ADL5502ACBZ-P2 [ADI]

800 MHz to 3800 MHz Crest Factor Detector; 800 MHz至3800 MHz的波峰因数检测
ADL5502ACBZ-P2
型号: ADL5502ACBZ-P2
厂家: ADI    ADI
描述:

800 MHz to 3800 MHz Crest Factor Detector
800 MHz至3800 MHz的波峰因数检测

电信集成电路 蜂窝电话电路 电信电路 信息通信管理
文件: 总14页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
800 MHz to 3800 MHz  
Crest Factor Detector  
ADL5502  
Preliminary Technical Data  
FEATURES  
True rms response detector  
Envelope output with peak hold option  
Excellent temperature stability  
0.2ꢀ dB rms detection accuracy vs. temperature  
0.2ꢀ dB envelope detection accuracy vs. temperature;  
over the top 1ꢀ dB of the input range  
Over 30 dB input power dynamic range, inclusive of crest  
factor, up to 3.8 GHz  
RF bandwidths from 800 MHz to 3.8 GHz  
Envelope bandwidths of 10 MHz  
ꢀ00 Ω input impedance  
Single-supply operation: 2.7 V to 3.ꢀ V  
Low power: ꢀ mA at 3 V supply  
RoHS compliant  
Figure 1.  
APPLICATIONS  
Power and envelope measurement of W-CDMA, CDMA2000,  
and QPSK-/QAM-based OFDM, and other complex  
modulation waveforms  
RF transmitter or receiver power and envelope measurement  
GENERAL DESCRIPTION  
The ADL5502 is a mean-responding power detector in  
combination with an envelope detector to accurately determine  
the crest factor of a modulated signal. It can be used in high  
frequency receiver and transmitter signal chains from 800 MHz  
to 3.8 GHz with envelope bandwidths over 10 MHz. Requiring  
only a single supply between 2.7 V and 3.5 V, the detector draws  
less than 5 mA. The input is internally ac-coupled and has a  
nominal input impedance of 500 Ω.  
The ADL5502 is a highly accurate, easy to use means of  
determining the peak to average value of complex waveforms.  
It can be used for crest factor measurements of both simple and  
complex waveforms, but is particularly useful for measuring  
high crest factor (high peak-to-rms ratio) signals, such as  
CDMA2000, W-CDMA, and QPSK/QAM-based OFDM  
waveforms. The peak hold function allows the capture of short  
peaks in the envelope with lower sampling rate ADCs.  
The rms output is a linear-responding dc voltage with a  
conversion gain of 2.0 V/Vrms at 900 MHz. The envelope  
output with a conversion gain of 1.4 V/V can be toggled  
between real-time envelope measurement or peak hold with less  
than TBD mV droop in over 200 μS.  
The crest factor detector operates from −40°C to +85°C and is  
available in an 8-ball, 1.5 mm × 1.5 mm wafer-level chip scale  
package. It is fabricated on a high fT silicon BiCMOS process.  
Rev. PrD (04/20/2008)  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
ADL5502  
Preliminary Technical Data  
SPECIFICATIONS  
TA = 25°C, VS = 3.0 V, RFLT = 100 nF, light condition ≤ 600 LUX, unless otherwise noted. Including 50 ohm input termination resistor.  
Table 1.  
Parameter  
Condition  
Min  
450  
Typ  
Max  
3800  
Unit  
FREQUENCY RANGE  
RMS CONVERSION (f = 450 MHz)  
Input Impedance  
Input RFIN  
MHz  
Input RFIN to output VRMS  
TBD||TBD  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.82  
0.001  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
ENVELOPE CONVERSION  
Dynamic Range1  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Input RFIN to output VENV  
CF=3.5 dB, −40°C < TA < +85°C  
VS = 3 V  
0.25 dB Error2  
1 dB Error3  
15  
30  
dB  
dB  
dBm  
dBm  
V/V  
V
VS = 3 V  
±0.25 dB error3  
±1 dB error3  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.4  
TBD  
TBD  
TBD  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
RMS TO ENVELOPE TRACKING  
0.25 dB Error  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
VS = 3 V  
V
V
15  
25  
30  
dB  
dB  
dB  
1 dB Error  
2 dB Error  
RMS CONVERSION (f = 800 MHz)  
Input Impedance  
Input RFIN to output VRMS  
331||1.0  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.81  
0.001  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Rev. PrD (04/20/2008) | Page 2 of 14  
Preliminary Technical Data  
ADL5502  
Parameter  
Condition  
Min  
Typ  
316||0.9  
Max  
Unit  
RMS CONVERSION (f = 900 MHz)  
Input Impedance  
Input RFIN to output VRMS  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.80  
0.001  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
RMS CONVERSION (f = 1900 MHz)  
Input Impedance  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Input RFIN to output VRMS  
215||0.9  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.75  
–0.005  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
RMS CONVERSION (f = 2350 MHz)  
Input Impedance  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Input RFIN to output VRMS  
TBD||TBD  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.56  
–0.004  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
RMS CONVERSION (f = 2700 MHz)  
Input Impedance  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Input RFIN to output VRMS  
TBD||TBD  
Ω||pF  
Dynamic Range1  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
TBD  
TBD  
1.53  
–0.006  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Rev. PrD (04/20/2008) | Page 3 of 14  
ADL5502  
Preliminary Technical Data  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RMS CONVERSION (f = 3500 MHz)  
Input Impedance  
Dynamic Range1  
Input RFIN to output VRMS  
TBD||TBD  
Ω||pF  
CW input, −40°C < TA < +85°C  
VS = 3 V  
VS = 3 V  
0.25 dB Error2  
15  
25  
30  
dB  
dB  
dB  
1 dB Error3  
2 dB Error3  
VS = 3 V  
Maximum Input Level  
Minimum Input Level  
Conversion Gain  
Output Intercept4  
Output Voltage—High Power In  
Output Voltage—Low Power In  
VRMS OUTPUT  
TBD  
TBD  
1.33  
–0.005  
TBD  
TBD  
dBm  
dBm  
V/V rms  
V
V
V
±0.25 dB error  
±1 dB error  
VRMS = (Gain × VIN) + Intercept  
PIN = +5 dBm, 400 mV rms  
PIN = −21 dBm, 20 mV rms  
Pin VRMS  
Output Offset  
Response time  
No signal at RFIN  
5 dB Step, 10% to 90% of settling level, no  
filter cap  
150  
15  
mV  
μS  
Available Output Current  
VENV OUTPUT  
3
mA  
Pin VENV  
Envelope Modulation Bandwidth  
Maximum Output Voltage  
Output Offset  
5
10  
1.5  
TBD  
TBD  
MHz  
V
mV  
μS  
Vs = 2.7 V, RLOAD ≥ 10 kΩ  
No signal at RFIN  
5 dB Step, 10% to 90% of settling level, no  
filter cap  
Response time  
Available Output Current  
PEAK HOLD  
3
mA  
Hold Time  
100  
200  
μS  
Hold Voltage Drop  
TBD  
mV/ μS  
CONTROL INTERFACE  
Logic Level to, Real Time Envelope, HI  
Input Current when HI  
Logic Level for Peak Hold Condition, LO  
Enable Time  
2.7 V ≤ VS ≤ 3.5 V, −40°C < TA < +85°C  
2.7 V at ENBL, –40°C ≤ TA ≤ +85°C  
2.7 V ≤ VS ≤ 3.5 V, −40°C < TA < +85°C  
CFLTR = Open, 0 dBm at RFIN  
CFLTR = 100 nF, 0 dBm at RFIN  
Pin ENBL  
1.8  
VPOS  
0.1  
+0.5  
V
ꢀA  
V
ꢀs  
ꢀs  
0.05  
–0.5  
TBD  
TBD  
Disable Time  
ENABLE INTERFACE  
Logic Level to Enable Power, HI Condition  
Input Current when HI  
Logic Level to Disable Power, LO Condition 2.5 V ≤ VS ≤ 3.5 V, −40°C < TA < +85°C  
Power-Up Response Time5  
2.5 V ≤ VS ≤ 3.5 V, −40°C < TA < +85°C  
2.5 V at ENBL, –40°C ≤ TA ≤ +85°C  
1.8  
VPOS  
0.1  
+0.5  
V
ꢀA  
V
ꢀs  
ꢀs  
0.05  
–0.5  
CFLTR = Open, 0 dBm at RFIN  
CFLTR = 100 nF, 0 dBm at RFIN  
TBD  
TBD  
POWER SUPPLIES  
Operating Range  
Quiescent Current  
Disable Current  
−40°C < TA < +85°C  
2.5  
3.5  
5
V
mA  
ꢀA  
No signal at RFIN6  
5.0  
< TBD  
ENBL in LO Condition, no signal at RFIN  
1 The available output swing, and hence the dynamic range, is altered by the supply voltage; see TBD.  
2 Error referred to delta from 25°C response.  
3 Error referred to best-fit line at 25°C  
4 Calculated using linear regression.  
5 The response time is measured from 10% to 90% of settling level  
6 Supply current is input level dependant; see TBD.  
Rev. PrD (04/20/2008) | Page 4 of 14  
PRELIMINARY TECHNICAL DATA  
ADL5502  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
3.5 V  
0 V, VS  
1.25 V rms  
15 dBm  
TBD mW  
TBD°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage VS  
VRMS, VPK/ENV, ENBL, PK/ENV  
RFIN  
Equivalent Power, re 50 Ω  
Internal Power Dissipation  
θJA (SC-70)  
Maximum Junction Temperature 125°C  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrD (04/20/2008) | Page 5 of 14  
ADL5502  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Figure 2. 8-Bump WLCSP Configuration  
Table 3. Pin Function Descriptions  
Ball No. Mnemonic Description  
1
2
3
4
5
FLTR  
VPOS  
RFIN  
COMM  
PK/ENV  
Modulation Filter Pin. Connection for an External Capacitor to lower the corner frequency of the modulation filter  
Supply Voltage Pin. Operational range 2.7 V to 3.5 V.  
Signal Input Pin. Internally ac-coupled after internal termination resistance. Nominal 500 Ω input impedance.  
Device Ground Pin.  
Control Pin. Connect pin to ground for real-time envelope measurement mode. Connect pin to VS for peak-hold  
mode. Reset peak-hold by placing device in real-time envelope measurement mode.  
6
VPK/ENV  
Envelop Output. Function can switched between real-time envelop measurement or peak-hold using PK/ENV.  
7
8
VRMS  
ENBL  
RMS Output Pin. Rail-to-rail voltage output with limited current drive capability. The output has an internal TBD kΩ  
series resistance. High resistive loads are recommended to preserve output swing.  
Enable Pin. Connect pin to VS for normal operation. Connect pin to ground for disable mode.  
Rev. PrD (04/20/2008) | Page 6 of 14  
PRELIMINARY TECHNICAL DATA  
ADL5502  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 3.0 V, CFLTR = open, COUT = 4.7 nF, Colors: black = +25°C, blue = −40°C, red = +85°C, unless otherwise noted.  
2.0  
450 MHz  
1.5  
900 MHz  
1900 MHz  
1.0  
2350 MHz  
2700 MHz  
0.5  
3500 MHz  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-25  
-20  
-15  
-10  
-5  
0
5
10  
15  
INPUT (dBm)  
Figure 3. VRMS Output vs. Input Level, Frequencies 450 MHz, 900 MHz,  
1900 MHz, 2350 MHz, 2700 MHz, and 3500 MHz, Supply 3.0 V  
Figure 6. VRMS Linearity Error vs. Input Level, Freq 450 MHz, 900 MHz,  
1900 MHz, 2350 MHz, 2700 MHz, and 3500 MHz, Supply 3.0 V  
Figure 4. VRMS Output vs. Input Level (Linear Scale), Freq 450 MHz, 900 MHz,  
1900 MHz, 2350 MHz, 2700 MHz, and 3500 MHz, Supply 3.0 V  
Figure 7. Input Impedance vs. Frequency, Supply 3.0 V,  
Temperatures −40°C, +25°C, and +85°C  
3
2
1
0
-1  
-2  
-3  
-25  
-20  
-15  
-10  
-5  
0
5
10  
15  
Pin - dBm  
Figure 5. VRMS Temperature Drift Distributions for Multiple Devices at −40°C,  
+25°C, and +85°C vs. +25°C Linear Reference, Frequency 900 MHz  
Figure 8. VRMS Delta from +25°C Output Voltage for Multiple Devices  
at −40°C and +85°C, Frequency 900 MHz  
Rev. PrD (04/20/2008) | Page 7 of 14  
ADL5502  
Preliminary Technical Data  
Figure 12. VRMS Delta from +25°C Output Voltage for Multiple Devices  
at −40°C and +85°C, Frequency 1900 MHz  
Figure 9. VRMS Temperature Drift Distributions for Mulitple Devices at −40°C,  
+25°C, and +85°C vs. +25°C Linear Reference, Frequency1 900 MHz  
Figure 13. VRMS Delta from +25°C Output Voltage for Multiple Devices  
at −40°C and +85°C, Frequency 2350 MHz  
Figure 10. VRMS Temperature Drift Distributions for Mulitple Devices at  
−40°C, +25°C, and +85°C vs. +25°C Linear Reference, Frequency 2350 MHz  
1.00  
1.0  
CW  
CW  
0.80  
0.8  
0.6  
12.2kbps, DPCCH (–5.46dB, 15kSPS) +DPDCH (0dB, 60kSPS), 3.4dB CF  
768kbps, DPCCH (–11.48dB, 15kSPS) +DPDCH1 + 2 (0dB, 960kSPS), 5.8dB CF  
PICH + FCH (9.6kbps) + SCH (153.6kbps), 6.7dB CF  
DPCCH (15ksps, SC0, -5.46 dB) + DPDCH (60ksps, SC16, 0 dB), 3.55 dB CF  
0.60  
0.40  
DPCCH (15ksps, SC0, -6.02 dB) + DPDCH (60ksps, SC16, -4.08 dB) +  
HS-DPCCH (15ksps, SC64, 0 dB), 4.91 dB CF  
DPCCH (15ksps, SC0, -6.02 dB) + DPDCH (60ksps, SC16, -11.48 dB) +  
HS-DPCCH (15ksps, SC64, 0 dB), 5.34 dB CF  
DPCCH (15ksps, SC0, -6.02 dB) + HS-DPCCH (15ksps, SC64, 0 dB), 5.44 dB CF  
PICH + FCH (9.6kbps) + DCCH, 6.3dB CF  
0.4  
PICH + FCH (9.6kbps) + DCCH +SCH (153.6kbps), 7.6dB CF  
0.20  
0.2  
0.00  
0.0  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-20  
-15  
-10  
-5  
0
5
10  
15  
-20  
-15  
-10  
-5  
0
5
10  
15  
INPUT (dBm)  
INPUT (dBm)  
Figure 11. VRMS Error from CW Linear Reference vs. Input with Various  
WCDMA & CDMA2000 Rev Link Waveforms at 1900 MHz, CFLTR = 22 nF  
Figure 14. VRMS Error from CW Linear Reference vs. Input with Various  
WCDMA HSPA Reverse Link Waveforms at 1900 MHz, CFLTR = 22 nF  
Rev. PrD (04/20/2008) | Page 8 of 14  
PRELIMINARY TECHNICAL DATA  
ADL5502  
Figure 16. Peak Hold Response Time  
v
Figure 15.v Envelope Error (representative of Crest Factor) from rms Reference  
vs. Input with Various WCDMA and CDMS2000 Reverse Link Waveform,;  
at 1900 MHz, CFLTR = 22 nF, COU = 4.7 nF,  
Rev. PrD (04/20/2008) | Page 9 of 14  
ADL5502  
Preliminary Technical Data  
APPLICATIONS  
BASIC CONNECTIONS  
Figure 17 shows the basic connections for the ADL5502. The  
device is powered by a single supply between 2.5 V and 3.5 V,  
with a quiescent current of 5 mA. The VPOS pin is decoupled  
using 100 pF and 0.1 ꢀF capacitors.  
Placing a single 75 ꢁ resistor at the RF input provides a  
broadband match of 50 Ohms. More precise resistive or  
reactive matches can be applied for narrow frequency band use  
(see impedance plot, Figure 7).  
Figure 17. Basic Connections for ADL5502  
The rms averaging can be augmented by placing additional  
capacitance at CFLT. The ac residual can be further reduced by  
increasing the output capacitance, COUT. The combination of  
the internal 100 Ω output resistance and COUT produce a low-  
pass filter to reduce output ripple of the VRMS output. Note  
that a minimum of 4.7 nF capacitive load should be kept on the  
RMS output.  
To operate the device in peak-hold mode, the control line must be  
temporally set to HI (reset or envelope mode) and then set back to  
LO (peak-hold mode). This allows the ADL5502 to be initialize to  
a known state.  
EVALUATION BOARD  
Figure 18 shows the schematic of the ADL5502 evaluation  
board. The board is powered by a single supply in the 2.5 V to  
3.5 V range. The power supply is decoupled by 100 pF and  
0.1 ꢀF capacitors. Table 4 details the various configuration  
options of the evaluation board. Figure 19 and Figure 20 show  
the component and circuit layouts of the evaluation board.  
The device is place in peak-hold mode by placing switch SW2 in  
the position closes to the “SW2” label. Envelope-tracking mode is  
possible by setting SW2 in the opposite switch position (away from  
the “SW2” label). A signal generator can drive the control mode  
via the SMA labeled CNTL (see Table 4 for more details).  
OPERATING IN PEAK-HOLD MODE  
The RF input has a broadband match of 50 Ohms using a single  
75 ꢁ resistor at R10. More precise matching at spot frequencies  
is possible using the pads for components C15, C16, and R10.  
To operate the device in peak-hold mode, the control line must be  
temporally set to HI (envelope mode) and then set back to LO  
(peak-hold mode). This allows the ADL5502 to be initialize to a  
known state.  
The two outputs, accessible via the SMAs labeled VRMS and  
VENV, provide the rms response and the envelope/peak-hold  
vmeasurement of the RF input power level. The device must be  
enabled by switching SW1 to HI (setting the switch to the  
position opposite that of the “SW1” label).  
For envelope mode or rms use only, the control line can simply be  
set to HI.  
Rev. PrD (04/20/2008) | Page 10 of 14  
PRELIMINARY TECHNICAL DATA  
ADL5502  
Figure 18. Evaluation Board Schematic  
Figure 19. Layout of Evaluation Board, Component Side  
Figure 20. Layout of Evaluation Board, Circuit Side  
Rev. PrD (04/20/2008) | Page 11 of 14  
ADL5502  
Preliminary Technical Data  
Table 4. Evaluation Board Configuration Options  
Component  
VPOS, GND  
C13, C14  
Description  
Default Condition  
Ground and Supply Vector Pins.  
Power Supply Decoupling. Nominal supply decoupling of 0.01 ꢀF and 100 pF.  
Not Applicable  
C13 = 0.1 ꢀF (Size 0402)  
C14 = 100 pF (Size 0402)  
C17  
Filter Capacitor. The internal rms averaging capacitor can be augmented by placing  
additional capacitance in C17.  
C17 = Open (Size 0402)  
R10, C15, C16  
RF Input interface. The 75 Ω resistor at R10 combines with the ADL5502 internal input  
impedance to give a broadband input impedance of around 50 Ω. The pads for  
components C15, C16, and R10 can be used for more precise matching at a particular  
frequency.  
R10 = 75 Ω (Size 0402)  
C15, C16 = 0 Ω (Size 0402)  
R3, R6, R11,  
R12, C18, C19  
Output Filtering. The combination of the internal 100 Ω output resistance and C18 produce  
a low-pass filter to reduce output ripple of the VRMS output. Similarly, C19 and the internal  
100 Ω output resistance will form a low-pass filter to at the VPK/ENV output. Either output  
can be scaled down using the resistor divider pads, R3, R11, R6, and R12. Note that a  
minimum of 4.7 nF capacitive load should be kept on the RMS output.  
R11, R12 = Open (Size  
0402)  
R3, R6 = 0 Ω (Size 0402)  
C18 = 4.7 nF (Size 0402)  
C19 = Open (Size 0402)  
R1, SW1  
Device Enable. When the switch is set towards theSW1label, the ENBL pin is grounded (through R1 = 0 Ω (Size 0402)  
the 0 Ω resistor) putting the device in power-down mode. In the opposite switch position, the  
ENBL pin is connected to VPOS and the ADL5502 is in operating mode. While the switch is in the  
disabled position, the ENBL pin can be driven by a signal generator via the SMA labeled ENBL. In  
this case, R1 must be removed or changed to provide a 50 Ω match.  
SW1 = away from “SW1”  
label  
R7, R8, R13,  
C20, SW2  
Control Interface. When the switch is set towards theSW2label, the PK/ENV pin is grounded  
(through a 10 kΩ resistor) putting the device in peak-hold mode. In the opposite switch position,  
the pin is connected to VPOS (through a 10 kΩ resistor) and the ADL5502 is in envelope-tracking  
mode. While the switch is in the peak-hold position, the PK/ENV pin can be driven by a signal  
generator via the SMA labeled CNTL. In this case, R8 may be removed or changed to provide a  
50 Ω match. R13 and C20 allow for low-pass filter design for the control pin.  
R7, R8 = 10 kΩ (Size 0402)  
R13 = 0 Ω (Size 0402)  
C20 = Open (Size 0402)  
SW2 = away from “SW1”  
label  
R2, R4, R5, R9,  
C11, C12  
Alternate Interface. The end connector, P1, allows access to various ADL5502 signals. These  
signal paths are only used during factory test and characterization.  
R2, R4, R5, R9 = 0 Ω (Size  
0402)  
C11 = 0.1 ꢀF (Size 0402)  
C12 = 100 pF (Size 0402)  
Rev. PrD (04/20/2008) | Page 12 of 14  
PRELIMINARY TECHNICAL DATA  
OUTLINE DIMENSIONS  
ADL5502  
Figure 21. 8-Bump Wafer Level Chip Scale Package [WLCSP]  
(TBD)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Outline  
Ordering  
Quantity  
Model  
Package Description  
Branding  
TBD  
TBD  
ADL5502ACBZ-P71  
ADL5502ACBZ-P21  
ADL5502-EVALZ1  
–40°C to +85°C  
–40°C to +85°C  
8-Lead WLCSP, 7Pocket Tape and Reel  
8-Lead WLCSP, 7Pocket Tape and Reel  
Evaluation Board  
KS-8  
KS-8  
3,000  
250  
1 Z = Pb-free part.  
Rev. PrD (04/20/2008) | Page 13 of 14  
ADL5502  
NOTES  
Preliminary Technical Data  
©
2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07631-0-6/08(PrD)  
Rev. PrD (04/20/2008) | Page 14 of 14  

相关型号:

ADL5502ACBZ-P7

800 MHz to 3800 MHz Crest Factor Detector
ADI

ADL5502_1

450 MHz to 6000 MHz Crest Factor Detector
ADI

ADL5504

450 MHz to 6000 MHz TruPwr Detector
ADI

ADL5504-EVALZ

450 MHz to 6000 MHz TruPwr Detector
ADI

ADL5504ACBZ-P2

450 MHz to 6000 MHz TruPwr Detector
ADI

ADL5504ACBZ-P7

450 MHz to 6000 MHz TruPwr Detector
ADI

ADL5505

450 MHz to 6000Mhz TruPwr Detector
ADI

ADL5505-EVALZ

450 MHz to 6000Mhz TruPwr Detector
ADI

ADL5505ACBZ-P2

450 MHz to 6000Mhz TruPwr Detector
ADI

ADL5505ACBZ-P7

450 MHz to 6000Mhz TruPwr Detector
ADI

ADL5506

30 MHz to 4.5 GHz, 45 dB RF Detector
ADI

ADL5506-EVALZ

30 MHz to 4.5 GHz, 45 dB RF Detector
ADI