ADP150_VA [ADI]

Ultralow Noise, 150 mA CMOS Linear Regulator; 超低噪声, 150毫安CMOS线性稳压器
ADP150_VA
型号: ADP150_VA
厂家: ADI    ADI
描述:

Ultralow Noise, 150 mA CMOS Linear Regulator
超低噪声, 150毫安CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:556K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise,  
150 mA CMOS Linear Regulator  
ADP150  
TYPICAL APPLICATION CIRCUITS  
FEATURES  
Ultra low noise: 9 µV rms, independent of VOUT  
No additional noise bypass capacitor required  
Stable with 1 µF ceramic input and output capacitors  
Maximum output current: 150 mA  
V
= 2.3V  
V
= 1.8V  
IN  
OUT  
1
2
3
VIN  
GND  
EN  
VOUT  
NC  
5
4
C
IN  
C
OUT  
1µF  
1µF  
ON  
Input voltage range: 2.2 V to 5.5 V  
OFF  
Low quiescent current  
NC = NO CONNECT  
I
GND = 10 µA with zero load  
Figure 1. 5-Lead TSOT with Fixed Output Voltage, 1.8 V  
Low shutdown current: <1 µA  
Low dropout voltage: 105 mV @ 150 mA load  
Initial output voltage accuracy: 1%  
Up to 14 fixed output voltage options: 1.8 V to 3.3 V  
PSRR performance of 70 dB at 10 kHz  
Current limit and thermal overload protection  
Logic-controlled enable  
1
2
V
= 1.8V  
OUT  
V
= 2.3V  
OUT  
IN  
VIN  
VOUT  
A
C
C
IN  
1µF  
1µF  
TOP VIEW  
(Not to Scale)  
ON  
EN  
GND  
B
OFF  
5-lead TSOT package  
4-ball, 0.8 mm × 0.8 mm, 0.4 mm pitch WLCSP  
Figure 2. 4-Ball WLCSP with Fixed Output Voltage, 1.8 V  
APPLICATIONS  
Mobile phones  
Digital camera and audio devices  
Portable and battery-powered equipment  
Post dc-to-dc regulation  
Portable medical devices  
RF, PLL, VCO, and clock power supplies  
GENERAL DESCRIPTION  
The ADP150 is an ultralow noise (9 µV), low dropout, linear  
regulator that operates from 2.2 V to 5.5 V and provides up to  
150 mA of output current. The low 105 mV dropout voltage at  
150 mA load improves efficiency and allows operation over a  
wide input voltage range.  
The ADP150 is specifically designed for stable operation with  
tiny 1 µF 30% ceramic input and output capacitors to meet  
the requirements of high performance, space-constrained  
applications.  
The ADP150 is available in 14 fixed output voltage options,  
ranging from 1.8 V to 3.3 V.  
Using an innovative circuit topology, the ADP150 achieves ultralow  
noise performance without the necessity of an additional noise  
bypass capacitor, making it ideal for noise sensitive analog and  
RF applications. The ADP150 also achieves ultralow noise  
performance without compromising PSRR or line and load  
transient performance. The ADP150 offers the best combination  
of ultralow noise and quiescent current consumption to maximize  
battery life in portable applications.  
Short-circuit and thermal overload protection circuits prevent  
damage in adverse conditions. The ADP150 is available in tiny  
5-lead TSOT and 4-ball, 0.4 mm pitch WLCSP packages for the  
smallest footprint solution to meet a variety of portable power  
applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2009-2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP150  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information .............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 13  
Thermal Considerations............................................................ 14  
PCB Layout Considerations...................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Specifications: Input and Output Capacitor.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
4/10—Rev. 0 to Rev. A  
Changes to Figure 21........................................................................ 9  
10/09—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADP150  
SPECIFICATIONS  
VIN = (VOUT + 0.4 V) or 2.2 V, whichever is greater; EN = VIN, IOUT = 10 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
10  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 µA  
IOUT = 0 µA, TJ = −40°C to +125°C  
IOUT = 100 µA  
IOUT = 100 µA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
2.2  
5.5  
IGND  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
22  
20  
40  
60  
100  
320  
1.0  
220  
0.2  
IOUT = 150 mA, TJ = −40°C to +125°C  
EN = GND  
EN = GND, TJ = −40°C to +125°C  
SHUTDOWN CURRENT  
IGND-SD  
OUTPUT VOLTAGE ACCURACY  
5-Lead TSOT  
VOUT  
IOUT = 10 mA  
100 µA < IOUT < 150 mA, VIN = (VOUT + 0.4 V) to 5.5 V,  
TJ = −40°C to +125°C  
−1  
−2.5  
+1  
+1.5  
%
%
4-Ball WLCSP  
VOUT  
IOUT = 10 mA  
−1  
−2.0  
+1  
+1.5  
%
%
100 µA < IOUT < 150 mA, VIN = (VOUT + 0.4 V) to 5.5 V,  
TJ = −40°C to +125°C  
REGULATION  
Line Regulation  
Load Regulation1  
5-Lead TSOT  
∆VOUT/∆VIN  
VIN = (VOUT + 0.4 V) to 5.5 V, TJ = −40°C to +125°C  
−0.05  
+0.05  
%/V  
∆VOUT/∆IOUT IOUT = 100 µA to 150 mA  
IOUT = 100 µA to 150 mA, TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 100 µA to 150 mA  
IOUT = 100 µA to 150 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
0.003  
0.002  
10  
%/mA  
0.0075 %/mA  
%/mA  
0.006  
4-Ball WLCSP  
%/mA  
mV  
mV  
mV  
mV  
µs  
DROPOUT VOLTAGE2  
VDROPOUT  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V  
35  
105  
160  
400  
1.96  
START-UP TIME3  
TSTART-UP  
ILIMIT  
150  
260  
CURRENT LIMIT THRESHOLD4  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
190  
mA  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
V
V
mV  
1.28  
115  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.2 V ≤ VIN ≤ 5.5 V  
2.2 V ≤ VIN ≤ 5.5 V  
EN = IN or GND  
EN = IN or GND, TJ = −40°C to +125°C  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.8 V  
1.2  
V
V
µA  
µA  
0.4  
1
0.001  
OUTPUT NOISE  
OUTNOISE  
9
9
9
µV rms  
µV rms  
µV rms  
Rev. A | Page 3 of 20  
 
ADP150  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY REJECTION RATIO  
(VIN = VOUT + 0.5 V)  
PSRR  
10 kHz, VIN = 3.8 V, VOUT = 3.3 V, IOUT = 10 mA  
70  
dB  
10 kHz, VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA  
100 kHz, VIN = 3.8 V, VOUT = 3.3 V, IOUT = 10 mA  
100 kHz, VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA  
10 kHz, VIN = 4.3 V, VOUT = 3.3 V, IOUT = 10 mA  
70  
55  
55  
70  
dB  
dB  
dB  
dB  
POWER SUPPLY REJECTION RATIO  
(VIN = VOUT + 1 V)  
100 kHz, VIN = 4.3 V, VOUT = 3.3 V, IOUT = 10 mA  
55  
dB  
1 Based on an end-point calculation using 1 mA and 150 mA loads. See Figure 6 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.2 V.  
3 Start-up time is defined as the time between the rising edges of EN to VOUT being at 90% of its nominal value.  
4 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V or 2.7 V.  
RECOMMENDED SPECIFICATIONS: INPUT AND OUTPUT CAPACITOR  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT AND OUTPUT CAPACITOR  
Minimum Input and Output Capacitance1  
Capacitor ESR  
CMIN  
RESR  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.7  
0.001  
µF  
0.2  
1 The minimum input and output capacitance should be greater than 0.7 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R-type and X5R-type capacitors are  
recommended, and Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. A | Page 4 of 20  
 
 
 
ADP150  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The junction-to-ambient thermal resistance (θ ) of the package  
JA  
is based on modeling and a calculation using a 4-layer board.  
The junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to +6.5 V  
−65°C to +150°C  
−40°C to +125°C  
−40°C to +85°C  
JEDEC J-STD-020  
board design is required. The value of θcan vary, depending on  
JA  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
PCB material, layout, and environmental conditions. The specified  
values of θ are based on a 4-layer, 4 inch × 3 inch circuit board.  
JA  
Refer to JESD 51-7 and JESD 51-9 for detailed information  
on the board construction. For additional information, see  
the AN-617 Application Note, MicroCSP™ Wafer Level Chip  
Scale Package.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
a calculation using a 4-layer board. The JESD51-12, Guidelines  
for Reporting and Using Package Thermal Information, states that  
thermal characterization parameters are not the same as thermal  
resistances. ΨJB measures the component power flowing through  
multiple thermal paths rather than a single path as in thermal  
resistance, θJB. Therefore, ΨJB thermal paths include convection  
from the top of the package as well as radiation from the package,  
factors that make ΨJB more useful in real-world applications.  
Maximum junction temperature (TJ) is calculated from the  
board temperature (TB) and power dissipation (PD) by  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP150 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
have to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long  
as the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device (PD),  
and the junction-to-ambient thermal resistance of the package  
JA).  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
5-Lead TSOT  
4-Ball, 0.4 mm Pitch WLCSP  
170  
260  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) by  
TJ = TA + (PD × θJA)  
ESD CAUTION  
Rev. A | Page 5 of 20  
 
 
 
 
 
ADP150  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
1
2
3
5
VIN  
GND  
EN  
VOUT  
A
B
VIN  
VOUT  
ADP150  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
4
NC  
EN  
GND  
NC = NO CONNECT  
Figure 4. 4-Ball WLCSP Pin Configuration  
Figure 3. 5-Lead TSOT Pin Configuration  
Table 6. 4-Ball WLCSP Pin Function Descriptions  
Table 5. 5-Lead TSOT Pin Function Descriptions  
Pin No. Mnemonic Description  
Pin No. Mnemonic Description  
A1  
A2  
B1  
VIN  
Regulator Input Supply. Bypass VIN to  
GND with a 1 µF or greater capacitor.  
Regulated Output Voltage. Bypass VOUT  
to GND with a 1 µF or greater capacitor.  
Enable Input. Drive EN high to turn on  
the regulator; drive EN low to turn off  
the regulator. For automatic startup,  
connect EN to VIN.  
1
VIN  
Regulator Input Supply. Bypass VIN to  
GND with a 1 µF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on  
the regulator; drive EN low to turn off  
the regulator. For automatic startup,  
connect EN to VIN.  
No Connect. Not connected internally.  
Regulated Output Voltage. Bypass VOUT  
to GND with a 1 µF or greater capacitor.  
VOUT  
EN  
2
3
GND  
EN  
4
5
NC  
VOUT  
B2  
GND  
Ground.  
Rev. A | Page 6 of 20  
 
ADP150  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.7 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
300  
250  
200  
150  
100  
50  
I
= 150mA  
OUT  
I
= 100mA  
OUT  
I
= 50mA  
OUT  
I
I
I
I
I
I
= 0.1mA  
= 1mA  
= 10mA  
= 50mA  
= 100mA  
= 150mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
= 10mA  
OUT  
I
= 1mA  
OUT  
OUT  
I
= 0.1mA  
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage (VOUT) vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
3.298  
250  
200  
150  
100  
50  
3.297  
3.296  
3.295  
3.294  
3.293  
3.292  
3.291  
3.290  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
OUT  
OUT  
Figure 6. Output Voltage (VOUT) vs. Load Current (IOUT  
)
Figure 9. Ground Current vs. Load Current (IOUT)  
3.300  
3.298  
3.296  
3.294  
3.292  
3.290  
3.288  
250  
200  
150  
100  
50  
I
I
= 150mA  
= 100mA  
OUT  
OUT  
I
= 0.1mA  
OUT  
I
= 1mA  
OUT  
I
= 10mA  
OUT  
I
I
= 50mA  
OUT  
I
= 50mA  
OUT  
= 10mA  
= 1mA  
OUT  
I
I
I
= 100mA  
= 150mA  
OUT  
OUT  
I
= 0.1mA  
OUT  
OUT  
0
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
IN  
(V)  
IN  
Figure 7. Output Voltage (VOUT) vs. Input Voltage (VIN  
)
Figure 10. Ground Current vs. Input Voltage (VIN)  
Rev. A | Page 7 of 20  
 
 
ADP150  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
700  
600  
500  
400  
300  
200  
100  
0
V
V
V
V
V
V
V
V
= 3.6V  
= 3.8V  
= 4.2V  
= 4.4V  
= 5.0V  
= 5.2V  
= 5.4V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
I
I
I
I
= 10mA  
= 50mA  
= 100mA  
= 150mA  
OUT  
OUT  
OUT  
OUT  
0
–50  
–25  
0
25  
50  
75  
100  
125  
3.05  
3.10  
3.15  
3.20  
3.25  
(A)  
3.30  
3.35  
3.40  
3.45  
TEMPERATURE (°C)  
V
IN  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Ground Current vs. Input Voltage (VIN) in Dropout  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 150mA  
V
V
C
= V  
+ 0.5V  
= 50mV  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
FREQUENCY (Hz)  
OUT  
Figure 15. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
Figure 12. Dropout Voltage vs. Load Current (ILOAD  
)
VOUT = 1.8 V, VIN = 2.3 V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 150mA  
V
V
C
= V  
+ 0.5V  
= 50mV  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
I
I
= 10mA  
= 50mA  
= 100mA  
= 150mA  
IN  
RIPPLE  
= C  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1µF  
IN  
OUT  
10  
100  
1k  
10k  
100k  
1M  
10M  
3.05  
3.10  
3.15  
3.20  
3.25  
(V)  
3.30  
3.35  
3.40  
3.45  
FREQUENCY (Hz)  
V
IN  
Figure 16. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
OUT = 2.8 V, VIN=3.3 V  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout  
V
Rev. A | Page 8 of 20  
ADP150  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
15  
13  
11  
9
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 150mA  
V
V
V
= 3.3V  
= 2.8V  
= 1.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
C
= V  
+ 0.5V  
= 50mV  
OUT  
OUT  
OUT  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
7
5
3
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1k  
FREQUENCY (Hz)  
I
(mA)  
OUT  
Figure 17. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
OUT = 3.3 V, VIN = 3.8 V  
Figure 20. Output RMS Noise vs. Load Current (IOUT) and  
Output Voltage (VOUT), VIN = 5 V, COUT = 1 µF  
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
V
V
C
= V  
+ 0.5V  
= 50mV  
V
V
V
V
V
V
= 1.8V, I  
= 2.8V, I  
= 3.3V, I  
= 1.8V, I  
= 2.8V, I  
= 3.3V, I  
= 100µA  
= 100µA  
= 100µA  
= 150mA  
= 150mA  
= 150mA  
IN  
RIPPLE  
= C  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 1.8V  
= 2.8V  
= 3.3V  
OUT  
OUT  
OUT  
= 1µF  
IN  
OUT  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Various Output Voltages and Load Currents  
Figure 21. Output Noise Spectrum, VIN = 5 V, ILOAD = 10 mA, COUT = 1 μF  
–10  
T
V
C
= 50mV  
= 1µF  
OUT  
V
V
V
V
V
V
= 3.8V, I  
= 4.3V, I  
= 5.3V, I  
= 3.8V, I  
= 4.3V, I  
= 5.3V, I  
= 1mA  
= 1mA  
= 1mA  
= 150mA  
= 150mA  
= 150mA  
RIPPLE  
= C  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
OUT  
IN  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1mA TO 150mA LOAD STEP  
1
V
OUT  
2
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
CH1 100mA CH2 50mV  
M40µs  
T
A CH1  
112mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
117.560µs  
FREQUENCY (Hz)  
Figure 22. Load Transient Response, COUT = 1 µF  
Figure 19. Power Supply Rejection Ratio (PSRR) vs. Frequency with  
Various Headroom Voltages (VIN − VOUT), VOUT = 3.3 V  
Rev. A | Page 9 of 20  
ADP150  
T
T
I
OUT  
1mA TO 150mA LOAD STEP  
V
IN  
3.7V TO 4.7V VOLTAGE STEP  
OFFSET = 2.7V  
1
2
1
2
V
OUT  
V
OUT  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
CH1 100mA CH2 50mV  
M40µs  
A CH1  
108mA  
CH1 1.00V  
CH2 10mV  
M10µs  
A CH1  
4.60V  
T
118.000µs  
T
29.60µs  
Figure 25. Line Transient Response, CIN, COUT =1 μF, ILOAD = 150 mA  
Figure 23. Load Transient Response, COUT = 4.7 μF  
T
V
IN  
3.7V TO 4.7V VOLTAGE STEP  
OFFSET = 2.7V  
1
2
V
OUT  
CH1 1.00V  
CH2 10mV  
M10µs  
A CH1  
4.60V  
T
29.60µs  
Figure 24. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 1mA  
Rev. A | Page 10 of 20  
ADP150  
THEORY OF OPERATION  
The ADP150 is an ultralow noise, low quiescent current, low  
dropout linear regulator that operates from 2.2 V to 5.5 V and  
can provide up to 150 mA of output current. Drawing a low 220 µA  
of quiescent current (typical) at full load makes the ADP150 ideal  
for battery-operated portable equipment. Shutdown current  
consumption is typically 200 nA.  
Internally, the ADP150 consists of a reference, an error amplifier,  
a feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device that is controlled  
by the error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate of  
the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
Using new innovative design techniques, the ADP150 provides  
superior noise performance for noise sensitive analog and  
RF applications without the need for a noise bypass capacitor.  
The ADP150 is also optimized for use with small 1 µF ceramic  
capacitors.  
The ADP150 is available in 14 output voltage options, ranging  
from 1.8 V to 3.3 V. The ADP150 uses the EN pin to enable and  
disable the VOUT pin under normal operating conditions. When  
EN is high, VOUT turns on, and when EN is low, VOUT turns  
off. For automatic startup, EN can be tied to VIN.  
VIN  
VOUT  
R1  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
PROTECT  
R2  
VOLTAGE  
REFERENCE  
EN  
SHUTDOWN  
Figure 26. Internal Block Diagram  
Rev. A | Page 11 of 20  
 
ADP150  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the ADP150,  
as long as they meet the minimum capacitance and maximum  
ESR requirements. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over temperature  
and applied voltage. Capacitors must have a dielectric adequate to  
ensure the minimum capacitance over the necessary temperature  
range and dc bias conditions. X5R or X7R dielectrics with a  
voltage rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to their poor temperature  
and dc bias characteristics.  
Output Capacitor  
The ADP150 is designed for operation with small, space-saving  
ceramic capacitors but functions with most commonly used  
capacitors as long as care is taken with regard to the effective  
series resistance (ESR) value. The ESR of the output capacitor  
affects the stability of the LDO control loop. A minimum of 1 µF  
capacitance with an ESR of 1 Ω or less is recommended to  
ensure the stability of the ADP150. The transient response to  
changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the transient  
response of the ADP150 to large changes in the load current.  
Figure 27 and Figure 28 show the transient responses for output  
capacitance values of 1 µF and 4.7 µF, respectively.  
Figure 29 depicts the capacitance vs. the voltage bias characteristic  
of a 0402, 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the X5R  
dielectric is about 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
T
I
OUT  
1mA TO 150mA LOAD STEP  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
2
V
OUT  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
CH1 100mA CH2 50mV  
M1.0µs  
T
A CH1  
100mA  
716.000µs  
Figure 27. Output Transient Response, COUT = 1 µF  
T
0
2
4
6
8
10  
BIAS VOLTAGE (V)  
I
OUT  
1mA TO 150mA LOAD STEP  
Figure 29. Capacitance vs. Voltage Bias Characteristic  
1
2
Use Equation 1 to determine the worst-case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
V
OUT  
where:  
C
BIAS is the effective capacitance at the operating voltage.  
V
V
= 3.7V  
= 3.3V  
IN  
OUT  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
CH1 100mA CH2 50mV  
M1.0µs  
A CH1  
108mA  
T
240.000ns  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
the CBIAS is 0.94 µF at 1.8 V, as shown in Figure 29.  
Figure 28. Output Transient Response, COUT = 4.7 µF  
Input Bypass Capacitor  
Connecting a 1 µF capacitor from VIN to GND reduces the  
circuit sensitivity to the PCB layout, especially when long input  
traces or high source impedance is encountered. If greater than  
1 µF of output capacitance is required, increase the input capacitor  
to match the output capacitor.  
Substituting these values in Equation 1 yields  
CEFF = 0.94 µF × (1 − 0.15) × (1 − 0.1) = 0.719 µF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temperature  
and tolerance at the chosen output voltage.  
Rev. A | Page 12 of 20  
 
 
 
 
 
ADP150  
To guarantee the performance of the ADP150, it is imperative  
that the effects of the dc bias, temperature, and tolerances on  
the behavior of the capacitors be evaluated for each.  
The ADP150 uses an internal soft start to limit the inrush current  
when the output is enabled. The start-up time for the 3.3 V  
option is approximately 150 µs from the time the EN active  
threshold is crossed to when the output reaches 90% of its final  
value. As shown in Figure 32, the start-up time is dependent on the  
output voltage setting.  
UNDERVOLTAGE LOCKOUT  
The ADP150 has an internal undervoltage lockout circuit that  
disables all inputs and the output when the input voltage is less  
than approximately 2.0 V. This ensures that the ADP150 inputs  
and output behave in a predictable manner during power-up.  
T
EN  
ENABLE FEATURE  
V
= 3.3V  
OUT  
The ADP150 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 30,  
when a rising voltage on EN crosses the active threshold, VOUT  
turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
V
V
= 2.8V  
= 1.8V  
OUT  
OUT  
1
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CH1 1V  
CH3 1V  
CH2 1V  
CH4 1V  
M40.0µs  
240.000ns  
A CH1  
3.24V  
T
Figure 32. Typical Start-Up Time  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP150 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP150 is designed to limit current when the  
output load reaches 260 mA (typical). When the output load  
exceeds 260 mA, the output voltage is reduced to maintain a  
constant current limit.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
V
EN  
Figure 30. Typical EN Pin Operation  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C (typical). Under extreme  
conditions (that is, high ambient temperature and power dissipation)  
when the junction temperature starts to rise above 150°C, the  
output is turned off, reducing the output current to zero. When  
the junction temperature drops below 135°C, the output is turned  
on again and the output current is restored to its nominal value.  
As shown in Figure 30, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
The EN pin active/inactive thresholds are derived from the VIN  
voltage; therefore, these thresholds vary with changing input  
voltage. Figure 31 shows the typical EN active/inactive thresholds  
when the input voltage varies from 2.2 V to 5.5 V.  
1.1  
Consider the case where a hard short from VOUT to GND occurs.  
At first, the ADP150 limits current so that only 260 mA is  
conducted into the short. If self-heating of the junction is great  
enough to cause its temperature to rise above 150°C, thermal  
shutdown activates, turning off the output and reducing the  
output current to zero. As the junction temperature cools and  
drops below 135°C, the output turns on and conducts 260 mA  
into the short, again causing the junction temperature to rise  
above 150°C. This thermal oscillation between 135°C and 150°C  
causes a current oscillation between 260 mA and 0 mA that  
continues as long as the short remains at the output.  
1.0  
RISING  
0.9  
0.8  
FALLING  
0.7  
0.6  
0.5  
0.4  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so that the junction temperatures do not exceed 125°C.  
2.3  
2.8  
3.3  
3.8  
4.3  
(V)  
4.8  
5.3  
5.5  
V
IN  
Figure 31. Typical EN Pin Thresholds vs. Input Voltage (VIN  
)
Rev. A | Page 13 of 20  
 
 
 
 
 
 
ADP150  
Power dissipation due to ground current is quite small and can be  
ignored. Therefore, the junction temperature equation simplifies to  
THERMAL CONSIDERATIONS  
In most applications, the ADP150 does not dissipate much heat  
due to its high efficiency. However, in applications with high  
ambient temperature and high supply voltage to output voltage  
differential, the heat dissipated in the package is large enough  
that it can cause the junction temperature of the die to exceed  
the maximum junction temperature of 125°C.  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(3)  
As shown in the previous equation, for a given ambient temperature,  
input-to-output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure that the junction temperature does not rise above 125°C.  
Figure 33 to Figure 46 show the junction temperature calculations  
for the different ambient temperatures, load currents, VIN-to-VOUT  
differentials, and areas of PCB copper.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature decreases below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application is  
very important to guarantee reliable performance over all conditions.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
140  
MAX JUNCTION TEMPERATURE  
120  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
100  
80  
To guarantee reliable operation, the junction temperature of  
the ADP150 must not exceed 125°C. To ensure that the junction  
temperature stays below 125°C, be aware of the parameters that  
contribute to the junction temperature changes. These parameters  
include ambient temperature, power dissipation in the power  
device, and thermal resistances between the junction and  
60  
40  
20  
ambient air (θ ). The θJA number is dependent on the package  
assembly compounds that are used and the amount of copper  
used to solder the package GND pins to the PCB. Table 7 shows  
JA  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
IN  
OUT  
Figure 33. TSOT, 500 mm2 of PCB Copper, TA = 25°C  
typical θ values of the 5-lead TSOT and 4-ball WLCSP packages  
JA  
for various PCB copper sizes. Table 8 shows the typical ΨJB  
value of the 5-lead TSOT and 4-b a l l WLC SP.  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
Table 7. Typical θJA Values  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
θJA (°C/W)  
Copper Size (mm2)  
01  
TSOT  
170  
152  
146  
134  
131  
WLCSP  
260  
159  
157  
153  
50  
100  
300  
500  
60  
40  
20  
151  
1 Device soldered to minimum size pin traces.  
Table 8. Typical ΨJB Values  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
ΨJB (°C/W)  
V
IN  
OUT  
TSOT  
WLCSP  
Figure 34. TSOT, 100 mm2 of PCB Copper, TA = 25°C  
42.8  
58.4  
Use Equation 2 to calculate the junction temperature.  
TJ = TA + (PD × θJA)  
(2)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
)
I
LOAD is the load current.  
IGND is the ground current.  
VIN and VOUT are input and output voltages, respectively.  
Rev. A | Page 14 of 20  
 
 
 
 
 
ADP150  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
60  
40  
20  
60  
40  
20  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
4.5  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 35. TSOT, 0 mm2 of PCB Copper, TA = 25°C  
Figure 38. TSOT, 0 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
60  
40  
20  
60  
40  
20  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 36. TSOT, 500 mm2 of PCB Copper, TA = 50°C  
Figure 39. TSOT, 100 mm2 of PCB Copper, Board Temperature = 85°C  
140  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
120  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
100  
80  
60  
40  
20  
60  
40  
20  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
V
V
IN  
OUT  
IN  
OUT  
Figure 37. TSOT, 100 mm2 of PCB Copper, TA = 50°C  
Figure 40. WLCSP, 500 mm2 of PCB Copper, TA = 25°C  
Rev. A | Page 15 of 20  
ADP150  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
60  
40  
20  
60  
40  
20  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
4.5  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
4.5  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 41. WLCSP, 100 mm2 of PCB Copper, TA = 25°C  
Figure 44. WLCSP, 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION  
TEMPERATURE  
MAX JUNCTION  
TEMPERATURE  
60  
40  
20  
60  
40  
20  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
I
I
I
= 1mA  
= 10mA  
= 25mA  
I
I
= 50mA  
= 75mA  
I
I
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
V
– V  
OUT  
V
IN  
IN  
OUT  
Figure 42. WLCSP, 0 mm2 of PCB Copper, TA = 25°C  
Figure 45. WLCSP, 0 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
60  
40  
20  
60  
40  
20  
= 10mA  
= 25mA  
= 50mA  
= 75mA  
= 100mA  
= 150mA  
I
I
I
I
= 1mA  
I
I
I
= 75mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 25mA  
= 50mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
V
V
IN  
IN  
OUT  
OUT  
Figure 43. WLCSP, 500 mm2 of PCB Copper, TA = 50°C  
Figure 46. WLCSP, 100 mm2 of PCB Copper, Board Temperature = 85°C  
Rev. A | Page 16 of 20  
 
ADP150  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins of the  
ADP150. However, as listed in Table 7, a point of diminishing  
returns is reached eventually, beyond which an increase in the  
copper size does not yield significant heat dissipation benefits.  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402 size or 0603 size capacitors  
and resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
Figure 48. Example WLCSP PCB Layout  
Figure 47. Example TSOT PCB Layout  
Rev. A | Page 17 of 20  
 
ADP150  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 49. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions show in millimeters  
0.660  
0.600  
0.800  
0.760 SQ  
0.430  
0.540  
0.400  
0.720  
0.370  
SEATING  
PLANE  
2
1
A
B
0.280  
0.260  
0.240  
BALL A1  
IDENTIFIER  
0.40  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.230  
0.200  
0.170  
0.050 NOM  
COPLANARITY  
Figure 50.4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-3)  
Dimensions show in millimeters  
Rev. A | Page 18 of 20  
 
ADP150  
ORDERING GUIDE  
Temperature  
Range (TJ)  
Output  
Package  
Option  
Model1  
Voltage (V)2 Package Description  
Branding  
36  
3V  
63  
3X  
46  
3Y  
47  
48  
ADP150ACBZ-1.8-R7  
ADP150ACBZ-2.5-R7  
ADP150ACBZ-2.6-R7  
ADP150ACBZ-2.75R7  
ADP150ACBZ-2.8-R7  
ADP150ACBZ-2.85R7  
ADP150ACBZ-3.0-R7  
ADP150ACBZ-3.3-R7  
ADP150AUJZ-1.8-R7  
ADP150AUJZ-2.5-R7  
ADP150AUJZ-2.8-R7  
ADP150AUJZ-3.0-R7  
ADP150AUJZ-3.3-R7  
ADP150CB-3.3-EVALZ  
ADP150UJ-3.3-EVALZ  
–40°C to +125°C 1.8  
–40°C to +125°C 2.5  
–40°C to +125°C 2.6  
–40°C to +125°C 2.75  
–40°C to +125°C 2.8  
–40°C to +125°C 2.85  
–40°C to +125°C 3.0  
–40°C to +125°C 3.3  
–40°C to +125°C 1.8  
–40°C to +125°C 2.5  
–40°C to +125°C 2.8  
–40°C to +125°C 3.0  
–40°C to +125°C 3.3  
3.3  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
5-Lead Thin Small Outline Transistor Package [TSOT]  
5-Lead Thin Small Outline Transistor Package [TSOT]  
5-Lead Thin Small Outline Transistor Package [TSOT]  
5-Lead Thin Small Outline Transistor Package [TSOT]  
5-Lead Thin Small Outline Transistor Package [TSOT]  
Evaluation Board with WLCSP package  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
LDS  
LDZ  
LE3  
LE2  
LEJ  
3.3  
Evaluation Board with TSOT package  
1 Z = RoHS Compliant Part.  
2 Up to 14 fixed output voltage options from 1.8 V to 3.3 V are available. For additional voltage options, contact your local Analog Devices, Inc, sales or distribution  
representative.  
Rev. A | Page 19 of 20  
 
 
ADP150  
NOTES  
©2009-2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08343-0-4/10(A)  
Rev. A | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY