ADP161AUJZ-R7 [ADI]

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulators; 超低静态电流150毫安, CMOS线性稳压器
ADP161AUJZ-R7
型号: ADP161AUJZ-R7
厂家: ADI    ADI
描述:

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulators
超低静态电流150毫安, CMOS线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总24页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Quiescent Current,  
150 mA, CMOS Linear Regulators  
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
ADP160/ADP162  
Ultralow quiescent current  
V
= 2.3V  
1µF  
V
= 1.8V  
IN  
OUT  
I
I
Q = 560 nA with 0 μA load  
Q = 860 nA with 1 μA load  
5
1
2
3
VIN  
GND  
EN  
VOUT  
1µF  
Stable with 1 μF ceramic input and output capacitors  
Maximum output current: 150 mA  
Input voltage range: 2.2 V to 5.5 V  
Low shutdown current: <50 nA typical  
Low dropout voltage: 195 mV @ 150 mA load  
Initial accuracy: 1ꢀ  
Accuracy over line, load, and temperature: 3.5ꢀ  
15 fixed output voltage options: 1.2 V to 4.2 V  
Adjustable output available  
ON  
4
NC  
OFF  
NC = NO CONNECT  
Figure 1. 5-Lead TSOT ADP160/ADP162 with Fixed Output Voltage, 1.8 V  
ADP161/ADP163  
V
= 4.2V  
1µF  
V
= 3.2V  
1µF  
IN  
OUT  
5
1
2
3
VIN  
GND  
EN  
VOUT  
R1  
R2  
ON  
4
ADJ  
PSRR performance of 72 dB @ 100 Hz  
Current limit and thermal overload protection  
Logic-control enable  
OFF  
Figure 2. 5-Lead TSOT ADP161/ADP163 with Adjustable Output Voltage, 3.2 V  
Integrated output discharge resistor  
5-lead TSOT package  
ADP160/ADP162  
1
2
4-ball, 0.5 mm pitch WLCSP  
V
= 2.8V  
V
= 3.3V  
1µF  
OUT  
IN  
VIN  
VOUT  
A
B
1µF  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
ON  
Mobile phones  
EN  
GND  
OFF  
Digital cameras and audio devices  
Portable and battery-powered equipment  
Post dc-to-dc regulation  
Figure 3. 4-Ball WLCSP ADP160/ADP162 with Fixed Output Voltage, 2.8 V  
Portable medical devices  
GENERAL DESCRIPTION  
The ADP160/ADP161/ADP162/ADP163 are ultralow quiescent  
current, low dropout, linear regulators that operate from 2.2 V  
to 5.5 V and provide up to 150 mA of output current. The low  
195 mV dropout voltage at 150 mA load improves efficiency and  
allows operation over a wide input voltage range.  
the LDO is disabled. The ADP162 is identical to the ADP160  
but does not include the output discharge function.  
The ADP161and ADP163 are available as adjustable output voltage  
regulators. They are only available in a 5-lead TSOT package.  
The ADP163 is identical to the ADP161 but does not include  
the output discharge function.  
The ADP16x are specifically designed for stable operation with a  
tiny 1 μF 30ꢀ ceramic input and output capacitors to meet  
the requirements of high performance, space-constrained  
applications.  
Short-circuit and thermal overload protection circuits prevent  
damage in adverse conditions. The ADP160 and ADP162 are  
available in a tiny 5-lead TSOT and a 4-ball, 0.5 mm pitch  
WLCSP package for the smallest footprint solution to meet a  
variety of portable power applications.  
The ADP160 is available in 15 fixed output voltage options,  
ranging from 1.2 V to 4.2 V. The ADP160/ADP161 also include  
a switched resistor to discharge the output automatically when  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2012 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 12  
Applications Information .............................................................. 14  
Capacitor Selection .................................................................... 14  
Enable Feature ............................................................................ 15  
Current Limit and Thermal Overload Protection ................. 15  
Thermal Considerations............................................................ 16  
PCB Layout Considerations...................................................... 18  
Light Sensitivity of WLCSPs ..................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
12/12—Rev. F to Rev. G  
Changes to Table 3 ............................................................................ 5  
Changes to Pin 4 Description ......................................................... 6  
Changes to Figure 22...................................................................... 10  
Changes to Figure 32 and Figure 33 Captions............................ 12  
Added Light Sensitivity of WLCSPs Section............................... 18  
9/12—Rev. E to Rev. F  
Changes to Ordering Guide ...........................................................21  
4/12—Rev. D to Rev. E  
Updated Outline Dimensions........................................................20  
Changes to Ordering Guide ...........................................................21  
1/12—Rev. C to Rev. D  
Changes to Ordering Guide .......................................................... 21  
1/11—Rev. B to Rev. C  
Changes to Figure 15 and Figure 16............................................... 9  
11/10—Rev. A to Rev. B  
Changes to Theory of Operation.................................................. 13  
Changes to Ordering Guide .......................................................... 20  
8/10—Rev. 0 to Rev. A  
Added ADP162/ADP163.............................................. Throughout  
Changes to Figure 17 and Figure 18............................................... 9  
Changes to Figure 19, Figure 20, and Figure 23 ......................... 10  
Added Figure 21 and Figure 22 (Renumbered Sequentially) ... 10  
Added Figure 32 and Figure 33..................................................... 12  
Changes to Ordering Guide .......................................................... 20  
6/10—Revision 0: Initial Version  
Rev. G | Page 2 of 24  
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
SPECIFICATIONS  
VIN = (VOUT + 0.5 V) or 2.2 V, whichever is greater; EN = VIN, IOUT = 10 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min Typ  
2.2  
Max Unit  
5.5  
1250 nA  
2.3 µA  
1800 nA  
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 µA  
IOUT = 0 µA, TJ = −40°C to +125°C  
IOUT = 1 µA  
IOUT = 1 µA, TJ = −40°C to +125°C  
IOUT = 100 µA  
IOUT = 100 µA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
EN = GND  
V
IGND  
560  
860  
2.6  
11  
2.8  
4.5  
5.8  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
nA  
µA  
19  
65  
1
42  
SHUTDOWN CURRENT  
IGND-SD  
50  
EN = GND, TJ = −40°C to +125°C  
OUTPUT VOLTAGE ACCURACY  
VOUT  
IOUT = 10 mA  
−1  
+1  
+2  
+3.5  
%
%
%
0 µA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V −2  
0 µA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V, −3.5  
TJ = −40°C to +125°C  
ADJUSTABLE-OUTPUT VOLTAGE  
ACCURACY (ADP161/ADP163)1  
VADJ  
IOUT = 10 mA  
0.99 1.0  
1.01  
V
0 µA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V 0.98  
0 µA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V, 0.97  
TJ = −40°C to +125°C  
1.02  
1.03  
V
V
REGULATION  
Line Regulation  
Load Regulation2  
∆VOUT/∆VIN VIN = (VOUT + 0.5 V) to 5.5 V, TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 100 μA to 150 mA  
IOUT = 100 μA to 150 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V  
−0.1  
+0.1 %/V  
%/mA  
0.004  
0.01  
%/mA  
DROPOUT VOLTAGE3  
4-Ball WLCSP  
VDROPOUT  
IOUT = 10 mA  
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
nA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
13  
105  
8
195  
15  
5-Lead TSOT  
120  
IOUT = 150 mA, TJ = −40°C to +125°C  
2.2 V ≤ VIN ≤ 5.5 V, ADJ connected to VOUT  
VOUT = 2.8 V, RLOAD = ∞  
225  
600  
ADJ INPUT BIAS CURRENT (ADP161/ADP163) ADJI-BIAS  
10  
ACTIVE PULL-DOWN RESISTANCE  
(ADP160/ADP161)  
START-UP TIME4  
CURRENT LIMIT THRESHOLD5  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
EN INPUT  
TSHUTDOWN  
300  
Ω
TSTART-UP  
ILIMIT  
VOUT = 3.3 V  
1100  
µs  
220 320  
500  
mA  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
En Input Logic High  
VIH  
2.2 V ≤ VIN ≤ 5.5 V  
1.2  
V
EN Input Logic Low  
EN Input Leakage Current  
VIL  
VI-LEAKAGE  
2.2 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
0.4  
1
V
µA  
µA  
0.1  
Rev. G | Page 3 of 24  
 
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
Parameter  
Symbol  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
OUTNOISE  
Conditions  
Min Typ  
Max Unit  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
2.19  
V
1.60  
100  
105  
V
mV  
OUTPUT NOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.2 V  
µV  
rms  
µV  
rms  
100  
80  
µV  
rms  
POWER SUPPLY REJECTION RATIO  
PSRR  
100 Hz, VIN = 5 V, VOUT = 3.3 V  
100 Hz, VIN = 5 V, VOUT = 2.5 V  
100 Hz, VIN = 5 V, VOUT = 1.2 V  
1 kHz, VIN = 5 V, VOUT = 3.3 V  
1 kHz, VIN = 5 V, VOUT = 2.5 V  
1 kHz, VIN = 5 V, VOUT = 1.2 V  
60  
65  
72  
50  
50  
62  
dB  
dB  
dB  
dB  
dB  
dB  
1 Accuracy when VOUT is connected directly to ADJ. When the VOUT voltage is set by external feedback resistors, the absolute accuracy in adjust mode depends on the  
tolerances of resistors used.  
2 Based on an end-point calculation using 0 μA and 150 mA loads.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.2 V.  
4 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
CMIN  
Conditions  
Min  
0.7  
Typ  
Max  
Unit  
µF  
MINIMUM INPUT AND OUTPUT CAPACITANCE1  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
CAPACITOR ESR  
RESR  
0.001  
0.2  
Ω
1 The minimum input and output capacitance should be greater than 0.7 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
however, Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. G | Page 4 of 24  
 
 
 
 
 
 
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on the  
application and board layout. In applications where high maximum  
power dissipation exists, close attention to thermal board design  
is required. The value of θJA may vary, depending on PCB material,  
layout, and environmental conditions. The specified values of  
θJA are based on a 4-layer, 4 inches × 3 inches, circuit board. Refer  
to JESD 51-7 and JESD 51-9 for detailed information on the  
board construction. For additional information, see the AN-617  
Application Note, MicroCSP™ Wafer Level Chip Scale Package.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to VIN  
ADJ to GND  
−0.3 V to VIN  
NC to GND  
−0.3 V to VIN  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
−65°C to +150°C  
−40°C to +125°C  
−40°C to +125°C  
JEDEC J-STD-020  
ΨJB is the junction to board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package, factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings only apply individually; they do not  
apply in combination. The ADP16x can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temperature  
may have to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-ambient  
thermal resistance of the package (θJA).  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
5-Lead TSOT  
4-Ball, 0.4 mm Pitch WLCSP  
170  
260  
Maximum junction temperature (TJ) is calculated from the ambient  
temperature (TA) and power dissipation (PD) using the formula  
TJ = TA + (PD × θJA)  
ESD CAUTION  
Rev. G | Page 5 of 24  
 
 
 
 
ADP160/ADP161/ADP162/ADP163  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADP160/  
Data Sheet  
5
VIN  
GND  
EN  
1
2
3
VOUT  
ADP162  
TOP VIEW  
(Not to Scale)  
4
NC  
NC = NO CONNECT  
Figure 4. 5-Lead TSOT, Fixed Output Pin Configuration, ADP160/ADP162  
Table 5. 5-Lead TSOT Pin Function Descriptions, ADP160/ADP162  
Pin No.  
Mnemonic  
Description  
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
4
5
NC  
VOUT  
No Connect. This pin is not connected internally. Connect this pin to GND or leave open.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
ADP161/  
5
VIN  
GND  
EN  
1
2
3
VOUT  
ADP163  
TOP VIEW  
(Not to Scale)  
4
ADJ  
Figure 5. 5-Lead TSOT, Adjustable Output Pin Configuration, ADP161/ADP163  
Table 6. 5-Lead TSOT Pin Function Descriptions, ADP161/ADP163  
Pin No.  
Mnemonic  
Description  
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
4
5
ADJ  
Output Voltage Adjust Pin. Connect the midpoint of the voltage divider between VOUT and GND to this pin to set  
the output voltage.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
VOUT  
Rev. G | Page 6 of 24  
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
1
2
A
B
VIN  
VOUT  
ADP160/  
ADP162  
EN  
GND  
TOP VIEW  
(Not to Scale)  
Figure 6. 4-Ball WLCSP Pin Configuration, ADP160/ADP162  
Table 7. 4-Ball WLCSP Pin Function Descriptions, ADP160/ADP162  
Pin No.  
Mnemonic  
Description  
A1  
B1  
VIN  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
A2  
B2  
VOUT  
GND  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
Ground.  
Rev. G | Page 7 of 24  
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
100  
10  
1
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
NO LOAD  
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
0.1  
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Output Voltage (VOUT) vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
100  
10  
1
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 11. Ground Current vs. Load Current (ILOAD  
)
Figure 8. Output Voltage (VOUT) vs. Load Current (ILOAD  
)
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
100  
10  
1
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
NO LOAD  
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
0.1  
3.7  
3.7  
3.9  
4.1  
4.3  
4.5  
V
4.7  
(V)  
4.9  
5.1  
5.3  
5.5  
3.9  
4.1  
4.3  
4.5  
V
4.7  
(V)  
4.9  
5.1  
5.3  
5.5  
IN  
IN  
Figure 9. Output Voltage (VOUT) vs. Input Voltage (VIN)  
Figure 12. Ground Current vs. Input Voltage (VIN)  
Rev. G | Page 8 of 24  
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
0.18  
140  
120  
100  
80  
V
V
V
V
V
V
= 2.9V  
= 3.2V  
= 3.8V  
= 4.1V  
= 4.7V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
60  
40  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
20  
0
–40  
–5  
25  
85  
125  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 13. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 16. Ground Current vs. Input Voltage (VIN) in Dropout  
0
250  
LOAD = 150mA  
LOAD = 100mA  
V
= 2V  
OUT  
–10  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 100µA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
200  
150  
100  
50  
V
= 3.3V  
OUT  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
I
(mA)  
FREQUENCY (Hz)  
LOAD  
Figure 14. Dropout Voltage vs. Load Current (ILOAD  
)
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 1.2 V, VIN = 2.2 V  
0
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
LOAD = 150mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
–10  
–20  
LOAD = 100µA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 250mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 15. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout  
Figure 18. Power Supply Rejection Ratio vs. Frequency, VOUT = 2.5 V, VIN = 3.5 V  
Rev. G | Page 9 of 24  
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
LOAD = 150mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
–10  
–20  
LOAD = 100µA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 150mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 100µA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V, VIN = 4.3 V  
Figure 22. Power Supply Rejection Ratio vs. Frequency  
Various Output Voltages and Load Currents, VOUT = 3.3 V, VIN = 3.8 V  
0
0
LOAD = 3.3V/150mA  
LOAD = 150mA  
LOAD = 2.5V/150mA  
LOAD = 1.2V/150mA  
LOAD = 3.3V/1mA  
LOAD = 2.5V/1mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
–10  
–10  
–20  
–20  
LOAD = 100µA  
–30  
LOAD = 1.2V/1mA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection Ratio vs. Frequency  
Various Output Voltages and Load Currents, VIN − VOUT = 1 V  
Figure 23. Adjustable ADP161 Power Supply Rejection Ratio vs. Frequency,  
VOUT = 3.3 V, VIN = 4.3 V  
0
1k  
100  
10  
V
V
V
= 3.3V  
= 2.5V  
= 1.2V  
OUT  
OUT  
OUT  
–10  
ADJ 3.3V  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 150mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 100µA  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 21. Power Supply Rejection Ratio vs. Frequency  
Various Output Voltages and Load Currents, VOUT = 2.5 V, VIN = 3.0 V  
Figure 24. Output Noise vs. Load Current and Output Voltage,  
VIN = 5 V, COUT = 1 µF  
Rev. G | Page 10 of 24  
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
T
10  
V
V
V
= 1.2V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
V
IN  
1
V
OUT  
2
1
0.1  
10  
CH1 1V Ω  
CH2 20mV  
M200µs  
A
CH1  
4.34V  
100  
1k  
10k  
100k  
T
10.20%  
FREQUENCY (Hz)  
Figure 25. Output Noise Spectral Density, VIN = 5 V, ILOAD = 10 mA, COUT = 1 µF  
Figure 28. Line Transient Response, VIN = 4 V to 5 V, CIN = COUT = 1 μF,  
LOAD = 150 mA, CH1 = VIN, CH2 = VOUT  
I
T
T
LOAD CURRENT  
V
IN  
1
2
V
OUT  
V
OUT  
2
1
CH1 1V Ω  
CH2 20mV  
M200µs  
A
CH1  
4.56V  
CH1 100mA CH2 200mV  
M200µs  
A
CH1  
62mA  
T
10.20%  
T
10.40%  
Figure 29. Line Transient Response, VIN = 4 V to 5 V, CIN, = 1 μF, COUT = 10 μF,  
LOAD = 150 mA, CH1 = VIN, CH2 = VOUT  
Figure 26. Load Transient Response, CIN, COUT = 1 µF, ILOAD = 1 mA to 150 mA,  
200 ns Rise Time, CH1 = Load Current, CH2 = VOUT  
I
T
LOAD CURRENT  
1
V
OUT  
2
CH1 20mA CH2 5mV  
M200µs  
A
CH1  
24mA  
T
10.40%  
Figure 27. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 50 mA,  
200 ns Rise Time, CH1 = Load Current, CH2 = VOUT  
Rev. G | Page 11 of 24  
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
THEORY OF OPERATION  
The ADP16x are ultralow quiescent current, low dropout linear  
regulators that operate from 2.2 V to 5.5 V and can provide up to  
150 mA of output current. Drawing only 560 nA (typical) at no  
load and a low 42 µA of quiescent current (typical) at full load  
makes the ADP16x ideal for battery-operated portable equip-  
ment. Shutdown current consumption is typically 50 nA.  
VIN  
VOUT  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
PROTECT  
ADJ  
EN  
SHUTDOWN  
Using new innovative design techniques, the ADP16x provide  
ultralow quiescent current and superior transient performance  
for digital and RF applications. The ADP16x are also optimized  
for use with small 1 µF ceramic capacitors.  
REFERENCE  
ADP163  
Figure 33. Internal Block Diagram, Adjustable Output without Output  
Discharge Function  
VIN  
VOUT  
Internally, the ADP16x consists of a reference, an error amplifier, a  
feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is controlled  
by the error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate  
of the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
R1  
R2  
R3  
PROTECT  
EN  
SHUTDOWN  
REFERENCE  
ADP160  
Figure 30. Internal Block Diagram, Fixed Output with Output Discharge Function  
VIN  
VOUT  
The adjustable ADP161/ADP163 have an output voltage range  
of 1.0 V to 4.2 V. The output voltage is set by the ratio of two  
external resistors, as shown in Figure 2. The device servos the  
output to maintain the voltage at the ADJ pin at 1.0 V refe-  
renced to ground. The current in R1 is then equal to 1.0 V/R2,  
and the current in R1 is the current in R2 plus the ADJ pin bias  
current. The ADJ pin bias current, 10 nA at 25°C, flows through  
R1 into the ADJ pin.  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
R1  
PROTECT  
ADJ  
EN  
SHUTDOWN  
REFERENCE  
ADP161  
Figure 31. Internal Block Diagram, Adjustable Output with Output Discharge  
Function  
The output voltage can be calculated using the equation:  
V
OUT = 1.0 V(1 + R1/R2) + (ADJI-BIAS)(R1)  
VIN  
VOUT  
The value of R1 should be less than 200 kΩ to minimize errors in  
the output voltage caused by the ADJ pin bias current. For example,  
when R1 and R2 each equal 200 kΩ, the output voltage is 2.0 V.  
The output voltage error introduced by the ADJ pin bias current  
is 2 mV or 0.05%, assuming a typical ADJ pin bias current of  
10 nA at 25°C.  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
R1  
R2  
PROTECT  
EN  
SHUTDOWN  
REFERENCE  
ADP162  
Figure 32. Internal Block Diagram, Fixed Output without Output Discharge  
Function  
Rev. G | Page 12 of 24  
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
To minimize quiescent current in the ADP161 and ADP163  
Analog Devices, Inc., recommends using high values of  
resistance for R1 and R2. Using a value of 1 MΩ for R2 keeps  
the total, no load quiescent current below 2 µA. Note however,  
that high value of resistance introduces a small output voltage  
error. For example, assuming R1 and R2 are 1 MΩ, the output  
voltage is 2 V. Taking into account the nominal ADJ pin bias  
current of 10 nA, the output voltage error is 0.25%.  
The ADP160/ADP161 also include an output discharge resistor to  
force the output voltage to zero when the LDO is disabled. This  
ensures that the output of the LDO is always in a well-defined state,  
whether it is enabled or not. The ADP162/ADP163 do not  
include the output discharge function.  
The ADP160/ADP162 are available in 15 output voltage options,  
ranging from 1.2 V to 4.2 V. The ADP16x use the EN pin to enable  
and disable the VOUT pin under normal operating conditions.  
When EN is high, VOUT turns on, and when EN is low, VOUT  
turns off. For automatic startup, EN can be tied to VIN.  
Note that in shutdown, the output is turned off and the divider  
current is zero.  
Rev. G | Page 13 of 24  
ADP160/ADP161/ADP162/ADP163  
APPLICATIONS INFORMATION  
Data Sheet  
Input and Output Capacitor Properties  
CAPACITOR SELECTION  
Any good quality ceramic capacitors can be used with the  
ADP16x, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufactured  
with a variety of dielectrics, each with different behavior over  
temperature and applied voltage. Capacitors must have a dielectric  
adequate to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.3 V or 10 V are recommended. Y5V  
and Z5U dielectrics are not recommended due to their poor  
temperature and dc bias characteristics.  
Output Capacitor  
The ADP16x are designed for operation with small, space-  
saving ceramic capacitors, but function with most commonly  
used capacitors as long as care is taken with regard to the  
effective series resistance (ESR) value. The ESR of the output  
capacitor affects stability of the LDO control loop. A minimum  
of 1 µF capacitance with an ESR of 1 Ω or less is recommended  
to ensure stability of the ADP16x. Transient response to  
changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the transient  
response of the ADP16x to large changes in load current. Figure 34  
and Figure 35 show the transient responses for output  
capacitance values of 1 µF and 10 µF, respectively.  
Figure 36 depicts the capacitance vs. voltage bias characteristic  
of a 0402, 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the X5R  
dielectric is about 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
T
LOAD CURRENT  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
2
V
OUT  
CH1 100mA CH2 200mV  
M200µs  
T
A
CH1  
62mA  
10.40%  
Figure 34. Output Transient Response, COUT = 1 µF,  
CH1 = Load Current, CH2 = VOUT  
T
0
2
4
6
8
10  
LOAD CURRENT  
VOLTAGE  
Figure 36. Capacitance vs. Voltage Characteristic  
1
Use Equation 1 to determine the worst-case capacitance accounting  
for capacitor variation over temperature, component tolerance,  
and voltage.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
(1)  
2
V
OUT  
C
BIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
CH1 100mA CH2 200mV  
M200µs  
A
CH1  
74mA  
T
10.00%  
Figure 35. Output Transient Response, COUT = 10 µF,  
CH1 = Load Current, CH2 = VOUT  
C
BIAS is 0.94 µF at 1.8 V, as shown in Figure 36.  
Substituting these values in Equation 1 yields  
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 µF  
Input Bypass Capacitor  
Connecting a 1 µF capacitor from VIN to GND reduces the circuit  
sensitivity to the printed circuit board (PCB) layout, especially  
when long input traces or high source impedance are encountered.  
If greater than 1 µF of output capacitance is required, the input  
capacitor should be increased to match it.  
C
Therefore, the capacitor chosen in this example meets  
the minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Rev. G | Page 14 of 24  
 
 
 
 
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
To guarantee the performance of the ADP16x, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors are evaluated for each.  
The start-up behavior of the ADP16x is shown in Figure 39.  
The shutdown behavior of the ADP160/ADP161 is shown in  
Figure 40.  
3.5  
ENABLE FEATURE  
3.3V  
The ADP16x use the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 37,  
when a rising voltage on EN crosses the active threshold, VOUT  
turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
3.0  
2.5  
2.5V  
2.0  
EN  
4.5  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2V  
1.0  
0.5  
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
TIME (µs)  
Figure 39. Typical Start-Up Behavior (ADP16x)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= 1µF  
OUT  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
EN VOLTAGE (V)  
Figure 37. Typical EN Pin Operation  
4.2V  
EN  
As shown in Figure 37, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
1.2V  
The EN pin active/inactive thresholds are derived from the VIN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure 38 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.2 V to 5.5 V.  
1.1  
0
200  
400  
600  
TIME (µs)  
800  
1000  
Figure 40. Typical Shutdown Behavior, No Load (ADP160/ADP161)  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
1.0  
0.9  
The ADP16x are protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP16x are designed to current limit when the  
output load reaches 320 mA (typical). When the output load  
exceeds 320 mA, the output voltage is reduced to maintain a  
constant current limit.  
EN RISE  
0.8  
EN FALL  
0.7  
0.6  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C (typical). Under extreme  
conditions (that is, high ambient temperature and power dissipation),  
when the junction temperature starts to rise above 150°C, the  
output is turned off, reducing the output current to zero. When  
the junction temperature drops below 135°C, the output is turned  
on again and the output current is restored to its nominal value.  
0.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
Figure 38. Typical EN Pin Thresholds vs. Input Voltage  
Rev. G | Page 15 of 24  
 
 
 
 
 
 
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
Consider the case where a hard short from OUT to ground  
occurs. At first, the ADP16x current limit so that only 320 mA  
is conducted into the short. If self-heating of the junction is  
great enough to cause its temperature to rise above 150°C,  
thermal shutdown activates, turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 135°C, the output turns on and  
conducts 320 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation between  
320 mA and 0 mA that continues as long as the short remains  
at the output.  
Table 9. Typical ΨJB Values  
ΨJB (°C/W)  
TSOT  
WLCSP  
42.8  
58.4  
The junction temperature of the ADP16x can be calculated  
from the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
)
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so junction temperatures do not exceed 125°C.  
I
LOAD is the load current.  
IGND is the ground current.  
VIN and VOUT are input and output voltages, respectively.  
THERMAL CONSIDERATIONS  
Power dissipation due to ground current is quite small and can be  
ignored. Therefore, the junction temperature equation simplifies to  
the following:  
In most applications, the ADP16x do not dissipate much heat due  
to their high efficiency. However, in applications with high ambient  
temperature and high supply voltage to output voltage differential,  
the heat dissipated in the package is large enough that it can cause  
the junction temperature of the die to exceed the maximum  
junction temperature of 125°C.  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
the junction temperature does not rise above 125°C. Figure 41 to  
Figure 48 show the junction temperature calculations for the  
different ambient temperatures, load currents, VIN-to-VOUT  
differentials, and areas of PCB copper.  
When the junction temperature exceeds 150°C, the converter enters  
thermal shutdown. It recovers only after the junction temperature  
has decreased below 135°C to prevent any permanent damage.  
Therefore, thermal analysis for the chosen application is very  
important to guarantee reliable performance over all conditions.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 49 and Figure 50). Maximum  
junction temperature (TJ) is calculated from the board  
temperature (TB) and power dissipation (PD) using the  
following formula:  
To guarantee reliable operation, the junction temperature of  
the ADP16x must not exceed 125°C. To ensure the junction  
temperature stays below this maximum value, the user needs to  
be aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the amount  
of copper used to solder the package GND pins to the PCB.  
Table 8 shows the typical θJA values of the 5-lead TSOT and the  
4-ball WLCSP for various PCB copper sizes. Table 9 shows the  
typical ΨJB value of the 5-lead TSOT and 4-ball WLCSP.  
TJ = TB + (PD × ΨJB)  
(5)  
The typical value of ΨJB is 58°C/W for the 4-ball WLCSP package  
and 43°C/W for the 5-lead TSOT package.  
140  
MAXIMUM JUNCTION TEMPERATURE  
120  
100  
80  
Table 8. Typical θJA Values  
60  
θJA (°C/W)  
Copper Size (mm2)  
TSOT  
170  
152  
146  
134  
131  
WLCSP  
260  
159  
157  
153  
40  
01  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
50  
100  
300  
500  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
IN  
OUT  
151  
Figure 41. 500 mm2 of PCB Copper, WLCSP, TA = 25°C  
1 Device soldered to minimum size pin traces.  
Rev. G | Page 16 of 24  
 
 
 
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 42. 100 mm2 of PCB Copper, WLCSP, TA = 50°C  
Figure 45. 500 mm2 of PCB Copper, TSOT, TA = 25°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 43. 500 mm2 of PCB Copper, WLCSP, TA = 85°C  
Figure 46. 100 mm2 of PCB Copper, TSOT, TA = 25°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 44. 100 mm2 of PCB Copper, WLCSP, TA = 50°C  
Figure 47. 500 mm2 of PCB Copper, TSOT, TA = 50°C  
Rev. G | Page 17 of 24  
ADP160/ADP161/ADP162/ADP163  
Data Sheet  
140  
Place the input capacitor as close as possible to the VIN and  
MAXIMUM JUNCTION TEMPERATURE  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402 or 0603 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
120  
100  
80  
LIGHT SENSITIVITY OF WLCSPs  
60  
The WLCSP package option is essentially a silicon die with  
additional post fabrication dielectric and metal processing  
designed to contact solder bumps on the active side of the chip.  
With this package type, the die is exposed to ambient light and  
is subject to photoelectric effects. Light sensitivity analysis of  
a WLCSP mounted on standard PCB material reveals that  
performance may be impacted when the package is illuminated  
directly by high intensity light. No degradation in electrical  
performance is observed due to illumination by low intensity  
(0.1 mW/cm2) ambient light. Direct sunlight can have inten-  
sities of 50 mW/cm2, office ambient light can be as low as  
0.1 mW/cm2.  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
V
IN  
OUT  
Figure 48. 100 mm2 of PCB Copper, TSOT, TA = 50°C  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
When the WLCSP is assembled on the board with the bump  
side of the die facing the PCB, reflected light from the PCB  
surface is incident on active silicon circuit areas and results  
in the increased leakage currents. No performance degrada-  
tion occurs due to illumination of the backside (substrate) of  
t h e W L C SP.  
60  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
All WLCSPs are particularly sensitive to incident light with  
wavelengths in the near infrared range (NIR, 700 nm to 1000 nm).  
Photons in this waveband have a longer wavelength and lower  
energy than photons in the visible (400 nm to 700 nm) and near  
ultraviolet (NUV, 200 nm to 400 nm) bands; therefore, they can  
penetrate more deeply into the active silicon.  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
IN  
OUT  
Figure 49. WLCSP, TA = 85°C  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
Incident light with wavelengths greater than 1100 nm has  
no photoelectric effect on silicon devices because silicon is  
transparent to wavelengths in this range.  
The spectral content of conventional light sources varies  
considerably. Sunlight has a broad spectral range, with peak  
intensity in the visible band that falls off in the NUV and NIR  
bands; fluorescent lamps have significant peaks in the visible  
but not the NUV or NIR bands. Tungsten lighting has a broad  
peak in the longer visible wavelengths with a significant tail in  
the NIR.  
60  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
Efforts have been made at a product level to reduce the effect of  
ambient light; the under bump metal (UBM) has been designed  
to shield the sensitive circuit areas on the active side (bump  
side) of the die. However, if an application encounters any light  
sensitivity with the WLCSP, shielding the bump side of the  
WLCSP package with opaque material should eliminate this  
effect. Shielding can be accomplished using materials such as  
silica-filled liquid epoxies like those used in flip-chip underfill  
techniques.  
V
IN  
OUT  
Figure 50. TSOT, TA = 85°C  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP16x. However,  
as listed in Table 8, a point of diminishing returns is reached  
eventually, beyond which an increase in the copper size does  
not yield significant heat dissipation benefits.  
Rev. G | Page 18 of 24  
 
 
 
 
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
Figure 51. Example of 5-Lead TSOT PCB Layout  
Figure 52. Example of 4-Ball WLCSP PCB Layout  
Rev. G | Page 19 of 24  
ADP160/ADP161/ADP162/ADP163  
OUTLINE DIMENSIONS  
Data Sheet  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 53. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
1.000  
0.965 SQ  
0.925  
2
1
A
B
BALL A1  
IDENTIFIER  
0.50  
REF  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.370  
0.355  
0.340  
0.640  
0.595  
0.550  
END VIEW  
COPLANARITY  
0.03  
SEATING  
PLANE  
0.270  
0.240  
0.210  
0.340  
0.320  
0.300  
Figure 54. 4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-1)  
Dimensions shown in millimeters  
Rev. G | Page 20 of 24  
 
Data Sheet  
ADP160/ADP161/ADP162/ADP163  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage (V)  
Package Description  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Evaluation Board Kit  
Evaluation Board Kit  
Evaluation Board  
Evaluation Board  
Package Option  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
Branding  
5K  
5L  
5N  
5P  
AH  
5Q  
AM  
5R  
5S  
ADP160ACBZ-1.2-R7  
ADP160ACBZ-1.5-R7  
ADP160ACBZ-1.8-R7  
ADP160ACBZ-2.1-R7  
ADP160ACBZ-2.3-R7  
ADP160ACBZ-2.5-R7  
ADP160ACBZ-2.7-R7  
ADP160ACBZ-2.75-R7  
ADP160ACBZ-2.8-R7  
ADP160ACBZ-2.85-R7  
ADP160ACBZ-3.0-R7  
ADP160ACBZ-3.3-R7  
ADP160ACBZ-4.2-R7  
ADP160AUJZ-1.2-R7  
ADP160AUJZ-1.5-R7  
ADP160AUJZ-1.8-R7  
ADP160AUJZ-2.3-R7  
ADP160AUJZ-2.5-R7  
ADP160AUJZ-2.7-R7  
ADP160AUJZ-2.8-R7  
ADP160AUJZ-3.0-R7  
ADP160AUJZ-3.3-R7  
ADP160AUJZ-4.2-R7  
ADP161AUJZ-R7  
1.2  
1.5  
1.8  
2.1  
2.3  
2.5  
2.7  
2.75  
2.8  
2.85  
3.0  
3.3  
4.2  
1.2  
1.5  
1.8  
2.3  
2.5  
5T  
5U  
5V  
6U  
LDQ  
LDR  
LE0  
LLP  
LFZ  
LJF  
LG0  
Y2U  
LG1  
LGY  
LHW  
70  
71  
72  
BC  
73  
74  
75  
LH9  
LLN  
LLQ  
LHB  
LJK  
LHC  
LHD  
LHE  
LHF  
LHG  
2.7  
2.8  
3.0  
3.3  
4.2  
UJ-5  
Adjustable  
1.2  
1.8  
2.1  
2.3  
2.8  
3.0  
4.2  
1.5  
1.8  
2.3  
2.5  
2.7  
2.8  
3.0  
3.3  
4.2  
UJ-5  
ADP162ACBZ-1.2-R7  
ADP162ACBZ-1.8-R7  
ADP162ACBZ-2.1-R7  
ADP162ACBZ-2.3-R7  
ADP162ACBZ-2.8-R7  
ADP162ACBZ-3.0-R7  
ADP162ACBZ-4.2-R7  
ADP162AUJZ-1.5-R7  
ADP162AUJZ-1.8-R7  
ADP162AUJZ-2.3-R7  
ADP162AUJZ-2.5-R7  
ADP162AUJZ-2.7-R7  
ADP162AUJZ-2.8-R7  
ADP162AUJZ-3.0-R7  
ADP162AUJZ-3.3-R7  
ADP162AUJZ-4.2-R7  
ADP163AUJZ-R7  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
Adjustable  
UJ-5  
ADP160UJZ-REDYKIT  
ADP162UJZ-REDYKIT  
ADP161UJ-EVALZ  
ADP163UJ-EVALZ  
1 Z = RoHS Compliant Part.  
Rev. G | Page 21 of 24  
 
 
ADP160/ADP161/ADP162/ADP163  
NOTES  
Data Sheet  
Rev. G | Page 22 of 24  
Data Sheet  
NOTES  
ADP160/ADP161/ADP162/ADP163  
Rev. G | Page 23 of 24  
ADP160/ADP161/ADP162/ADP163  
NOTES  
Data Sheet  
©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08628-0-12/12(G)  
Rev. G | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY