ADL5802ACPZ-R7 [ADI]

Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer; 双通道,高IP3 , 100 MHz至6 GHz有源混频器
ADL5802ACPZ-R7
型号: ADL5802ACPZ-R7
厂家: ADI    ADI
描述:

Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer
双通道,高IP3 , 100 MHz至6 GHz有源混频器

文件: 总32页 (文件大小:780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Channel, High IP3,  
100 MHz to 6 GHz Active Mixer  
ADL5802  
FE ATURES  
FUNCTIONAL BLOCK DIAGRAM  
VPOS RF1+ RF1– GND RF2+RF2–  
Power conversion gain of 1.6 dB  
Wideband RF, LO, and IF ports  
SSB noise figure of 11 dB  
24  
23  
22  
21  
20  
19  
1
2
3
4
18  
17  
16  
15  
GND  
GND  
GND  
GND  
OP2+  
OP2–  
Input IP3 of 28 dBm  
Input P1dB of 12 dBm  
Typical LO drive of 0 dBm  
Low LO leakage  
Single supply operation: 5 V @ 240 mA  
Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package  
OP1+  
OP1–  
GND  
5
6
14 GND  
IP3  
BIAS  
ADL5802  
APPLICATIONS  
VPOS  
13 VPOS  
Cellular base station receivers  
Main and diversity receiver designs  
Radio link downconverters  
7
8
9
10  
11  
12  
LOIN GND VSET  
ENBL GND LOIP  
Figure 1.  
GENERAL DESCRIPTION  
The IF outputs are designed for a 200 Ω source impedance and  
provide a typical voltage conversion gain of 7.6 dB when loaded  
into a 200 Ω load.  
The ADL5802 uses high linearity, double-balanced, active mixer  
cores with integrated LO buffer amplifiers to provide high  
dynamic range frequency conversion from 100 MHz to 6 GHz.  
The mixers benefit from a proprietary linearization architecture  
that provides enhanced input IP3 performance when subject to  
high input levels. A bias adjust feature allows the input linearity,  
SSB noise figure, and dc current to be optimized using a single  
control pin. The high input linearity allows the device to be used  
in demanding cellular applications where in-band blocking  
signals may otherwise result in degradation in dynamic perform-  
ance. The balanced active mixer arrangement provides superb  
LO to RF and LO to IF leakage, typically better than −30 dBm.  
The ADL5802 is fabricated using a SiGe high performance IC  
process. The device is available in a compact 4 mm × 4 mm,  
24-lead LFCSP package and operates over a −40°C to +85°C  
temperature range. An evaluation board is also available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalog Devices for its use, norforany infringements ofpatents or other  
rightsofthirdpartiesthat mayresult fromitsuse.Specificationssubjectto changewithoutnotice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksarethepropertyoftheirrespective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADL5802  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Spur Performance........................................................................21  
Circuit Description..........................................................................24  
LO Amplifier and Splitter...........................................................24  
RF Voltage to Current (V-to-I) Converter ...............................24  
Mixer Cores..................................................................................24  
Mixer Load ...................................................................................24  
Bias Circuit...................................................................................24  
Applications Information ...............................................................25  
Basic Connections .......................................................................25  
RF and LO Ports ..........................................................................25  
IF Port ...........................................................................................26  
Evaluation Board .............................................................................27  
Outline Dimensions ........................................................................29  
Ordering Guide............................................................................29  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Downconverter Mode Using a Broadband Balun.................... 7  
Downconverter Mode Using a Johanson 2.7 GHz Balun ..... 12  
Downconverter Mode Using a Johanson 3.5 GHz Balun ..... 15  
Downconverter Mode Using a Johanson 5.7 GHz Balun ..... 18  
REVISION HISTORY  
11/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
ADL5802  
SPECIFICATIONS  
VS = 5 V, VSET = 4 V, TA = 25°C, fLO = (fRF − 153) MHz, LO power = 0 dBm, Z0 1 = 50 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
18  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage2  
100  
6000  
Differential impedance, f = 200 MHz  
Can be matched externally to 3000 MHz  
Externally generated  
240  
VS  
Ω
MHz  
V
LF  
4.75  
600  
5.25  
LO INTERFACE  
LO Power  
Return Loss  
−10  
0
18  
50  
+10  
dBm  
dB  
Ω
Input Impedance  
LO Frequency Range  
POWER INTERFACE  
Supply Voltage  
Quiescent Current  
Disable Current  
100  
6000  
MHz  
4.75  
5
5.25  
300  
V
Resistor programmable  
ENBL pin low  
Time from ENBL pin low to power-up  
Time from ENBL pin high to power-down  
220  
170  
182  
28  
mA  
mA  
ns  
Enable Time  
Disable Time  
ns  
DYNAMIC PERFORMANCE at fRF = 900 MHz/1900 MHz  
Power Conversion Gain3  
fRF = 900 MHz  
fRF = 1900 MHz  
fRF = 900 MHz  
1.5  
1.6  
7.5  
7.6  
10  
11  
18  
22  
26  
28  
60  
45  
12  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Voltage Conversion Gain4  
SSB Noise Figure  
fRF = 1900 MHz  
fCENT = 900 MHz  
fCENT = 1900 MHz  
fCENT = 900 MHz  
fCENT = 1900 MHz  
fCENT = 890 MHz  
fCENT = 1890 MHz  
fCENT = 890 MHz  
fCENT = 1890 MHz  
fRF = 900 MHz  
SSB Noise Figure Under Blocking5  
Input Third Order Intercept6  
Input Second Order Intercept7  
Input 1 dB Compression Point  
fRF = 1900 MHz  
Unfiltered IF output  
12  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
RFI1 to RFI2 Channel Isolation  
IF/2 Spurious8  
−35  
−30  
25  
45  
0 dBm input power, fRF = 900 MHz  
0 dBm input power, fRF = 900 MHz  
0 dBm input power, fRF = 1900 MHz  
0 dBm input power, fRF = 1900 MHz  
−68  
−67  
−53  
−59  
IF/3 Spurious8  
IF/2 Spurious8  
IF/3 Spurious8  
DYNAMIC PERFORMANCE at fRF = 2500 MHz9  
Power Conversion Gain10  
Voltage Conversion Gain4  
SSB Noise Figure  
SSB Noise Figure Under Blocking11  
Input Third Order Intercept6  
−0.5  
5.67  
11.5  
18  
dB  
dB  
dB  
dB  
fCENT = 2145 MHz  
fCENT = 2500 MHz  
30  
dBm  
Rev. 0 | Page 3 of 32  
 
 
 
 
 
ADL5802  
Parameter  
Test Conditions/Comments  
fCENT = 2500 MHz  
Min  
Typ  
47  
13  
36  
31  
26  
42  
−52  
−56  
Max  
Unit  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
Input Second Order Intercept7  
Input 1 dB Compression Point  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
RFI1 to RFI2 Channel Isolation  
IF/2 Spurious8  
Unfiltered IF output  
0 dBm input power  
0 dBm input power  
IF/3 Spurious8  
DYNAMIC PERFORMANCE at fRF = 3500 MHz12  
Power Conversion Gain13  
Voltage Conversion Gain4  
SSB Noise Figure  
−0.5  
5.5  
12.5  
18  
25  
39  
13  
33  
28  
31  
dB  
dB  
dB  
dB  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
SSB Noise Figure Under Blocking14  
Input Third Order Intercept5  
Input Second Order Intercept7  
Input 1 dB Compression Point  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
RFI1 to RFI2 Channel Isolation  
IF/2 Spurious8  
fCENT = 3500 MHz  
fCENT = 3500 MHz  
fCENT = 3500 MHz  
Unfiltered IF output  
39  
−46  
−63  
0 dBm input power  
0 dBm input power  
IF/3 Spurious8  
DYNAMIC PERFORMANCE at fRF = 5500 MHz15  
Power Conversion Gain16  
Voltage Conversion Gain4  
SSB Noise Figure  
−3  
5.67  
14  
dB  
dB  
dB  
SSB Noise Figure Under Blocking17  
Input Third Order Intercept5  
Input Second Order Intercept7  
Input 1 dB Compression Point  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
RFI1 to RFI2 Channel Isolation  
IF/2 Spurious8  
fCENT = 5800 MHz  
fCENT = 5500 MHz  
fCENT = 5500 MHz  
17  
23  
35  
13  
42  
27  
50  
33  
dB  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
Unfiltered IF output  
0 dBm input power  
0 dBm input power  
−49  
−64  
IF/3 Spurious8  
1 Z0 is the characteristic impedance assumed for all measurements and the PCB.  
2 Supply voltage must be applied from an external circuit through choke inductors.  
3 Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss.  
4 ZSOURCE = 50 Ω, differential; ZLOAD = 200 Ω, differential 5 dBm; ZSOURC E is the impedance of the source instrument; ZLOAD is the load impedance at the output.  
5 fRF1 = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = 0 dBm.  
6 fRF1 = (fCENT − 1) MHz, fRF2 = fC EN T, fLO = (fCENT − 153) MHz, each RF tone at −10 dBm.  
7 fRF1 = fCENT, fRF2 = (fCENT + 100) MHz, fLO = (fC EN T − 153) MHz, each RF tone at −10 dBm.  
8 For details, see the Spur Performance section.  
9 VS = 5 V, VSET = 4.5 V, TA = 25°C, fLO = (fRF − 211) MHz, LO power = 0 dBm, Z0 = 50 Ω.  
10 Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (2500BL14M050), and PCB loss.  
11  
f
= fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 235) MHz, blocker level = 0 dBm.  
RF1  
12 VS = 5 V, VSET = 5 V, TA = 25°C, fLO = (fRF − 153) MHz, LO power = 0 dBm, Z0 = 50 Ω.  
13 Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (3600BL14M050), and PCB loss.  
14  
f
RF1  
= fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = −20 dBm.  
15 VS = 5 V, VSET = 4.8 V, TA = 25°C, fLO = (fRF − 380) MHz, LO power = 0 dBm, Z0 = 50 Ω.  
16 Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (5400BL15B050), and PCB loss.  
17  
f
RF1  
= fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 300) MHz, blocker level = −20 dBm.  
Rev. 0 | Page 4 of 32  
 
 
ADL5802  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VPOS  
5.5 V  
VSET, ENBL  
5.5 V  
OP1+, OP1−, OP2+, OP2−  
RF Input Power  
5.5 V  
20 dBm  
1.6 W  
26.5°C/W  
8.7°C/W  
150°C  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)1  
θJC (at Exposed Paddle)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
ESD CAUTION  
−40°C to +85°C  
−65°C to +150°C  
1 As measured on the evaluation board. For details, see the Evaluation Board  
section.  
Rev. 0 | Page 5 of 32  
 
 
 
ADL5802  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND  
GND  
OP1+  
OP1–  
GND  
1
2
3
4
5
6
18 GND  
17 GND  
16 OP2+  
15 OP2–  
14 GND  
13 VPOS  
ADL5802  
TOP VIEW  
(Not to Scale)  
VPOS  
NOTES  
1. THERE IS AN EXPOSED PADDLE THAT  
MUST BE SOLDERED TO GROUND.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Function  
GND  
Device Common (DC Ground).  
1, 2, 5, 8, 11,  
14, 17, 18, 21  
3, 4  
OP1+, OP1−  
Channel 1 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or  
the center tap of the IF transformer.  
6, 13, 24  
7
9, 10  
12  
VPOS  
ENBL  
LOIP, LOIN  
VSET  
Positive Supply Voltage. 5.0 V nominal.  
Device Enable. Pull low or leave disconnected to enable the device; pull high to disable the device.  
Differential LO Input Terminals. Internally matched to 50 Ω; must be ac-coupled.  
High Input IP3 Bias Control. For high input IP3 performance, apply ~4 V to 5 V. Improved noise figure (NF)  
performance and lower supply current can be set by applying ~2 V to 3 V to the VSET pin. A resistor can be  
connected to the supply to raise the voltage, whereas a resistor to GND lowers the voltage.  
15, 16  
OP2−, OP2+  
Channel 2 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or  
the center tap of the IF transformer.  
19, 20  
22, 23  
RF2−, RF2+  
RF1−, RF1+  
EPAD  
Differential RF Input Terminals for Channel 2. Internally matched to 50 Ω; must be ac-coupled.  
Differential RF Input Terminals for Channel 1. Internally matched to 50 Ω; must be ac-coupled.  
Exposed Paddle. Must be soldered to ground.  
Rev. 0 | Page 6 of 32  
 
ADL5802  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER MODE USING A BROADBAND BALUN  
VS = 5 V, T A = 25°C, VSET = 4 V, I F = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless  
otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.  
6
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
39.96  
33.30  
26.64  
19.98  
13.32  
6.66  
5
4
T
= –40°C  
A
3
T
= +25°C  
A
2
1
GAIN = 900MHz  
GAIN = 1900MHz  
0
INPUT IP3 = 900MHz  
INPUT IP3 = 1900MHz  
T
= +85°C  
A
–1  
–2  
–3  
–4  
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
–15  
–10  
–5  
0
5
10  
15  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 3. Power Conversion Gain vs. RF Frequency  
Figure 6. Power Conversion Gain and Input IP3 vs. LO Power  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
MEAN = 1.5  
SD = 0.039  
80  
60  
40  
20  
0
900MHz  
1900MHz  
0
50  
100  
150  
200  
250  
IF FREQUENCY (MHz)  
GAIN (dB)  
Figure 4. Power Conversion Gain vs. IF Frequency  
Figure 7. Power Conversion Gain Distribution  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.5  
T
T
= –40°C  
= +25°C  
A
2.0  
1.5  
1.0  
0.5  
0
A
T
= +85°C  
A
GAIN = 900MHz  
GAIN = 1900MHz  
I
I
= 900MHz  
POS  
POS  
= 1900MHz  
0
1
2
3
4
5
6
4.7  
4.8  
4.9  
5.0  
SUPPLY (V)  
5.1  
5.2  
5.3  
VSET (V)  
Figure 5. Power Conversion Gain and IPOS vs. VSET  
Figure 8. Power Conversion Gain vs. Supply Voltage  
Rev. 0 | Page 7 of 32  
 
 
ADL5802  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
T
= –40°C  
T
= +25°C  
A
A
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
0
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
500  
1000  
1500  
2000  
2500  
3000  
3500  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 9. Input IP3 vs. RF Frequency  
Figure 12. Input IP2 vs. RF Frequency  
40  
35  
30  
25  
20  
15  
80  
70  
60  
50  
40  
30  
20  
10  
0
900MHz  
1900MHz  
900MHz  
1900MHz  
10  
0
0
50  
100  
150  
200  
250  
50  
100  
150  
200  
250  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 13. Input IP2 vs. IF Frequency  
Figure 10. Input IP3 vs. IF Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
900MHz  
1900MHz  
INPUT IP3 = 900MHz  
INPUT IP3 = 1900MHz  
NF = 900MHz  
NF = 1900MHz  
0
0
0
1
2
3
4
5
6
1
2
3
4
5
6
VSET (V)  
VSET (V)  
Figure 11. Input IP3, Noise Figure vs. VSET  
Figure 14. Input IP2 vs. VSET  
Rev. 0 | Page 8 of 32  
ADL5802  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
T
= +85°C  
A
T
= –40°C  
A
NF vs. IF, RF = 1900MHz  
NF vs. IF, RF = 900MHz  
T
= +25°C  
A
6
4
2
0
0
0
100  
200  
300  
400  
500  
600  
700  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 15. Input P1dB vs. RF Frequency  
Figure 18. SSB Noise Figure vs. IF Frequency  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
900MHz  
NF, RF 1846MHz,  
IF 153MHz, BLOCKER 1841MHz  
1900MHz  
6
NF, RF 951MHZ,  
IF 153MHz, BLOCKER 946MHz  
4
2
0
0
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
0
50  
100  
150  
200  
250  
BLOCKER LEVEL (dBm)  
IF FREQUENCY (MHz)  
Figure 16. Input P1dB vs. IF Frequency  
Figure 19. SSB Noise Figure vs. Blocker Level  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
T
= +85°C  
A
T
= +25°C  
A
1900MHz  
900MHz  
T
= –40°C  
A
6
6
4
4
2
2
0
–15  
0
–10  
–5  
0
5
10  
15  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
LO LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 17. SSB Noise Figure vs. RF Frequency  
Figure 20. SSB Noise Figure vs. LO Drive  
Rev. 0 | Page 9 of 32  
ADL5802  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–0  
RF RETURN LOSS 5500MHz BALUN:  
5400BL15B050 3pF INPUT CAPACITANCE  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
T
= –40°C  
A
T
= +25°C  
A
RF RETURN LOSS 3500MHz BALUN:  
3600BL14M050 1.5pF INPUT CAPACITANCE  
T
= +85°C  
A
RF RETURN LOSS 2500MHz BALUN:  
2500BL14M050 3pF INPUT CAPACITANCE  
RF RETURN LOSS 900MHz AND 1900MHz BALUN:  
TC1-1-13M+ 100pF INPUT CAPACITANCE  
–40  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 21. RF Return Loss Measured Differentially at the RF Port  
Figure 24. LO to IF Leakage vs. LO Frequency  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0
LO RETURN LOSS 2500MHz BALUN:  
2500BL14M050 3pF  
LO RETURN LOSS 5500MHz BALUN:  
INPUT CAPACITANCE  
5400BL15B050 3pF  
–5  
–10  
–15  
–20  
–25  
–30  
INPUT CAPACITANCE  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
LO RETURN LOSS BALUN:  
TC1-1-13M+ 100pF  
INPUT CAPACITANCE  
LO RETURN LOSS 3500MHz BALUN:  
3600BL14M050 1.5pF  
INPUT CAPACITANCE  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
LO FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. LO Return Loss Measured Differentially at the LO Port  
Figure 25. LO to RF Leakage vs. LO Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
500  
8
6
4
2
400  
300  
200  
100  
0
T
= +25°C  
A
RESISTANCE  
T
= +85°C  
A
CAPACITANCE  
T
= –40°C  
A
0
–2  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
10  
100  
1000  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)  
Figure 26. RF to IF Output Isolation vs. RF Frequency  
Rev. 0 | Page 10 of 32  
ADL5802  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
T
= –40°C  
= +85°C  
A
T
= +25°C  
A
T
A
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
RF FREQUENCY (MHz)  
Figure 27. RF Channel Isolation  
Rev. 0 | Page 11 of 32  
ADL5802  
DOWNCONVERTER MODE USING A JOHANSON 2.7 GHZ BALUN  
VS = 5 V, T A = 25°C, VSET = 4.5 V, I F = 2 1 1 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.  
Insertion loss of input and output baluns (2500BL14M050, TC4-1W+) is included in the gain measurement.  
5
35  
30  
25  
20  
15  
10  
5
4
3
2
T
= –40°C  
A
INPUT IP3  
1
T
= +25°C  
A
0
–1  
–2  
–3  
–4  
–5  
NOISE FIGURE  
T
= +85°C  
A
0
0
1
2
3
4
5
6
1900  
2100  
2300  
2500  
2700  
2900  
3100  
VSET (V)  
RF FREQUENCY (MHz)  
Figure 31. Input IP3, Noise Figure vs. VSET  
Figure 28. Power Conversion Gain vs. RF Frequency  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
60  
55  
50  
45  
40  
35  
30  
5
4
3
I
POS  
T
= +85°C  
A
2
T
= –40°C  
A
1
0
GAIN  
T
= +25°C  
A
–1  
–2  
–3  
–4  
–5  
1900  
2100  
2300  
2500  
2700  
2900  
3100  
0
1
2
3
4
5
6
RF FREQUENCY (MHz)  
VSET (V)  
Figure 32. Input IP2 vs. RF Frequency  
Figure 29. Power Conversion Gain and IPOS vs. VSET  
35  
30  
25  
20  
15  
10  
5
50  
T
= +85°C  
T
= +25°C  
A
A
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
T
= –40°C  
A
0
1900  
2100  
2300  
2500  
2700  
2900  
3100  
0
1
2
3
4
5
6
VSET (V)  
RF FREQUENCY (MHz)  
Figure 33. Input IP2 vs. VSET  
Figure 30. Input IP3 vs. RF Frequency  
Rev. 0 | Page 12 of 32  
 
ADL5802  
15  
14  
13  
12  
11  
10  
9
0
–5  
T
= +85°C  
A
T
= +25°C  
A
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
8
1900  
1900  
2100  
2300  
2500  
2700  
2900  
3100  
2100  
2300  
2500  
2700  
2900  
3100  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 34. Input P1dB vs. RF Frequency  
Figure 37. LO to IF Leakage vs. LO Frequency  
20  
18  
16  
14  
12  
10  
8
–30  
–31  
–32  
–33  
–34  
–35  
–36  
–37  
–38  
–39  
–40  
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= –40°C  
A
6
4
2
0
1800  
1900  
2100  
2300  
2500  
2700  
2900  
3100  
2000  
2200  
2400  
2600  
2800  
3000  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 38. LO to RF Leakage vs. LO Frequency  
Figure 35. SSB Noise Figure vs. RF Frequency  
30  
25  
20  
15  
10  
5
–21  
–23  
–25  
–27  
–29  
–31  
–33  
–35  
T
= +25°C  
A
T
= –40°C  
A
NF, RF 2145MHz,  
IF 230MHz, BLOCKER 2140MHz  
T
= +85°C  
A
0
–60  
1900  
2100  
2300  
2500  
2700  
2900  
3100  
–50  
–40  
–30  
–20  
–10  
0
10  
RF FREQUENCY (MHz)  
BLOCKER LEVEL (dBm)  
Figure 36. SSB Noise Figure vs. Blocker Level  
Figure 39. RF to IF Output Isolation vs. RF Frequency  
Rev. 0 | Page 13 of 32  
ADL5802  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
30  
1900  
2100  
2300  
2500  
2700  
2900  
3100  
RF FREQUENCY (MHz)  
Figure 40. RF Channel Isolation  
Rev. 0 | Page 14 of 32  
ADL5802  
DOWNCONVERTER MODE USING A JOHANSON 3.5 GHZ BALUN  
VS = 5 V, T A = 25°C, VSET = 5 V, I F = 1 5 3 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.  
Insertion loss of input and output baluns (3600BL14M050, TC4-1W+) is included in the gain measurement.  
5
25  
20  
15  
10  
5
4
3
INPUT IP3  
2
T
= –40°C  
A
1
T
= +25°C  
A
0
NOISE FIGURE  
–1  
–2  
–3  
–4  
–5  
T
= +85°C  
A
0
0
1
2
3
4
5
6
2900  
3100  
3300  
3500  
3700  
3900  
4100  
VSET (V)  
RF FREQUENCY (MHz)  
Figure 44. Input IP3, Noise Figure vs. VSET  
Figure 41. Power Conversion Gain vs. RF Frequency  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
5
4
3
I
POS  
2
T
= –40°C  
A
1
0
GAIN  
T
= +85°C  
A
T = +25°C  
A
–1  
–2  
–3  
–4  
–5  
2900  
3100  
3300  
3500  
3700  
3900  
4100  
0
1
2
3
4
5
6
RF FREQUENCY (MHz)  
VSET (V)  
Figure 45. Input IP2 vs. RF Frequency  
Figure 42. Power Conversion Gain and IPOS vs. VSET  
30  
25  
20  
15  
10  
5
50  
T
= +85°C  
A
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
T
= +25°C  
A
T
= –40°C  
A
0
2900  
3100  
3300  
3500  
3700  
3900  
4100  
0
1
2
3
4
5
6
VSET (V)  
RF FREQUENCY (MHz)  
Figure 43. Input IP3 vs. RF Frequency  
Figure 46. Input IP2 vs. VSET  
Rev. 0 | Page 15 of 32  
 
ADL5802  
15  
14  
13  
12  
11  
10  
9
–20  
–25  
–30  
–35  
–40  
–45  
–50  
T
= +85°C  
T
= +25°C  
A
A
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= –40°C  
A
8
2900  
2900  
3100  
3300  
3500  
3700  
3900  
4100  
4100  
4100  
3100  
3300  
3500  
3700  
3900  
4100  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 47. Input P1dB vs. RF Frequency  
Figure 50. LO to IF Leakage vs. LO Frequency  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
20  
18  
16  
14  
12  
10  
8
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
T
= +25°C  
A
T
= +85°C  
A
A
T
= –40°C  
A
6
4
2
0
2700  
2900  
3100  
3300  
3500  
3700  
3900  
4100  
4300  
2900  
3100  
3300  
3500  
3700  
3900  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 48. SSB Noise Figure vs. RF Frequency  
Figure 51. LO to RF Leakage vs. LO Frequency  
45  
40  
35  
30  
25  
20  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
NF, RF 3805MHz,  
IF 300MHz, BLOCKER 3800MHz  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
2900  
3100  
3300  
3500  
3700  
3900  
BLOCKER LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 49. SSB Noise Figure vs. Blocker Level  
Figure 52. RF to IF Output Isolation vs. RF Frequency  
Rev. 0 | Page 16 of 32  
ADL5802  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
T
= +25°C  
A
T
= +85°C  
T
= –40°C  
A
A
2900  
3100  
3300  
3500  
3700  
3900  
4100  
RF FREQUENCY (MHz)  
Figure 53. RF Channel Isolation  
Rev. 0 | Page 17 of 32  
ADL5802  
DOWNCONVERTER MODE USING A JOHANSON 5.7 GHZ BALUN  
VS = 5 V, T A = 25°C, VSET = 4.8 V, I F = 3 8 0 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.  
Insertion loss of input and output baluns (5400BL15B050, TC4-1W+) is included in the gain measurement.  
25  
20  
15  
10  
5
30  
24  
18  
12  
6
2
0
IP3  
T
= +85°C  
A
T
= –40°C  
A
–2  
–4  
–6  
–8  
NOISE FIGURE  
T
= +25°C  
A
0
0
4900  
5100  
5300  
5500  
5700  
5900  
6100  
0
1
2
3
4
5
6
RF FREQUENCY (MHz)  
VSET (V)  
Figure 57. Input IP3, Noise Figure vs. VSET  
Figure 54. Power Conversion Gain vs. RF Frequency  
60  
5
4
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
3
2
T
= +85°C  
A
IPOS  
GAIN  
1
T
= +25°C  
= –40°C  
A
0
T
A
–1  
–2  
–3  
–4  
–5  
4900  
5100  
5300  
5500  
5700  
5900  
0
1
2
3
4
5
6
RF FREQUENCY (MHz)  
VSET (V)  
Figure 58. Input IP2 vs. RF Frequency  
Figure 55. Power Conversion Gain and IPOS vs. VSET  
50  
45  
40  
35  
30  
25  
20  
30  
25  
20  
15  
10  
5
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
0
4900  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5700  
5300  
RF FREQUENCY (MHz)  
5100  
5500  
5900  
6100  
VSET (V)  
Figure 59. Input IP2 vs. VSET  
Figure 56. Input IP3 vs. RF Frequency  
Rev. 0 | Page 18 of 32  
 
ADL5802  
16  
15  
14  
13  
12  
11  
10  
9
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= +85°C  
A
T
T
= +25°C  
A
T
= –40°C  
A
= –40°C  
A
T
= +25°C  
A
T
A
= +85°C  
8
4900  
5100  
5300  
5500  
5700  
5900  
6100  
4900  
5100  
5300  
5500  
5700  
5900  
6100  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 60. Input P1dB vs. RF Frequency  
Figure 63. LO to IF Leakage vs. LO Frequency  
–15  
–17  
–19  
–21  
–23  
–25  
–27  
–29  
–31  
–33  
–35  
25  
20  
15  
10  
5
T
= –40°C  
A
T
= +25°C  
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
= +85°C  
A
0
4900  
5100  
5300  
5500  
5700  
5900  
6100  
4900  
5100  
5300  
5500  
5700  
5900  
6100  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 61. SSB Noise Figure vs. RF Frequency  
Figure 64. LO to RF Leakage vs. LO Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
T
= +25°C  
T
= –40°C  
A
A
NF, RF 5805MHz,  
IF 380MHz, BLOCKER 5800MHz  
T
= +85°C  
A
0
–60  
4900  
5100  
5300  
5500  
5700  
5900  
6100  
–50  
–40  
–30  
–20  
–10  
0
BLOCKER LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 62. SSB Noise Figure vs. Blocker Level  
Figure 65. RF to IF Output Isolation vs. RF Frequency  
Rev. 0 | Page 19 of 32  
ADL5802  
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
4900  
5100  
5300  
5500  
5700  
5900  
6100  
RF FREQUENCY (MHz)  
Figure 66. RF Channel Isolation  
Rev. 0 | Page 20 of 32  
ADL5802  
SPUR PERFORMANCE  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board (see the Evaluation Board section). Mixer  
spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies  
less than 6 GHz only. The typical noise floor of the measurement system is −100 dBm.  
900 MHz Performance  
VS = 5 V, VS E T = 4 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 900 MHz, fLO = 703 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−35.9  
0.0  
−25.5  
−46.3  
−68.2  
≤100  
−96.4  
≤100  
≤100  
≤100  
≤100  
−47.3  
−19.8  
−61.6  
−67.3  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−27.4  
−64.3  
−68.7  
−98.0  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−51.5  
−30.0  
−80.7  
−71.0  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−37.5  
−75.6  
−67.5  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−62.1  
−45.0  
−88.1  
−86.3  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−47.5  
−67.8  
−79.1  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−34.3  
−49.1  
−86.7  
−91.8  
≤100  
≤100  
−55.3  
−82.6  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
1
2
−69.2  
−79.6  
≤100  
≤100  
≤100  
≤100  
−91.5  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
−98.4  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
3
4
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
5
6
N
7
8
9
10  
11  
12  
13  
14  
15  
2090 MHz Performance  
VS = 5 V, VS E T = 4 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 2090 MHz, fLO = 1842 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
−43.0  
0.0  
−23.7  
−59.6  
−53.8  
−97.6  
≤100  
−52.9  
−42.2  
−67.5  
−59.3  
≤100  
≤100  
0
1
−26.8  
−59.8  
−80.5  
−68.2  
−92.2  
−93.7  
≤100  
≤100  
−71.9  
−67.6  
−84.1  
−79.3  
−97.8  
−96.1  
≤100  
≤100  
2
3
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
4
≤100  
≤100  
≤100  
≤100  
≤100  
5
6
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
N
7
8
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
9
10  
11  
12  
13  
14  
15  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
Rev. 0 | Page 21 of 32  
 
ADL5802  
2600 MHz Performance  
VS = 5 V, VSET = 4.5 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 2600 MHz, fLO = 2350 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−37.9  
0.0  
−31.5  
−62.6  
−52.2  
−88.7  
≤100  
−27.5  
−75.5  
−36.3  
−65.8  
−56.3  
≤100  
≤100  
1
2
−59.7  
−75.0  
−68.8  
−86.8  
−82.5  
≤100  
−90.5  
−92.1  
−94.4  
≤100  
3
4
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
5
≤100  
≤100  
≤100  
≤100  
≤100  
6
N
7
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
8
9
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
10  
11  
12  
13  
14  
15  
≤100  
≤100  
≤100  
≤100  
3500 MHz Performance  
VS = 5 V, VS E T = 5 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 3500 MHz, fLO = 3800 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
−43.0  
0.0  
−23.7  
−59.6  
−53.8  
−97.6  
≤100  
−52.9  
−42.2  
−67.5  
−59.3  
≤100  
≤100  
0
1
−26.8  
−59.8  
−80.5  
−68.2  
−92.2  
−93.7  
≤100  
≤100  
−71.9  
−67.6  
−84.1  
−79.3  
−97.8  
−96.1  
≤100  
≤100  
2
3
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
4
≤100  
≤100  
≤100  
≤100  
≤100  
5
6
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
N
7
8
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
9
10  
11  
12  
13  
14  
15  
≤100  
≤100  
≤100  
≤100  
≤100  
≤100  
Rev. 0 | Page 22 of 32  
ADL5802  
5800 MHz Performance  
VS = 5 V, VSET= 4.8 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, fRF = 5800 MHz, fLO = 5600 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
−28.3  
0.0  
0
−63.6  
−80.5  
−48.6  
1
−92.6  
−64.2  
2
3
−98.7  
−90.5  
−98.3  
≤100  
4
5
−99.4  
−81.6  
−98.0  
−87.2  
6
N
7
−95.9  
−84.0  
−99.5  
≤100  
8
≤100  
≤100  
9
10  
11  
12  
13  
14  
15  
≤100  
≤100  
≤100  
≤100  
−99.6  
≤100  
−99.8  
≤100  
Rev. 0 | Page 23 of 32  
ADL5802  
CIRCUIT DESCRIPTION  
The ADL5802 provides two double-balanced active mixers.  
These mixers are designed for a 50 Ω input impedance and a  
200 Ω output impedance. Both are driven from a common local  
oscillator (LO) amplifier. The RF inputs and LO outputs are  
differential, providing maximum usable bandwidth at the input  
and output ports. The LO also operates with a 50 Ω input  
impedance and can, optionally, be operated differentially or  
single-ended. The input, output, and LO ports can be operated  
over an exceptionally wide frequency range. The ADL5802 can  
be configured as a downconvert mixer or as an upconvert mixer.  
RF VOLTAGE TO CURRENT (V-TO-I) CONVERTER  
The differential RF input signal is applied to a voltage-to-current  
converter that converts the differential input voltage to output  
currents. The V-to-I converter provides a 50 Ω input  
impedance. The V-to-I section bias current can be adjusted up  
or down using the VSET pin. Adjusting the current up improves  
IP3 and P1dB input but degrades SSB NF. Adjusting the current  
down improves SSB NF but degrades IP3 and P1dB input. The  
conversion gain remains nearly constant over a wide range of  
VSET pin settings, allowing the part to be adjusted dynamically  
without affecting the conversion gain. The current adjustment  
can be made by connecting a resistor from the VSET pin to the  
positive supply to increase the bias current or from the VSET  
pin to ground to decrease the bias current. The VSET pin  
impedance is approxi-mately 675 Ω in series with two diodes  
and an internal current source.  
The ADL5802 can be divided into the following sections: the  
local oscillator (LO) amplifier and splitter, the RF voltage-to-  
current (V-to-I) converter, the mixer cores, the output loads,  
and the bias circuit. A simplified block diagram of the device is  
shown in Figure 67. The LO block generates a pair of differential  
LO signals to drive two mixer cores. The RF input is converted  
into current by the V-to-I converters that then feed into the two  
mixer cores. The internal differential load of the mixers is  
designed for a wideband 200Ω output impedance from the  
mixer. Reference currents to each section are generated by the  
bias circuit, which can be enabled or disabled using the ENBL  
pin. A detailed description of each section of the ADL5802  
follows.  
MIXER CORES  
The ADL5802 has two double-balanced mixers that use high  
performance SiGe NPN transistors. These mixers are based on  
the Gilbert cell design of four cross-connected transistors.  
MIXER LOAD  
Each mixer load is designed to use a pair of 100 Ω resistors con-  
nected to the positive supply. This provides a 200 Ω differential  
output resistance. The mixer output should be pulled to the  
positive supply externally using a pair of RF chokes or using an  
output transformer with the center tap connected to the positive  
supply. It is possible to exclude these components when the mixer  
core current is low, but both P1dB and IP3 are then reduced.  
VPOS RF1+ RF1– GND RF2+RF2–  
24  
23  
22  
21  
20  
19  
1
2
3
4
18  
17  
16  
15  
GND  
GND  
GND  
GND  
OP2+  
OP2–  
OP1+  
OP1–  
The mixer load output can operate from direct current (dc) up to  
approximately 500 MHz into a 200 Ω load. For upconversion  
applications, the mixer load can be matched using off-chip  
matching components. Transmit operation up to 2 GHz is  
possible. See the Applications Information section for matching  
circuit details.  
GND  
5
6
14 GND  
IP3  
ADL5802  
BIAS  
VPOS  
13 VPOS  
7
8
9
10  
11  
12  
LOIN GND VSET  
ENBL GND LOIP  
BIAS CIRCUIT  
Figure 67. ADL5802 Block Diagram  
A band gap reference circuit generates the reference currents  
used by the mixers. The bias circuit can be enabled and disabled  
using the ENBL pin. If the ENBL pin is grounded or left open,  
the part is enabled. Pulling the ENBL pin high shuts off the bias  
circuit and disables the part. However, the ENBL pin does not  
alter the current in the LO section and, therefore, does not  
provide a true power-down feature. Certain configurations may  
require the VSET pin to be connected to the positive supply  
through a resistor. This will result in an increased mixer core  
current. Unless this resistor to positive supply is removed, bias  
current will continue to be supplied to the mixer core.  
LO AMPLIFIER AND SPLITTER  
The LO input is amplified using a broadband LNA and is then  
split and followed by separate LO limiting amplifiers. The LNA  
input impedance is nominally 50 Ω. The LO is designed to  
accommodate a wide range of LO input power levels. The LO  
input is conditioned by the series of amplifiers to provide a well  
controlled and limited LO swing to the mixer core, resulting in  
excellent IP3. The LO circuit exhibits low additive noise,  
resulting in an excellent mixer noise figure and output noise  
under RF blocking. For optimal performance, the LO inputs  
should be driven differentially but at lower frequencies; single-  
ended drive is acceptable.  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
 
 
ADL5802  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
RF AND LO PORTS  
The RF and LO input ports are designed for differential input  
impedance of approximately 50 Ω. Figure 69 and Figure 70  
illustrate the RF and LO interfaces, respectively. It is recommended  
that each of the RF and LO differential ports be driven through a  
balun for optimum performance. It is also necessary to ac-  
couple both RF and LO ports with the proper size capacitors.  
Table 4 lists the recommended components for various RF  
frequency bands. The characterization data is available in the  
Typical Performance Characteristics section.  
The ADL5802 features dual channel mixers with a common  
local oscillator (LO). The mixer is designed to translate between  
radio frequencies (RF) and intermediate frequencies (IF). For  
both upconversion and downconversion applications, RF1+  
(Pin 23), RF1− (Pin 22), RF2+ (Pin 20), and RF2− (Pin 19)  
must be configured as the input interfaces. OP1+ (Pin 3), OP1−  
(Pin 4), OP2+ (Pin 16), and OP2− (Pin 15) must be configured  
as the output interfaces. Figure 68 illustrates the basic connections  
for ADL5802 operation.  
RF1  
RF2  
T3  
T5  
C13  
C14  
C5  
C12  
VPOS  
24  
23  
22  
21  
20  
19  
C8  
C11  
VPOS RF1+ RF1– GND RF2+ RF2–  
1
2
3
4
5
6
GND  
18  
17  
16  
15  
GND  
GND  
GND  
VPOS  
VPOS  
IF1P  
OP1+  
OP1–  
GND  
OP2+  
OP2–  
C16  
C15  
ADL5802  
T2  
T4  
IF2P  
GND 14  
VPOS  
VPOS 13  
VPOS  
VPOS  
C10  
C7  
C6  
C9  
GND  
8
ENBL  
7
LOIP LOIN GND VSET  
9
10  
11  
12  
VSET  
C3  
T1  
C2  
LO  
Figure 68. Basic Connections Schematic  
Rev. 0 | Page 25 of 32  
 
 
 
 
ADL5802  
RF1  
RF2  
frequency. A variety of suitable choke inductors is commercially  
available from manufacturers such as Coilcraft and Murata. An  
impedance transforming network may be required to transform  
the final load impedance to 200Ω at the IF outputs.  
T5  
T3  
C13 C14  
C5 C12  
23  
22  
21  
20  
19  
RF1+ RF1– GND RF2+ RF2–  
1
2
3
4
5
GND  
GND  
OP1+  
OP1–  
GND  
ADL5802  
VPOS  
Figure 69. ADL5802 RF Interface  
IF1P  
C16  
ADL5802  
T4  
ADL5802  
ENBL GND LOIP LOIN GND  
7
8
9
10  
11  
C3  
T1  
C2  
18  
17  
16  
15  
GND  
GND  
LO  
VPOS  
T2  
Figure 70. ADL5802 LO Interface  
OP2+  
OP2–  
C15  
ADL5802  
Table 4. Suggested Components for the RF and LO Interfaces  
IF2P  
RF and LO  
Frequency  
C2, C3, C5,  
C12, C13, C14  
T1, T3, T5  
GND 14  
900 MHz  
1900 MHz  
2500 MHz  
Mini-Circuits® TC1-1-13M+ 100 pF  
Mini-Circuits TC1-1-13M+  
100 pF  
3 pF  
Figure 71. Biasing the IF Port Open-Collector Outputs  
Using a Center-Tapped Impedance Transformer  
Johanson Technology  
2500BL14M050  
3500 MHz  
5500 MHz  
1.5 pF  
3 pF  
Johanson Technology  
3600BL14M050  
Johanson Technology  
5400BL15B050  
VPOS  
1
2
3
4
5
GND  
GND  
OP1+  
OP1–  
GND  
C17  
L3  
IF1 OUT+  
Z
IF PORT  
IMPEDANCE  
TRANSFORMING  
NETWORK  
Z
= 200  
LOAD  
ADL5802  
L
The IF port features an open-collector differential output  
interface. It is necessary to bias the open collector outputs using  
one of the schemes presented in Figure 71 and Figure 72.  
IF1 OUT–  
L4  
Figure 71 shows the use of center-tapped impedance transformers.  
The turns ratio of the transformer should be selected to provide  
the desired impedance transformation. In the case of a 50 Ω  
load impedance, a 4:1 impedance ratio transformer should be  
used to transform the 50load into a 200 Ω differential load at  
the IF output pins.  
C18  
VPOS  
VPOS  
C4  
18  
17  
16  
15  
GND  
GND  
L2  
Figure 72 shows a differential IF interface where pull-up choke  
inductors are used to bias the open-collector outputs. The  
shunting impedance of the choke inductors used to couple dc  
current into the mixer core should be large enough at the IF  
frequency of operation so as not to load down the output  
current before it reaches the intended load. Additionally, the dc  
current handling capability of the selected choke inductors  
must be at least 45 mA. The self-resonant frequency of the  
selected choke inductors must be higher than the intended IF  
IF2 OUT+  
IF2 OUT–  
OP2+  
OP2–  
IMPEDANCE  
TRANSFORMING  
NETWORK  
ADL5802  
Z
Z
= 200Ω  
L
LOAD  
L1  
GND 14  
C1  
VPOS  
Figure 72. Biasing the IF Port Open-Collector Outputs  
Using Pull-Up Choke Inductors  
Rev. 0 | Page 26 of 32  
 
 
 
 
 
 
ADL5802  
EVALUATION BOARD  
An evaluation board is available for the ADL5802. The standard evaluation board is fabricated using Rogers® RO3003 material. Each of  
the RF, LO, and IF ports is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown  
in Figure 73. Table 5 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 74 and  
Figure 75.  
RF1  
RF2  
T5  
T3  
VPOS  
GND  
C11  
C8  
R19  
C13 C14  
C5 C12  
VPOS  
VPOS1  
24  
VPOS RF1+ RF1– GND RF2+ RF2–  
GND  
23  
22  
21  
20  
19  
VPOS  
VPOS  
C4  
GND  
1
2
3
4
5
6
18  
C17  
GND  
GND  
OP2+  
OP2–  
17  
16  
15  
14  
13  
L2  
L3  
R2  
IF1P  
IF1N  
R14  
R16  
IF2N  
IF2P  
OP1+  
OP1–  
GND  
C16  
R21  
C15  
T4  
ADL5802  
R7  
L4  
T2  
R6  
R15  
R13  
C1  
R3  
L1  
R20  
C10  
GND  
R10  
C6  
R12  
C7  
C18  
VPOS  
C9  
VPOS  
VPOS  
VPOS  
ENBL GND LOIP LOIN GND VSET  
10 11 12  
7
8
9
R9  
R4  
C2  
R5  
C3  
T1  
VPOS  
VSET  
R11  
R22  
R23  
VPOS  
LOP  
ENBL1  
R1  
LO  
LON  
Figure 73. Evaluation Board Schematic  
Table 5. Evaluation Board Configuration  
Components Function  
C1, C4, C6, C7, C8, C9, Power supply decoupling. Nominal supply decoupling  
Default Conditions  
C6, C7, C8 = 10 pF (size 0402)  
C10, C11, C17, C18,  
R10, R12, R19, R20,  
R21  
consists of a 0.01 µF capacitor to ground in parallel with 10  
pF capacitors to ground, positioned as close to the device  
as possible. Series resistors are provided for enhanced  
supply decoupling using optional ferrite chip inductors.  
C9, C10, C11 = 0.01 µF (size 0402)  
C1, C4, C17, C18 = open (size 0402)  
R10, R12, R19, R20, R21 = 0 Ω (size 0402)  
C5, C12, C13, C14 = 100 pF (size 0402)  
T3, T5 = TC1-1-13M+ (Mini-Circuits)  
C5, C12, C13, C14, T3, RF Channel 1 and RF Channel 2 input interfaces. Input  
T5, RF1, RF2  
channels are ac-coupled through C5, C12, C13, and C14. T3  
and T4 are 1:1 baluns used to interface to the 50 Ω  
differential inputs.  
C15, C16 = 100 pF (size 0402)  
C15, C16, L1, L2, L3,  
L4, R2, R3, R6, R7,  
R13, R14, R15, R16,  
R20, R21, T2, T4, IF1,  
IF2  
IF Channel 1 and IF Channel 2 output interfaces. The 200 Ω  
open-collector IF output interfaces are biased through the  
center taps of T2 and T4 4:1 impedance transformers. C15  
and C16 provide local bypassing with R20 and R21 available  
for additional supply bypassing. R6, R7, R13, R14, R15, and  
R16 are provided for IF filtering and matching options.  
L1, L2, L3, L4 = open (size 0805)  
R2, R3, R13, R14, R15, R16, R20, R21 = 0 Ω (size 0402)  
R6, R7 = open (size 0402)  
T2, T4 = TC4-1W+ (Mini-Circuits)  
C2, C3, R4, R5, T1, LO  
R1, R9, R11, ENBL1  
C2, C3 = 1 nF (size 0402)  
R4, R5 = open (size 0402)  
T1 = TC1-1-13M+ (Mini-Circuits)  
R9 = 10 kΩ (size 0402); R1, R11 = open (size 0402)  
Or R1 = 10 kΩ (size 0402);R9, R11 = open (size 0402)  
Or R11 = 10 kΩ (size 0402); R1, R9 = open (size 0402)  
ENBL1 = 3-pin header and shunt  
LO interface. C2 and C3 provide ac coupling for the local  
oscillator input. T1 is a 1:1 balun to allow single-ended  
interfacing to the differential 50 Ω local oscillator input.  
Enable interface. The ADL5802 can be disabled using the 3-  
pin ENBL1 header. The ENBL pin is pulled up to VPOS  
through R9. R1 is provided as an optional termination for  
the high impedance enable interface. If desired, the ENBL  
pin can be driven by an external source through the ENBL  
SMA connector.  
Rev. 0 | Page 27 of 32  
 
 
 
ADL5802  
Components  
Function  
Default Conditions  
R22, R23, VSET  
R22, R23 = open (size 0402)  
VSET bias control. R22 and R23 form an optional resistor  
divider network between VPOS and GND, allowing for a  
fixed bias setting. See the Typical Performance  
Characteristics section to choose the recommended VSET  
control voltage for the desired frequency band.  
EPAD (EP)  
Exposed paddle. Must be soldered to ground.  
Figure 74. Evaluation Board Top Layer  
Figure 75. Evaluation Board Bottom Layer  
Rev. 0 | Page 28 of 32  
 
 
ADL5802  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 76. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Model  
Package Description  
Package Option Ordering Quantity  
ADL5802ACPZ-R71  
ADL5802-EVALZ1  
−40°C to +85°C  
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-24-3  
Evaluation Board  
1,500 per Reel  
1
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 29 of 32  
 
 
 
 
ADL5802  
NOTES  
Rev. 0 | Page 30 of 32  
ADL5802  
NOTES  
Rev. 0 | Page 31 of 32  
ADL5802  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07882-0-11/09(0)  
Rev. 0 | Page 32 of 32  

相关型号:

ADL5802XCPZ-R7

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802XCPZ-WP

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802_09

Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer
ADI

ADL5811

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5811-EVALZ

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5811ACPZ-R7

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812-EVALZ

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812ACPZ-R7

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5902

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902-EVALZ

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902ACPZ-R2

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI