the Sx inputs. The FF pin has a weak  
internal pull-up that allows the signals to be combined into a single interrupt for larger modules that  
contain multiple devices.  
10  
11  
12  
FF  
13  
14  
15  
16  
11  
12  
13  
14  
VDD  
S2  
D2  
POSFV  
Most Positive Power Supply Potential.  
Overvoltage Protected Source Terminal 2. This pin can be an input or an output.  
Drain Terminal 2. This pin can be an input or an output.  
Positive Fault Voltage. This pin provides the positive supply voltage that determines the overvoltage  
protection level. If a secondary supply is not used, connect this pin to VDD.  
EP  
Exposed Pad The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the lowest supply voltage, VSS.  
Rev. B | Page 12 of 29  
 
Data Sheet  
ADG5462F  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= +22V  
= –22V  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
DD  
A
SS  
V
V
= +20V  
= –20V  
DD  
SS  
20  
15  
10  
5
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +18V  
= –18V  
DD  
SS  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
+125°C  
+85°C  
+25°C  
–40°C  
V
V
= +15V  
= –15V  
DD  
SS  
0
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
V , V (V)  
V , V (V)  
S D  
S
D
Figure 4. On Resistance (RON) as a Function of VS, VD (Dual Supply)  
Figure 7. On Resistance (RON) as a Function of VS,VD for Different  
Temperatures, 15 V Dual Supply  
25  
40  
V
V
= +20V  
= –20V  
T
= 25°C  
DD  
A
SS  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
V
V
= 12V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
+125°C  
+85°C  
V
V
= 13.2V  
= 0V  
DD  
SS  
+25°C  
–40°C  
0
0
–20  
0
2
4
6
8
10  
12  
14  
–15  
–10  
–5  
0
5
10  
15  
20  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 5. On Resistance (RON) as a Function of VS, VD (12 V Single Supply)  
Figure 8. On Resistance (RON) as a Function of VS, VD for Different  
Temperatures, 20 V Dual Supply  
25  
40  
V
V
= 12V  
T
= 25°C  
DD  
A
= 0V  
SS  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= 32.4V  
= 0V  
DD  
SS  
+125°C  
+85°C  
+25°C  
–40°C  
V
V
= 39.6V  
= 0V  
DD  
SS  
0
0
0
5
10  
15  
20  
V , V (V)  
25  
30  
35  
40  
0
2
4
6
8
10  
12  
V , V (V)  
S
D
S
D
Figure 6. On Resistance (RON) as a Function of VS, VD (36 V Single Supply)  
Figure 9. On Resistance (RON) as a Function of VS, VD for Different  
Temperatures, 12 V Single Supply  
Rev. B | Page 13 of 29  
 
ADG5462F  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
1
0
V
V
= 36V  
DD  
= 0V  
SS  
V
V
V
= 12V  
= 0V  
DD  
SS  
–1  
–2  
–3  
–4  
–5  
= V = 1V/10V  
S
D
+125°C  
+85°C  
+25°C  
–40°C  
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
0
0
20  
40  
60  
80  
100  
120  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TEMPERATURE (°C)  
V , V (V)  
S
D
Figure 13. Leakage Current vs. Temperature, 12 V Single Supply  
Figure 10. On Resistance (RON) as a Function of VS, VD for Different  
Temperatures, 36 V Single Supply  
2
0
2
V
V
V
= +15V  
= –15V  
DD  
SS  
1
0
= V = +10V/–10V  
S
D
V
V
V
= 36V  
= 0V  
DD  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
SS  
–2  
–4  
= V = 1V/30V  
S
D
–6  
–8  
I , I (ON) + +  
I , I (ON) – –  
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
S
D
S
D
–10  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Leakage Current vs. Temperature, 36 V Single Supply  
Figure 11. Leakage Current vs. Temperature, 15 V Dual Supply  
5
2
0
V
V
= +15V  
= –15V  
DD  
SS  
0
–5  
V
V
V
= +20V  
= –20V  
DD  
SS  
–2  
–4  
= V = +15V/–15V  
S
D
–10  
–15  
–20  
–6  
V
V
V
V
= –30V  
= –55V  
= +30V  
= +55V  
S
S
S
S
–8  
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
–10  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Leakage Current vs. Temperature, 20 V Dual Supply  
Figure 15. Drain Overvoltage Leakage Current vs. Temperature,  
15 V Dual Supply  
Rev. B | Page 14 of 29  
Data Sheet  
ADG5462F  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
V
= 25°C  
= +15V  
V
V
= +20V  
= –20V  
A
DD  
SS  
DD  
= –15V  
SS  
0
–5  
–10  
–15  
–20  
–25  
V
V
V
V
= –30V  
S
S
S
S
= –55V  
= +30V  
= +55V  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
100M  
1G  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Drain Overvoltage Leakage Current vs. Temperature,  
20 V Dual Supply  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
2
0
V
V
= 12V  
= 0V  
T
V
V
= 25°C  
= +15V  
DD  
SS  
A
DD  
0
–2  
= –15V  
SS  
–20  
–40  
–60  
–80  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
V
V
V
V
= –30V  
= –55V  
= +30V  
= +55V  
S
S
S
S
–100  
–120  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
100M  
1G  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. Drain Overvoltage Leakage Current vs. Temperature,  
12 V Single Supply  
Figure 20. AC Power Supply Rejection Ratio (ACPSRR) vs. Frequency,  
15 V Dual Supply  
2
0.020  
V
V
= 36V  
= 0V  
LOAD = 10kΩ  
DD  
SS  
T
= 25°C  
A
0
–2  
0.015  
0.010  
0.005  
0
–4  
V
= 12V, V = 0V, V = 6V p-p  
SS  
DD  
S
–6  
–8  
V
= 15V, V = –15V, V = 15V p-p  
SS  
DD  
S
–10  
–12  
–14  
V
V
V
V
= –38V  
= –40V  
= +38V  
= +55V  
V
= 20V, V = –20V, V = 20V p-p  
SS  
S
S
S
S
DD  
S
V
= 36V, V = 0V, V = 18V p-p  
SS  
DD  
S
0
20  
40  
60  
80  
100  
120  
0
5000  
10000  
FREQUENCY (Hz)  
15000  
20000  
TEMPERATURE (°C)  
Figure 21. THD + N vs. Frequency, 15 V Dual Supply  
Figure 18. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply  
Rev. B | Page 15 of 29  
ADG5462F  
Data Sheet  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
T
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
V
DD  
POSFV  
DRAIN  
SOURCE  
4
4
4
–5.0  
10k  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
11.0V  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 22. Bandwidth vs. Frequency  
Figure 25. Drain Output Response to Positive Overvoltage  
(DR = Floating or High)  
0.9  
0.8  
0.7  
0.6  
0.5  
T
SOURCE  
V
DD  
POSFV  
DRAIN  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
11.0V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 23. Threshold Voltage (VT) vs. Temperature  
Figure 26. Drain Output Recovery from Positive Overvoltage  
(DR = Floating or High)  
24  
20  
16  
12  
8
T
T
V
V
= 25°C  
A
= +10V  
= –10V  
DD  
SS  
V
DD  
DRAIN  
POSFV  
DISTORTIONLESS  
OPERATING  
REGION  
SOURCE  
4
0
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
11.7V  
1
10  
FREQUENCY (MHz)  
100  
Figure 24. Large Voltage Signal Tracking vs. Frequency  
Figure 27. Drain Output Response to Positive Overvoltage (DR = GND)  
Rev. B | Page 16 of 29  
 
 
 
 
Data Sheet  
ADG5462F  
T
T
SOURCE  
4
V
DD  
NEGFV  
DRAIN  
POSFV  
DRAIN  
V
SS  
4
SOURCE  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
16.0V  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
–10.4V  
Figure 28. Drain Output Recovery from Positive Overvoltage (DR = GND)  
Figure 31. Drain Output Response to Negative Overvoltage (DR = GND)  
T
T
DRAIN  
4
4
DRAIN  
NEGFV  
NEGFV  
V
SS  
V
SS  
SOURCE  
SOURCE  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
–10.4V  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
–10.4V  
Figure 29. Drain Output Response to Negative Overvoltage  
(DR = Floating or High)  
Figure 32. Drain Output Recovery from Negative Overvoltage (DR = GND)  
T
T
SOURCE  
DRAIN  
4
V
= POSFV  
DD  
NEGFV  
DR INPUT  
DRAIN  
V
SS  
2
SOURCE  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M2.00µs  
A
CH1  
–10.4V  
CH1 5.00V CH2 5.00V  
CH3 2.00V CH4 5.00V  
M1.00µs  
A
CH3  
1.12V  
Figure 30. Drain Output Recovery from Negative Overvoltage  
(DR = Floating or High)  
Figure 33. Drain Output Response to Positive Overvoltage (DR = High to Low)  
Rev. B | Page 17 of 29  
ADG5462F  
Data Sheet  
T
DRAIN  
2
DR INPUT  
= NEGFV  
3
V
SOURCE  
SS  
CH1 5.00V CH2 5.00V  
CH3 2.00V CH4 5.00V  
M1.00µs  
A
CH3  
1.12V  
Figure 34. Drain Output Response to Negative Overvoltage  
(DR = High to Low)  
Rev. B | Page 18 of 29  
Data Sheet  
ADG5462F  
TEST CIRCUITS  
V
I
I
D
S
Sx  
Dx  
Sx  
Dx  
A
A
I
DS  
R
10k  
V
L
S
|V | > |POSFV| OR |NEGFV|  
S
R
= V/I  
DS  
ON  
DR = FLOATING OR V  
DD  
Figure 37. Switch Overvoltage Leakage  
Figure 35. On Resistance  
V
= V = POSFV = NEGFV = GND = 0V  
SS  
DD  
I
I
D
S
I
(ON)  
A
D
Sx  
Dx  
Sx  
Dx  
A
A
NC  
R
10k  
L
V
V
D
S
NC = NO CONNECT  
Figure 38. Switch Unpowered Leakage  
Figure 36. On Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
OUT  
S1  
R
L
50  
D2  
S2  
R
L
50Ω  
V
S
GND  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 39. Channel-to-Channel Crosstalk  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50  
V
S
Dx  
V
OUT  
R
L
50Ω  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 40. Bandwidth  
Rev. B | Page 19 of 29  
 
 
 
 
 
 
 
ADG5462F  
Data Sheet  
V
V
SS  
DD  
0.1µF  
0.1µF  
AUDIO  
PRECISION  
V
V
DD  
SS  
R
S
Sx  
V
S
V p-p  
Dx  
V
OUT  
R
L
10kΩ  
GND  
Figure 41. THD + N  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
POSFV + 0.5V  
SOURCE  
V
DD  
SS  
VOLTAGE  
(V )  
S
V
S1  
D1  
D
0V  
C *  
L
2pF  
R
L
1kΩ  
V
S
ADG5462F  
tRESPONSE  
POSFV × 0.9  
OUTPUT  
S2 TO S4  
GND  
(V  
)
D
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 42. Overvoltage Response Time, tRESPONSE  
V
V
DD  
SS  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
POSFV + 0.5V  
V
V
DD  
SS  
SOURCE  
VOLTAGE  
(V )  
S
V
S1  
D1  
0V  
D
C *  
2pF  
R
L
1kΩ  
V
L
S
ADG5462F  
tRECOVERY  
S2 TO S4  
OUTPUT  
(V  
)
D
GND  
POSFV × 0.1  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 43. Overvoltage Recovery Time, tRECOVERY  
Rev. B | Page 20 of 29  
 
 
 
Data Sheet  
ADG5462F  
V
V
V
DD SS  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
POSFV + 0.5V  
V
DD SS  
SOURCE  
VOLTAGE  
(V )  
S
D1  
S2 TO S4  
S1  
0V  
V
S
tDIGRESP  
ADG5462F  
OUTPUT  
FF  
C *  
L
12pF  
OUTPUT  
(V  
GND  
)
FF  
0.1V  
OUT  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 44. Interrupt Flag Response Time, tDIGRESP  
V
V
DD SS  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
POSFV + 0.5V  
V
V
DD SS  
SOURCE  
VOLTAGE  
(V )  
S
S1  
D
0V  
V
S
S2 TO S4  
ADG5462F  
tDIGREC  
OUTPUT  
0.9V  
OUT  
FF  
C *  
L
12pF  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 45. Interrupt Flag Recovery Time, tDIGREC  
V
V
DD SS  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
POSFV + 0.5V  
V
V
DD SS  
SOURCE  
VOLTAGE  
(V )  
S
S1  
D1  
S2 TO S4  
0V  
V
S
5V  
tDIGREC  
R
1kΩ  
ADG5462F  
PULLUP  
5V  
OUTPUT  
FF  
3V  
OUTPUT  
C *  
12pF  
L
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 46. Interrupt Flag Recovery Time, tDIGREC, with a 1 kΩ Pull-Up Resistor  
Rev. B | Page 21 of 29  
 
 
 
ADG5462F  
Data Sheet  
V
V
SS  
DD  
0.1µF  
0.1µF  
POSFV  
0.1µF  
NEGFV  
0.1µF  
3V  
INPUT  
V
V
SS  
DD  
50%  
VOLTAGE  
(V  
)
DR  
V
> POSFV + V  
T
S
OUTPUT  
S1  
D
0V  
C *  
L
12pF  
S2 TO S4  
tRESPONSE (DR)  
ADG5462F  
POSFV × 0.9  
DR  
OUTPUT  
(V  
GND  
)
D
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 47. Drain Enable Time with Overvoltage, tRESPONSE (DR)  
Rev. B | Page 22 of 29  
 
Data Sheet  
ADG5462F  
TERMINOLOGY  
IDD  
tDIGREC  
I
DD represents the positive primary supply current.  
tDIGREC is the time required for the FF pin to return high, measured  
with respect to voltage on the Sx pin falling below the supply  
voltage plus 0.5 V.  
ISS  
I
SS represents the negative primary supply current.  
tRESPONSE  
IPOSFV  
tRESPONSE represents the delay between the source voltage  
I
POSFV represents the positive secondary supply current.  
INEGFV  
NEGFV represents the negative secondary supply current.  
exceeding the supply voltage by 0.5 V and the drain voltage  
falling to 90% of the supply voltage.  
I
tRECOVERY  
VD, VS  
tRECOVERY represents the delay between an overvoltage on the Sx  
VD and VS represent the analog voltage on the Dx pins and the  
Sx pins, respectively.  
pin falling below the supply voltage plus 0.5 V and the drain  
voltage rising from 0 V to 10% of the supply voltage.  
RON  
t
t
RESPONSE (DR)  
RESPONSE (DR) represents the delay between the voltage at the DR  
RON represents the ohmic resistance between the Dx pins and  
the Sx pins.  
pin falling from a high to low signal and the output of the drain  
pin reaching 90% of either POSFV or NEGFV  
∆RON  
∆RON represents the difference between the RON of any two  
channels.  
Channel-to-Channel Crosstalk  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
RFLAT(ON)  
RFLAT(ON) is the flatness that is defined as the difference between  
the maximum and minimum value of on resistance measured  
over the specified analog signal range.  
−3 dB Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
On Response  
On response is the frequency response of the on switch.  
VINL  
Insertion Loss  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
INL and IINH represent the low and high input currents of the  
Insertion loss is the loss due to the on resistance of the switch.  
Total Harmonic Distortion Plus Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
V
I
I
AC Power Supply Rejection Ratio (ACPSRR)  
digital inputs.  
ACPSRR is the ratio of the amplitude of signal on the output to  
the amplitude of the modulation. ACPSRR is a measure of the  
ability of the device to avoid coupling noise and spurious signals  
that appear on the supply voltage pin to the output of the switch.  
The dc voltage on the device is modulated by a sine wave of  
0.62 V p-p.  
CD (On), CS (On)  
CD (On) and CS (On) represent the on switch capacitances,  
which are measured with reference to ground.  
CIN  
C
IN is the digital input capacitance.  
VT  
tDIGRESP  
VT is the voltage threshold at which the overvoltage protection  
circuitry engages. See Figure 23  
tDIGRESP is the time required for the FF pin to go low (0.3 V),  
measured with respect to voltage on the source pin exceeding  
the supply voltage by 0.5 V.  
Rev. B | Page 23 of 29  
 
ADG5462F  
Data Sheet  
THEORY OF OPERATION  
SWITCH ARCHITECTURE  
V
IN  
Each channel of the ADG5462F consists of a parallel pair of  
NDMOS and PDMOS transistors. This construction provides  
excellent performance across the signal range. The ADG5462F  
channels present only as a typical impedance of 10 Ω when input  
signals with a voltage between POSFV and NEGFV are applied.  
V
+ V  
T
POSFV  
V
V
OUT  
OUT  
Additional internal circuitry enables the switch to detect  
overvoltage inputs by comparing the voltage on the source  
pin (Sx) with POSFV and NEGFV. A signal is considered  
overvoltage if it exceeds the secondary supply voltages by the  
voltage threshold (VT). The threshold voltage is typically 0.7 V,  
but it ranges from 0.8 V at −40°C down to 0.6 V at +125°C. See  
Figure 23 to see the change in VT with operating temperature.  
V
+ V  
V
+ V  
POSFV  
T
POSFV T  
OUTPUT  
DRAINS  
THROUGH  
LOAD  
OUTPUT  
CLAMPED  
AT V  
POSFV  
OUTPUT SHOWN FOR  
DR = GND  
OUTPUT SHOWN FOR  
DR = FLOATING/HIGH  
Figure 49. Drain Output Response During Overvoltage Condition  
During overvoltage conditions, the leakage current into and out  
of the source pins (Sx) is limited to tens of microamperes. If the  
DR pin is allowed to float or is driven high, only nanoamperes  
of leakage are seen on the drain pins (Dx). If the DR pin is driven  
low, the drain pin (Dx) is pulled to the rail. The device that pulls  
the drain pin to the rail has an impedance of approximately 40 kΩ;  
therefore, the Dx pin current is limited to about 1 mA during a  
shorted load condition. This internal impedance also determines  
the minimum external load resistance required to ensure that  
the drain pin is pulled to the desired voltage level during a fault.  
The maximum voltage that can be applied to any source input  
is −55 V or +55 V. When the device is powered using a single  
supply of 25 V or greater, the maximum negative signal level is  
reduced. It reduces from −55 V at VDD = +25 V to −40 V at VDD  
=
+40 V to remain within the 80 V maximum rating. Construction of  
the silicon process allows the channel to withstand 80 V across  
the switch when it is opened. These overvoltage limits apply  
whether the power supplies are present or not.  
POSFV  
ESD  
PROTECTION  
ESD  
When an overvoltage event occurs, the channels undisturbed by  
the overvoltage input continue to operate normally without  
additional crosstalk.  
Sx  
Dx  
ESD  
FAULT  
DETECTOR  
SWITCH  
DRIVER  
NEGFV  
ESD Performance  
LOGIC  
BLOCK  
DR  
The ADG5462F has an ESD rating of 4 kV for the human body  
model.  
Figure 48. Switch Channel and Control Function  
When an overvoltage condition is detected on a source pin (Sx),  
the switch automatically opens and the source pin (Sx) becomes  
high impedance and ensures that no current flows through the  
switch. If the DR pin is driven low, the drain pin (Dx) is pulled  
to the supply that was exceeded. For example, if the source voltage  
exceeds POSFV, the drain output pulls to POSFV. The same is  
true for NEGFV. In Figure 27, the voltage on the drain pin (Dx)  
clamps to the POSFV voltage when the source voltage exceeds  
POSFV by VT. If the DR pin is allowed to float or is driven high,  
the drain pin (Dx) also goes open circuit. In Figure 25, the voltage  
on the drain pin (Dx) follows the voltage on the source pin  
(Sx) until the switch turns off completely and the drain voltage  
discharges through the load. The output response for each drain  
pin configuration is shown in Figure 49. The maximum voltage  
on the drain is limited by the internal ESD diodes and the rate  
at which the output voltage discharges is dependent on the load at  
the pin.  
The drain pins (Dx) have ESD protection diodes to the secondary  
supply rails, and the voltage at these pins must not exceed the  
secondary supply voltage.  
The source pins (Sx) have specialized ESD protection that allows  
the signal voltage to reach 55 V with a 22 V dual supply, and  
from −40 V to +55 V with a +40 V single supply. See Figure 48  
for the switch channel overview. Exceeding 55 V on any source  
input may damage the ESD protection circuitry on the device.  
Rev. B | Page 24 of 29  
 
 
 
 
Data Sheet  
ADG5462F  
Trench Isolation  
The channel responds to an analog input that exceeds POSFV  
or NEGFV by a threshold voltage (VT) by turning off. The absolute  
input voltage limits are −55 V and +55 V, while maintaining an  
80 V limit between the source pin (Sx) and the supply rails. The  
switch remains off until the voltage at the source pin (Sx) returns to  
between POSFV and NEGFV.  
In the ADG5462F, an insulating oxide layer (trench) is placed  
between the NDMOS and the PDMOS transistors of each channel.  
Parasitic junctions, which occur between the transistors in junction  
isolated switches, are eliminated, and the result is a switch that  
is latch-up immune under all circumstances. This device passes  
a JESD78D latch-up test of 500 mA for 1 sec, which is the  
harshest test in the specification.  
The fault response time (tRESPONSE) when powered by a 15 V dual  
supply is typically 460 ns, and the fault recovery time (tRECOVERY) is  
720 ns. These values vary with supply voltage and output load  
conditions.  
NDMOS  
PDMOS  
The maximum stress across the channel and between the source  
pin (Sx) and any supply pin is 80 V; therefore, pay close attention  
to this limit if using the device in a single-supply configuration and  
a negative overvoltage is applied to the device.  
For example, consider the case where the device is set up in a  
single supply configuration, as shown in Figure 51.  
P-WELL  
N-WELL  
V
DD = POSFV = 36 V, VSS = NEGFV = GND = 0 V  
S1 = +36 V, S2 = +5 V, and S3 = −40 V  
The voltage difference from S1 to VDD/POSFV = 0 V, and to  
VSS/NEGFV = 36 V  
The voltage difference from S2 to VDD/POSFV = 31 V, and  
to VSS/NEGFV = 5 V  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
The voltage difference from S3 to VDD/POSFV = 76 V, and  
to VSS/NEGFV = 40 V  
Figure 50. Trench Isolation  
USER DEFINED FAULT PROTECTION  
These calculations are all within device specifications: 55 V  
maximum fault on source inputs and a maximum of 80 V  
across the channel or to a supply pin. The voltage on a source  
pin (Sx) cannot go below −44 V to stay within +80 V maximum.  
POSFV and NEGFV are required secondary power supplies  
that set the level at which the overvoltage protection is engaged.  
POSFV can be supplied from 4.5 V up to VDD, and NEGFV can  
be supplied from VSS to 0 V. If a secondary supply is not available,  
these pins (POSFV and NEGFV) must be connected to VDD  
(POSFV) and VSS (NEGFV). The overvoltage protection then  
engages at the primary supply voltages. When the voltages at  
the source inputs exceed POSFV or NEGFV by VT, the channel  
turns off or, if the device is unpowered, the channel remains off.  
The source input remains high impedance, and if the DR pin is  
driven low, the drain pulls to either POSFV or NEGFV. Signal  
levels up to −55 V and +55 V are blocked in both the powered  
and unpowered condition as long as the 80 V limitation between  
the source and supply pins is met.  
+36V  
0V  
V
GND V  
SS  
DD  
ADG5262F  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
+36V  
+5V  
–40V  
FAULT  
DETECTION  
+ SWITCH  
DRIVER  
Power-On Protection  
For the channel to be in the on condition, the following three  
conditions must be satisfied:  
Figure 51. ADG5462F in Single-Supply Configuration Under Overvoltage  
Conditions  
The primary supply must be VDD to VSS ≥ 8 V.  
For POSFV, the secondary supply must be between 4.5 V  
and VDD, and for NEGFV, the secondary supply must be  
between VSS and 0 V.  
The input signal must be between NEGFV − VT and  
POSFV + VT.  
When the channel is on, signal levels up to the secondary  
supply rails are passed.  
Rev. B | Page 25 of 29  
 
 
ADG5462F  
Data Sheet  
Power-Off Protection  
Overvoltage Interrupt Flag  
When no power supplies are present, the channel remains in the  
off condition, and the switch inputs are high impedance. This  
state ensures that no current flows and prevents damage to the  
switch or downstream circuitry. The switch output is a virtual  
open circuit.  
The voltages on the source inputs of the ADG5462F are  
continuously monitored, and an active low digital output pin  
(FF) indicates the state of the switches.  
The voltage on the FF pin indicates if any of the source input pins  
are experiencing a fault condition. The output of the FF pin is a  
nominal 3 V when all source pins (Sx) are within normal operating  
range. If any source pin (Sx) voltage exceeds the supply voltage  
by VT, the FF output reduces to below 0.8 V.  
The switch remains off regardless of whether the primary and  
secondary supplies are 0 V or floating. A GND reference must  
always be present to ensure proper operation. Signal levels of up  
to 55 V are blocked in the unpowered condition.  
Digital Input Protection  
The ADG5462F can tolerate digital input signals being present  
on the device without power. The digital input is protected against  
positive faults up to 44 V. The digital input does not offer protection  
against negative overvoltages. ESD protection diodes connected  
to GND are present on the digital input.  
Rev. B | Page 26 of 29  
Data Sheet  
ADG5462F  
APPLICATIONS INFORMATION  
The overvoltage protected family of switches and multiplexers  
provide robust solutions for instrumentation, industrial,  
automotive, aerospace, and other harsh environments where  
overvoltage signals can be present, and the system must remain  
operational both during and after the overvoltage has occurred.  
Table 8. Recommended Power Management Devices  
Product  
Description  
ADP7118  
20 V, 200 mA, low noise, CMOS low dropout  
regulator (LDO)  
ADP7142  
ADP7182  
40 V, 200 mA, low noise, CMOS LDO  
−28 V, −200 mA, low noise, linear regulator  
POWER SUPPLY RAILS  
To guarantee correct operation of the device, 0.1 μF decoupling  
capacitors are required on the primary and secondary supplies.  
If they are driven from the same supply, then one set of 0.1 μF  
decoupling capacitors is sufficient.  
USER DEFINED SIGNAL RANGE  
The primary supplies define the on-resistance profile of the  
channels, while the secondary supplies define the signal range.  
Using voltages on POSFV and NEGFV that are lower than VDD  
and VSS, the required signal can benefit from the flat on resistance  
in the center of the full signal capabilities of the device.  
The secondary supplies (POSFV and NEGFV) provide the  
current required to operate the fault protection and, therefore,  
must be low impedance supplies. Therefore, they can be derived  
from the primary supply by using a resistor divider and buffer.  
LOW IMPEDANCE CHANNEL PROTECTION  
The ADG5462F can be used as a protective element in signal  
chains that are sensitive to both channel impedance and  
overvoltage signals. Traditionally, series resistors are used to  
limit the current during an overvoltage condition to protect  
susceptible components.  
The secondary supply rails (POSFV and NEGFV) must not exceed  
the primary supply rails (VDD and VSS) because this can lead to a  
signal passing through the switch unintentionally.  
The ADG5462F can operate with bipolar supplies between 5 V  
and 22 V. The supplies on VDD and VSS need not be symmetrical  
but the VDD and VSS range must not exceed 44 V. The ADG5462F  
can also operate with single supplies between 8 V and 44 V with  
VSS connected to GND.  
These series resistors affect the performance of the signal chain  
and reduce the precision that can be reached. A compromise  
must be reached on the value of the series resistance that is high  
enough to sufficiently protect sensitive components but low  
enough that the precision performance of the signal chain is not  
sacrificed.  
The ADG5462F is fully specified at 15 V, 20 V, +12 V, and  
+36 V supply ranges.  
POWER SUPPLY SEQUENCING PROTECTION  
The ADG5462F enables the designer to remove these resistors  
and retain the precision performance without compromising  
the protection of the circuit.  
The channels remain open when the device is unpowered and  
signals from −55 V to +55 V can be applied without damaging  
the device. Only when the supplies are connected, and the signal  
is within normal operating range, do the channels close. Placing  
the ADG5462F between external connectors and sensitive  
components offers protection in systems where a signal is  
presented to the source pins (Sx) before the supply voltages  
are available.  
HIGH VOLTAGE SURGE SUPPRESSION  
The ADG5462F is not intended for use in very high voltage  
applications. The maximum operating voltage of the transistor  
is 80 V. In applications where the inputs are likely to be subject  
to overvoltages exceeding the breakdown voltage, use transient  
voltage suppressors (TVSs) or similar.  
POWER SUPPLY RECOMMENDATIONS  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
An example of a bipolar power solution is shown in Figure 52.  
The ADP7118 and ADP7182 can be used to generate clean  
positive and negative rails from the dual switching regulator  
output. These rails can power the ADG5462F, an amplifier,  
and/or a precision converter in a typical signal chain.  
+16V  
ADP7118  
LDO  
+15V  
DUAL  
SWITCHING  
REGULATOR  
12V  
INPUT  
–16V  
ADP7182  
LDO  
–15V  
Figure 52. Bipolar Power Solution  
Rev. B | Page 27 of 29  
 
 
 
 
 
 
 
 
ADG5462F  
Data Sheet  
The interrupt flag recovery time, tDIGREC, can be decreased from  
a typical 60 µs to 600 ns by using a 1 kΩ pull-up resistor.  
INTELLIGENT FAULT DETECTION  
The ADG5462F digital output pin (FF) can interface with a  
microprocessor or control system and be used as an interrupt  
flag. This feature provides real-time diagnostic information on  
the state of the device and the system to which it connects.  
The DR pin can also be used for diagnostic purposes. The FF  
pin provides an interrupt that indicates one of the four channels  
has a fault. The DR pin can then be pulled low to find which of  
the channels has a fault as well as the polarity of the fault. For  
example, if an ADC downstream is monitoring the channel, a  
full-scale reading then indicates a positive fault, and a zero-scale  
reading indicates a negative fault.  
The control system can use the digital interrupt to start a  
variety of actions, such as  
Initiating investigation into the source of the overvoltage fault  
Shutting down critical systems in response to the overvoltage  
Signaling the data recorders to mark data during these  
events as unreliable or out of specification  
LARGE VOLTAGE, HIGH FREQUENCY SIGNALS  
Figure 24 illustrates the voltage range and frequencies that the  
ADG5462F can reliably convey. For signals that extend across  
the full signal range from VSS to VDD, keep the frequency less  
than 3 MHz. If the required frequency is greater than 3 MHz,  
decrease the signal range appropriately to ensure signal integrity.  
For systems that are sensitive during a start-up sequence, the  
active low operation of the flag allows the system to ensure that  
the ADG5462F is powered on and that all input voltages are  
within normal operating range before initiating operation.  
The FF pin is a weak pull-up, which allows the signals to be  
combined into a single interrupt for larger modules that contain  
multiple devices.  
Rev. B | Page 28 of 29  
 
 
Data Sheet  
ADG5462F  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 53. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADG5462FBRUZ  
ADG5462FBRUZ-RL7  
ADG5462FBCPZ-RL7  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-16  
RU-16  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-16-17  
1 Z = RoHS Compliant Part.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12698-0-1/16(B)  
Rev. B | Page 29 of 29  
 
 

相关型号:

ADG5462FBRUZ-RL7

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector
ADI

ADG601

2 ohm CMOS +-5 V/5 V, SPST SWITCHES
ADI

ADG601BRM

2 ohm CMOS +-5 V/5 V, SPST SWITCHES
ADI

ADG601BRM-REEL

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRM-REEL7

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ-REEL

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ-REEL7

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRT

2 ohm CMOS +-5 V/5 V, SPST SWITCHES
ADI

ADG601BRT-REEL

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRT-REEL7

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRTZ-REEL

Low on resistance, 2.5 OHM maximum
ADI