ADP122AUJZ-3.0-R7 [ADI]

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator; 5.5 V输入300毫安,低静态电流, CMOS线性稳压器
ADP122AUJZ-3.0-R7
型号: ADP122AUJZ-3.0-R7
厂家: ADI    ADI
描述:

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
5.5 V输入300毫安,低静态电流, CMOS线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件 PC
文件: 总20页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.5 V Input, 300 mA, Low Quiescent  
Current, CMOS Linear Regulator  
ADP122/ADP123  
TYPICAL APPLICATION CIRCUIT  
FEATURES  
Input voltage supply range: 2.3 V to 5.5 V  
300 mA maximum output current  
Fixed and adjustable output voltage versions  
Very low dropout voltage: 85 mV at 300 mA load  
Low quiescent current: 45 μA at no load  
Low shutdown current: <1 μA  
V
= 2.3V TO 5.5V  
V
= 1.8V  
OUT  
IN  
1
5
VIN  
VOUT  
C
C
IN  
OUT  
1µF  
ADP122  
1µF  
2
3
GND  
ON  
4
EN  
NC  
OFF  
Initial accuracy: 1ꢀ accuracy  
Figure 1. ADP122 with Fixed Output Voltage  
Up to 31 fixed-output voltage options available from  
1.75 V to 3.3 V  
Adjustable-output voltage range  
0.8 V to 5.0 V (ADP123)  
V
= 2.3V TO 5.5V  
V
= 0.5V(1 + R1/R2)  
IN  
OUT  
R1  
1
5
VIN  
VOUT  
ADJ  
C
C
IN  
OUT  
1µF  
ADP123  
Excellent PSRR performance: 60 dB at 100 kHz  
Excellent load/line transient response  
Optimized for small 1.0 ꢁF ceramic capacitors  
Current limit and thermal overload protection  
Logic controlled enable  
1µF  
2
3
GND  
ON  
4
EN  
OFF  
R2  
Compact, 5-lead TSOT package  
Figure 2. ADP 123 with Adjustable Output Voltage  
APPLICATIONS  
Digital camera and audio devices  
Portable and battery-powered equipment  
Automatic meter reading (AMR) meters  
GPS and location management units  
Medical instrumentation  
Point-of-sale equipment  
GENERAL DESCRIPTION  
The ADP122/ADP123 are low quiescent current, low dropout  
linear regulators. They are designed to operate from an input  
voltage between 2.3 V and 5.5 V and to provide up to 300 mA of  
output current. The low 85 mV dropout voltage at a 300 mA load  
improves efficiency and allows operation over a wide input  
voltage range.  
The ADP122/ADP123 are specifically designed for stable operation  
with tiny 1 ꢀF ceramic input and output capacitors to meet the  
requirements of high performance, space constrained applications.  
The ADP122/ADP123 have an internal soft start that gives a  
constant start-up time of 350 ꢀs. Short-circuit protection and  
thermal overload protection circuits prevent damage in adverse  
conditions. The ADP122/ADP123 are available in a tiny, 5-lead  
TSOT package for the smallest footprint solution to meet a  
variety of portable applications.  
The low 170 μA of quiescent current at full load makes the ADP122  
ideal for battery-operated portable equipment.  
The ADP122 is capable of 31 fixed output voltages from 1.75 V  
to 3.3 V. The ADP123 is the adjustable version of the device and  
allows the output voltage to be set between 0.8 V and 5.0 V by  
an external voltage divider.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
ADP122/ADP123  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 14  
Junction Temperature Calculations......................................... 15  
Printed Circuit Board Layout Considerations ....................... 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Specifications..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP122/ADP123  
SPECIFICATIONS  
Unless otherwise noted, VIN = (VOUT + 0.3 V) or 2.3 V, whichever is greater; ADJ connected to VOUT; IOUT = 10 mA; CIN = 1.0 μF;  
COUT = 1.0 μF; TA = 25°C.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions  
Min  
Typ  
45  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT1  
2.3  
5.5  
IGND  
IOUT = 0 μA  
IOUT = 0 μA, TJ = −40°C to +125°C  
IOUT = 1 mA  
IOUT = 1 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 300 mA  
IOUT = 300 mA, TJ = −40°C to +125°C  
EN = GND  
EN = GND, TJ = −40°C to +125°C  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
105  
120  
190  
240  
1
60  
130  
170  
0.1  
SHUTDOWN CURRENT  
ISD  
OUTPUT VOLTAGE ACCURACY2  
Fixed Output  
VOUT  
IOUT = 10 mA  
100 μA < IOUT < 300 mA, VIN = (VOUT + 0.5 V) to 5.5 V,  
TJ = −40°C to +125°C  
−1  
−2  
+1  
+1.5  
%
%
Adjustable Output  
IOUT = 10 mA  
100 μA < IOUT < 300 mA, VIN = 2.3 V to 5.5 V,  
TJ = −40°C to +125°C  
0.495  
0.490  
0.500  
0.500  
0.505  
0.5075  
V
V
LINE REGULATION  
LOAD REGULATION3  
∆VOUT/∆VIN VIN = VIN = 2.3 V to 5.5 V, TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 1 mA to 300 mA  
−0.05  
+0.05  
0.001  
%/V  
0.0005  
15  
%/mA  
%/mA  
nA  
IOUT = 1 mA to 300 mA , TJ = −40°C to +125°C  
ADJ INPUT BIAS CURRENT  
DROPOUT VOLTAGE4  
ADJI-BIAS  
VDROPOUT  
2.3 V ≤ VIN ≤ 5.5 V, ADJ connected to VOUT  
IOUT = 10 mA, VOUT > 2.3 V  
3
mV  
mV  
mV  
mV  
mV  
mV  
μs  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA, VOUT > 2.3 V  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 300 mA, VOUT > 2.3V  
IOUT = 300 mA, TJ = −40°C to +125°C  
VOUT = 3.0 V  
5
45  
75  
85  
150  
650  
START-UP TIME5  
CURRENT LIMIT THRESHOLD6  
tSTART-UP  
ILIMIT  
350  
500  
350  
1.2  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.3 V ≤ VIN ≤ 5.5 V  
V
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
0.4  
1
V
μA  
μA  
0.1  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TA = 25°C  
2.1  
V
V
mV  
1.5  
125  
Rev. 0 | Page 3 of 20  
 
ADP122/ADP123  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
25  
35  
45  
55  
65  
60  
60  
60  
60  
60  
60  
Max  
Unit  
OUTPUT NOISE  
OUTNOISE  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.2 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.8 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 4.2 V  
10 kHz, VOUT = 3.3 V  
10 kHz, VOUT = 2.5 V  
10 kHz, VOUT = 1.8 V  
100 kHz, VOUT = 3.3 V  
100 kHz, VOUT = 2.5 V  
μV rms  
μV rms  
μV rms  
μV rms  
POWER SUPPLY REJECTION RATIO  
(VIN = VOUT + 0.5 V)  
PSRR  
dB  
dB  
dB  
dB  
dB  
dB  
100 kHz, VOUT = 1.8 V  
1 The current from the external resistor divider network in the case of adjustable voltage output (as with the ADP123) should be subtracted from the ground current measured.  
2 Accuracy when VOUT is connected directly to ADJ. When VOUT voltage is set by external feedback resistors, absolute accuracy in adjust mode depends on the tolerances of  
the resistors used.  
3 Based on an endpoint calculation using 1 mA and 300 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output voltages  
greater than 2.3 V.  
5 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
6 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.3 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.3V, or 2.97 V.  
RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Minimum Input and Output  
Capacitance1  
CAPMIN  
TA = −40°C to +125°C  
0.70  
μF  
Capacitor ESR  
RESR  
TA = −40°C to +125°C  
0.001  
1
Ω
1 The minimum input and output capacitance should be greater than 0.70 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 20  
 
ADP122/ADP123  
ABSOLUTE MAXIMUM RATINGS  
application and board layout. In applications in which high maxi-  
mum power dissipation exists, close attention to thermal board  
design is required. The value of θJA may vary, depending on PCB  
material, layout, and environmental conditions. The specified  
values of θJA are based on a 4-layer, 4 inch × 3 inch circuit board.  
Refer to JESD51-7 for detailed information on the board  
construction  
Table 3.  
Parameter  
Rating  
VIN to GND  
ADJ to GND  
−0.3 V to +6.5 V  
−0.3 V to +4 V  
EN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to VIN  
Storage Temperature Range  
Operating Ambient Temperature Range  
Operating Junction Temperature  
Soldering Conditions  
−65°C to +150°C  
−40°C to +85°C  
−40°C to +125°C  
JEDEC J-STD-020  
ΨJB is the junction-to-board thermal characterization parameter  
and is measured in °C/W. The ΨJB of the package is based on  
modeling and calculation using a 4-layer board. The Guidelines for  
Reporting and Using Package Thermal Information: JESD51-12  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package—factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP122/ADP123 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ will remain within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may have to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-ambient  
thermal resistance of the package (θJA).  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
Unit  
5-Lead TSOT  
170  
43  
°C/W  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
TJ = TA + (PD × θJA)  
The junction-to-ambient thermal resistance (θJA) of the package  
is based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on the  
Rev. 0 | Page 5 of 20  
 
ADP122/ADP123  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
5
1
2
3
VIN  
GND  
EN  
VOUT  
1
2
3
5
4
VIN  
GND  
EN  
VOUT  
ADJ  
ADP122  
ADP123  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
4
NC  
NC = NO CONNECT  
Figure 3. ADP122 Fixed Output Pin Configuration  
Figure 4. ADP123 Adjustable Output Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
ADP122 ADP123 Mnemonic Description  
1
2
3
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a capacitor of at least 1 μF.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For  
automatic startup, connect EN to VIN.  
N/A  
4
ADJ  
Output Voltage Adjust Input. Connect the midpoint of an external divider from VOUT to GND to this  
pin to set the output voltage.  
4
5
N/A  
5
NC  
VOUT  
Not Connected Internally.  
Regulated Output Voltage. Bypass VOUT to GND with a capacitor of at least 1 μF.  
Rev. 0 | Page 6 of 20  
 
ADP122/ADP123  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 10 mA, CIN = 1.0 ꢀF, COUT = 1.0 ꢀF, TA = 25°C, unless otherwise noted.  
250  
200  
150  
100  
50  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
3.260  
I
= 300mA  
OUT  
I
I
= 200mA  
= 100mA  
OUT  
OUT  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
= 10mA  
= 100µA  
OUT  
OUT  
I
= 1mA  
25  
OUT  
0
–40  
–5  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
200  
180  
160  
140  
120  
100  
80  
3.2945  
3.2940  
3.2935  
3.2930  
3.2925  
3.2920  
3.2915  
3.2910  
3.2905  
3.2900  
3.2895  
60  
40  
20  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
(mA)  
I
OUT  
OUT  
Figure 9. Ground Current vs. Load Current  
Figure 6. Output Voltage vs. Load Current  
200  
180  
160  
140  
120  
100  
80  
3.296  
3.294  
3.292  
3.290  
3.288  
3.286  
3.284  
I
= 300mA  
OUT  
I
I
= 200mA  
= 100mA  
OUT  
OUT  
I
I
= 10mA  
= 1mA  
OUT  
OUT  
60  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
= 100µA  
OUT  
40  
20  
0
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
(V)  
4.8  
5.0  
5.2  
5.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
(V)  
4.8  
5.0  
5.2  
5.4  
V
V
IN  
IN  
Figure 7. Output Voltage vs. Input Voltage  
Figure 10. Ground Current vs. Input Voltage  
Rev. 0 | Page 7 of 20  
 
ADP122/ADP123  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
0.50  
0.45  
I
I
I
I
= 10mA  
OUT  
OUT  
OUT  
OUT  
0.40  
= 100mA  
= 150mA  
= 300mA  
V
V
V
V
V
V
V
V
= 3.6V  
= 3.8V  
= 4.2V  
= 4.4V  
= 5.0V  
= 5.2V  
= 5.4V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
–50  
–25  
0
25  
50  
75  
100  
125  
3.05  
3.10  
3.15  
3.20  
3.25  
(V)  
3.30  
3.35  
3.40  
TEMPERATURE (°C)  
V
IN  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Output Voltage vs. Input Voltage (in Dropout)  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
C
= V  
+ 0.5V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
1µF  
IN  
OUT  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
OUT  
FREQUENCY (Hz)  
Figure 12. Dropout Voltage vs. Load Current  
Figure 15. Power Supply Rejection Ratio vs. Frequency, VOUT = 2.8 V, VIN = 3.3 V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–10  
–20  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
= 10mA  
OUT  
OUT  
OUT  
OUT  
= 100mA  
= 150mA  
= 300mA  
V
V
C
= V  
+ 0.5V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
1µF  
IN  
OUT  
0
3.05  
3.10  
3.15  
3.20  
3.25  
(V)  
3.30  
3.35  
3.40  
3.45  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
IN  
FREQUENCY (Hz)  
Figure 13. Ground Current vs. Input Voltage (in Dropout)  
Figure 16. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V, VIN = 3.8 V  
Rev. 0 | Page 8 of 20  
ADP122/ADP123  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5
4
3
2
1
0
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 4.2V  
OUT  
V
= 3.3V  
OUT  
V
= 2.8V  
OUT  
V
V
C
= V  
+ 0.5V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
1µF  
IN  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 4.2 V, VIN = 4.7 V  
Figure 20. Output Noise Spectrum  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–10  
–20  
V
V
= 4.2V  
= 3.3V  
OUT  
OUT  
V
V
V
V
V
V
= 2.8V, I  
= 3.3V, I  
= 4.2V, I  
= 2.8V, I  
= 3.3V, I  
= 4.2V, I  
= 1mA  
= 1mA  
= 1mA  
= 300mA  
= 300mA  
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 2.8V  
OUT  
V
V
C
= V  
+ 0.5V  
1µF  
IN  
OUT  
= 50mV  
RIPPLE  
= C  
IN  
OUT  
0.001  
0.01  
0.1  
1
(mA)  
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
FREQUENCY (Hz)  
OUT  
Figure 18. Power Supply Rejection Ratio vs. Frequency, Various Output  
Voltages and Load Currents  
Figure 21 Output Noise vs. Load Current and Output Voltage  
–10  
V
V
V
V
V
V
V
V
= 3.1V, I  
= 3.3V, I  
= 3.8V, I  
= 4.8V, I  
= 3.1V, I  
= 3.3V, I  
= 3.8V, I  
= 4.8V, I  
= 1mA  
= 1mA  
= 1mA  
= 1mA  
= 300mA  
= 300mA  
= 300mA  
= 300mA  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
OUT  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1mA TO 300mA LOAD STEP  
1
V
OUT  
2
V
= 50mV  
1µF  
RIPPLE  
= C  
C
IN  
OUT  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
B
B
W
CH1 200mA W CH2 50.0mV  
M 40.0µs A CH1  
196mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
T
10.20%  
FREQUENCY (Hz)  
Figure 22. Load Transient Response, COUT = 1 μF  
Figure 19. Power Supply Rejection Ratio vs. Headroom Voltage (VIN − VOUT  
)
Rev. 0 | Page 9 of 20  
ADP122/ADP123  
I
OUT  
V
IN  
1mA TO 300mA LOAD STEP  
1
4V TO 4.5V VOLTAGE STEP  
2
1
V
OUT  
V
2
OUT  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
B
B
B
W
CH1 200mA Ω  
CH2 20.0mV  
M 40.0µs A CH1  
196mA  
CH1 1.00V B CH2 2.00mV  
M 10.0µs A CH3  
9.600%  
2.04V  
W
W
W
T
10.40%  
T
Figure 23. Load Transient Response, COUT = 4.7 μF  
Figure 25. Line Transient Response, Load Current = 300 mA  
V
IN  
4V TO 4.5V VOLTAGE STEP  
2
1
V
OUT  
B
CH1 1.00V B  
CH2 2.00mV  
M 10.0µs A CH3  
10.00%  
2.04V  
W
W
T
Figure 24. Line Transient Response, Load Current = 1 mA  
Rev. 0 | Page 10 of 20  
ADP122/ADP123  
THEORY OF OPERATION  
The ADP122/ADP123 are low quiescent current, low-dropout  
linear regulators that operate from 2.3 V to 5.5 V and can provide  
up to 300 mA of output current. Drawing a low 170 ꢀA of quies-  
cent current (typical) at full load makes the ADP122/ADP123  
ideal for battery-operated portable equipment. Shutdown current  
consumption is typically 100 nA.  
Note that in shutdown, the output is turned off and the divider  
current is 0.  
The ADP122/ADP123 use the EN pin to enable and disable the  
VOUT pin under normal operating conditions. When EN is high,  
VOUT turns on; when EN is low, VOUT turns off. For automatic  
startup, EN can be tied to VIN.  
Optimized for use with small 1 ꢀF ceramic capacitors, the  
ADP122/ADP123 provide excellent transient performance.  
ADP122  
VIN  
VOUT  
Internally, the ADP122/ADP123 consist of a reference, an error  
amplifier, a feedback voltage divider, and a PMOS pass transistor.  
Output current is delivered via the PMOS pass device, which is  
controlled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower than  
the reference voltage, the gate of the PMOS device is pulled lower,  
allowing more current to pass and increasing the output voltage.  
If the feedback voltage is higher than the reference voltage, the  
gate of the PMOS device is pulled higher, allowing less current  
to pass and decreasing the output voltage.  
SHORT CIRCUIT,  
UVLO AND  
THERMAL  
R1  
R2  
GND  
PROTECT  
EN  
SHUTDOWN  
0.5V REFERENCE  
NOTES  
1. R1 AND R2 ARE INTERNAL RESISTORS, AVAILABLE ON  
THE ADP122 ONLY.  
The adjustable ADP123 has an output voltage range of 0.8 V to  
5.0 V. The output voltage is set by the ratio of two external resistors,  
as shown in Figure 2. The device servos the output to maintain  
the voltage at the ADJ pin at 0.5 V referenced to ground. The  
current in R1 is then equal to 0.5 V/R2 and the current in R1 is  
the current in R2 plus the ADJ pin bias current. The ADJ pin  
bias current, 15 nA at 25°C, flows through R1 into the ADJ pin.  
Figure 26. ADP122 Internal Block Diagram (Fixed Output)  
ADP123  
VIN  
VOUT  
SHORT CIRCUIT,  
UVLO AND  
THERMAL  
GND  
EN  
The output voltage can be calculated using the equation:  
PROTECT  
V
OUT = 0.5 V(1 + R1/R2) + (ADJI-BIAS)(R1)  
ADJ  
The value of R1 should be less than 200 kΩ to minimize errors  
in the output voltage caused by the ADJ pin bias current. For  
example, when R1 and R2 each equal 200 kΩ, the output voltage  
is 1.0 V. The output voltage error introduced by the ADJ pin  
bias current is 3 mV or 0.3%, assuming a typical ADJ pin bias  
current of 15 nA at 25°C.  
SHUTDOWN  
0.5V REFERENCE  
Figure 27. ADP123 Internal Block Diagram (Adjustable Output)  
Rev. 0 | Page 11 of 20  
 
ADP122/ADP123  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the ADP122/  
ADP123, as long as the capacitor meets the minimum capacitance  
and maximum ESR requirements. Ceramic capacitors are manu-  
factured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have an  
adequate dielectric to ensure the minimum capacitance over the  
necessary temperature range and dc bias conditions. Using an  
X5R or X7R dielectric with a voltage rating of 6.3 V or 10 V is  
recommended. However, using Y5V and Z5U dielectrics is not  
recommended for any LDO, due to their poor temperature and  
dc bias characteristics.  
The ADP122/ADP123 are designed for operation with small,  
space-saving ceramic capacitors, but these devices can function  
with most commonly used capacitors as long as care is taken to  
ensure an appropriate effective series resistance (ESR) value. The  
ESR of the output capacitor affects the stability of the LDO control  
loop. A minimum of 0.70 ꢀF capacitance with an ESR of 1 ꢁ or  
less is recommended to ensure stability of the ADP122/ADP123.  
The transient response to changes in load current is also affected by  
the output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP122/ADP123 to  
dynamic changes in load current. Figure 28 and Figure 29 show  
the transient responses for output capacitance values of 1 ꢀF and  
4.7 ꢀF, respectively.  
Figure 30 depicts the capacitance vs. capacitor voltage bias charac-  
teristics of a 0603, 1 ꢀF, 6.3 V X5R capacitor. The voltage stability of  
a capacitor is strongly influenced by the capacitor size and the  
voltage rating. In general, a capacitor in a larger package or of a  
higher voltage rating exhibits better stability. The temperature  
variation of the X5R dielectric is about 15% over the −40°C to  
+85°C temperature range and is not a function of package or  
voltage rating.  
I
OUT  
1mA TO 300mA LOAD STEP  
1
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
2
V
OUT  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
CH1 200mA B CH2 50.0mV  
M 400ns A CH1  
W
196mA  
B
W
T
14.80%  
Figure 28. Output Transient Response, COUT = 1 ꢀF  
I
OUT  
0
1
2
3
4
5
6
7
1mA TO 300mA LOAD STEP  
BIAS VOLTAGE (V)  
1
Figure 30. Capacitance vs. Capacitor Voltage Bias Characteristics  
Equation 1 can be used to determine the worst-case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
2
C
EFF = C × (1 − TEMPCO) × (1 − TOL)  
(1)  
V
OUT  
where:  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
C
EFF is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
B
CH1 200mA Ω  
CH2 20.0mV M 400ns  
A CH1  
196mA  
W
T
15.00%  
Figure 29. Output Transient Response, COUT = 4.7 ꢀF  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
C is 0.96 μF at 4.2 V from the graph in Figure 30.  
Input Bypass Capacitor  
Connecting a 1 ꢀF capacitor from VIN to GND reduces the circuit  
sensitivity to the printed circuit board (PCB) layout, especially  
when a long input trace or high source impedance is encountered.  
If greater than 1 ꢀF of output capacitance is required, the input  
capacitor should be increased to match it.  
Substituting these values in Equation 1 yields  
CEFF = 0.96 μF × (1 − 0.15) × (1 − 0.1) = 0.734 μF  
Rev. 0 | Page 12 of 20  
 
 
 
 
ADP122/ADP123  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over tem-  
perature and tolerance at the chosen output voltage.  
RISING  
To guarantee the performance of the ADP122/ADP123, it is  
imperative that the effects of dc bias, temperature, and tolerances  
on the behavior of the capacitors are evaluated for each application.  
FALLING  
UNDERVOLTAGE LOCKOUT  
The ADP122/ADP123 have an internal undervoltage lockout  
circuit that disables all inputs and the output when the input  
voltage is less than approximately 2 V. This ensures that the  
ADP122/ADP123 inputs and the output behave in a predictable  
manner during power-up.  
2.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
V
(V)  
IN  
ENABLE FEATURE  
Figure 32. Typical EN Pin Thresholds vs. Input Voltage  
The ADP122/ADP123 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure 31, when a rising voltage on EN crosses the active threshold,  
VOUT turns on. Conversely, when a falling voltage on EN crosses  
the inactive threshold, VOUT turns off.  
The ADP122/ADP123 utilize an internal soft start to limit the  
in-rush current when the output is enabled. The start-up time  
for the 2.8 V option is approximately 350 ꢀs from the time the  
EN active threshold is crossed to when the output reaches 90%  
of its final value. As shown in Figure 33, the start-up time is  
dependent on the output voltage setting and increases slightly  
as the output voltage increases.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5V  
IN  
= 4.2V  
= 3.3V  
OUT  
OUT  
V
V
= 2.8V  
OUT  
1
2
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
V
EN  
Figure 31. Typical EN Pin Operation  
CH1 1.00V CH2 1.00V  
M200µs  
600.000µs  
A CH1  
3.08V  
T
As shown in Figure 31, the EN pin has built-in hysteresis. This  
prevents on/off oscillations that may occur due to noise on the  
EN pin as it passes through the threshold points.  
Figure 33. Typical Start-Up Time  
The active and inactive thresholds of the EN pin are derived from  
the VIN voltage. Therefore, these thresholds vary as the input  
voltage changes. Figure 32 shows typical EN active and inactive  
thresholds when the VIN voltage varies from 2.3 V to 5.5 V.  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADP122/ADP123  
The junction temperature of the ADP122/ADP123 can be  
calculated from the following equation:  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
TJ = TA + (PD × θJA)  
(2)  
(3)  
The ADP122/ADP123 are protected from damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP122/ADP123 are designed to limit the current  
when the output load reaches 500 mA (typical). When the output  
load exceeds 500 mA, the output voltage is reduced to maintain  
a constant current limit.  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
where:  
LOAD is the load current.  
GND is the ground current.  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C typical. Under extreme con-  
ditions (that is, high ambient temperature and power dissipation),  
when the junction temperature starts to rise above 150°C, the  
output is turned off, reducing output current to zero. When the  
junction temperature cools to less than 135°C, the output is turned  
on again and the output current is restored to its nominal value.  
I
I
V
IN and VOUT are input and output voltages, respectively.  
The power dissipation due to ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
can be simplified as follows:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
Consider the case where a hard short from VOUT to GND occurs.  
At first, the ADP122/ADP123 limit the current so that only 500 mA  
is conducted into the short. If self-heating causes the junction  
temperature to rise above 150°C, thermal shutdown activates,  
turning off the output and reducing the output current to zero.  
When the junction temperature cools to less than 135°C, the  
output turns on and conducts 500 mA into the short, again  
causing the junction temperature to rise above 150°C. This  
thermal oscillation between 135°C and 150°C results in a current  
oscillation between 500 mA and 0 mA that continues as long as  
the short remains at the output.  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
that the junction temperature does not rise above 125°C. Figure 34  
through Figure 40 show junction temperature calculations for  
different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
In cases where the board temperature is known, the thermal  
characterization parameter, ΨJB, can be used to estimate the jun-  
ction temperature rise. The maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power dissipation  
(PD) using the formula  
Current and thermal limit protections are intended to protect the  
device from damage due to accidental overload conditions. For  
reliable operation, the device power dissipation must be externally  
limited so that the junction temperature does not exceed 125°C.  
TJ = TB + (PD × ΨJB)  
(5)  
THERMAL CONSIDERATIONS  
To guarantee reliable operation, the junction temperature of the  
ADP122/ADP123 must not exceed 125°C. To ensure that the  
junction temperature is less than this maximum value, the user  
needs to be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient tem-  
perature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The value  
of θJA is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered on the PCB. Table 6 shows typical θJA values of the  
5-lead TSOT package for various PCB copper sizes.  
Table 6. Typical θJA Values for Specified PCB Copper Sizes  
Copper Size (mm2)  
01  
θJA (°C/W)  
170  
50  
152  
100  
300  
500  
146  
134  
131  
1 Device soldered to narrow traces.  
The typical ΨJB value is 42.8°C/W.  
Rev. 0 | Page 14 of 20  
 
 
ADP122/ADP123  
JUNCTION TEMPERATURE CALCULATIONS  
140  
140  
120  
100  
80  
T
MAX  
T
MAX  
J
J
120  
100  
80  
60  
40  
20  
0
I
= 300mA  
LOAD  
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
I
= 150mA  
LOAD  
I
= 100mA  
LOAD  
I
= 25mA  
LOAD  
60  
I
= 100mA  
= 25mA  
LOAD  
40  
I
LOAD  
I
= 10mA  
I
= 1mA  
LOAD  
LOAD  
20  
I
= 10mA  
I
= 1mA  
1.5  
LOAD  
LOAD  
0
0.5  
0.5  
1.0  
2.0  
2.5  
3.0  
1.0  
1.5  
2.0  
– V (V)  
2.5  
3.0  
V
– V (V)  
IN  
V
OUT  
OUT  
IN  
Figure 34. Junction Temperature vs. Power Dissipation,  
500 mm2 of PCB Copper, TA = 25°C  
Figure 37. Junction Temperature vs. Power Dissipation,  
500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
T
MAX  
T
MAX  
J
J
I
= 300mA  
LOAD  
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
I
= 150mA  
LOAD  
I
= 100mA  
LOAD  
I
= 25mA  
LOAD  
60  
60  
I
= 100mA  
LOAD  
40  
40  
I
= 25mA  
LOAD  
I
= 1mA  
I
= 10mA  
LOAD  
LOAD  
20  
20  
I
= 10mA  
LOAD  
I
= 1mA  
1.5  
LOAD  
0
0.5  
0
0.5  
1.0  
2.0  
– V (V)  
2.5  
3.0  
1.0  
1.5  
2.0  
– V (V)  
2.5  
3.0  
V
V
OUT  
OUT  
IN  
IN  
Figure 35. Junction Temperature vs. Power Dissipation,  
100 mm2 of PCB Copper, TA = 25°C  
Figure 38. Junction Temperature vs. Power Dissipation,  
100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
T
MAX  
T
MAX  
J
J
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
I
= 300mA  
LOAD  
I
= 100mA  
LOAD  
I
I
= 150mA  
LOAD  
I
= 25mA  
LOAD  
60  
= 100mA  
= 25mA  
60  
LOAD  
I
40  
LOAD  
40  
I
= 1mA  
I
= 10mA  
LOAD  
LOAD  
1.5  
20  
20  
I
= 10mA  
LOAD  
2.0  
I
= 1mA  
1.5  
LOAD  
0
0.5  
0
0.5  
1.0  
2.5  
3.0  
1.0  
2.0  
– V (V)  
2.5  
3.0  
V
– V (V)  
IN  
V
OUT  
OUT  
IN  
Figure 36. Junction Temperature vs. Power Dissipation,  
0 mm2 of PCB Copper, TA = 25°C  
Figure 39. Junction Temperature vs. Power Dissipation,  
0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 15 of 20  
 
 
ADP122/ADP123  
140  
120  
100  
80  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP122/ADP123.  
However, as shown in Table 6, a point of diminishing returns  
eventually is reached, beyond which an increase in the copper  
size does not yield significant heat dissipation benefits.  
I
I
I
I
= 1mA  
I
I
I
= 150mA  
= 250mA  
= 300mA  
60  
40  
20  
0
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 50mA  
= 100mA  
The input capacitor should be placed as close as possible to the  
VIN and GND pins, and the output capacitor should be placed  
as close as possible to the VOUT and GND pins. Use of 0402 or  
0603 size capacitors and resistors achieves the smallest possible  
footprint solution on boards where the area is limited.  
T
MAX  
J
0.4  
0.8  
1.2  
1.6  
– V  
2.0  
2.4  
2.8  
V
(V)  
IN  
OUT  
Figure 40. Junction Temperature vs. Power Dissipation,  
Board Temperature = 85°C  
Rev. 0 | Page 16 of 20  
 
 
ADP122/ADP123  
Figure 41. Example ADP122 PCB Layout  
Figure 42. Example ADP123 PCB Layout  
Rev. 0 | Page 17 of 20  
ADP122/ADP123  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 43. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Output Voltage (V)1  
Package Description  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Package Option  
Branding  
LE6  
LE9  
LEA  
LEC  
LED  
LEE  
LEF  
LEG  
ADP122AUJZ-2.5-R72  
ADP122AUJZ-2.7-R72  
ADP122AUJZ-2.8-R72  
ADP122AUJZ-2.85-R72  
ADP122AUJZ-2.9-R72  
ADP122AUJZ-3.0-R72  
ADP122AUJZ-3.3-R72  
ADP123AUJZ-R72  
2.5  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
0.8 to 5.0 (Adjustable) 5-Lead TSOT  
ADP122-3.3-EVALZ2  
ADP123-EVALZ2  
3.3  
Adjustable  
Evaluation Board  
Evaluation Board  
1 Up to 31 fixed-output voltage options from 1.75 V to 3.3 V are available. For additional voltage options, contact a local Analog Devices, Inc., sales or distribution  
representative.  
2 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
ADP122/ADP123  
NOTES  
Rev. 0 | Page 19 of 20  
ADP122/ADP123  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08399-0-10/09(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADP122AUJZ-3.3-R7

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP122UJZ-REDYKIT

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP123

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP123-EVALZ

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP1231

Strain Guage Sensor, Gage, 0Psi Min, 7.1Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP12313

Strain Guage Sensor, Gage, 0Psi Min, 7.1Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP1232

Strain Guage Sensor, Gage, 0Psi Min, 7.1Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP123ACPZ-R7

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP123AUJZ-R7

5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP124

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP124-3.3-EVALZ

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP1241

Strain Guage Sensor, Gage, 0Psi Min, 14.22Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC