ADP3339AKCZ-5-R7 [ADI]

High Accuracy, Ultralow IQ, 1.5 A, anyCAP Low Dropout Regulator; 高精度,超低IQ , 1.5 A ,公司的anyCAP低压差稳压器
ADP3339AKCZ-5-R7
型号: ADP3339AKCZ-5-R7
厂家: ADI    ADI
描述:

High Accuracy, Ultralow IQ, 1.5 A, anyCAP Low Dropout Regulator
高精度,超低IQ , 1.5 A ,公司的anyCAP低压差稳压器

稳压器
文件: 总12页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Accuracy, Ultralow IQ, 1.5 A,  
anyCAP Low Dropout Regulator  
ADP3339  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High accuracy over line and load: 0.9ꢀ at 25°C,  
1.5ꢀ over temperature  
Ultralow dropout voltage: 230 mV (typical) at 1.5 A  
Requires only COUT = 1.0 μF for stability  
anyCAP = stable with any type of capacitor (including MLCC)  
Current and thermal limiting  
Q1  
OUT  
IN  
ADP3339  
R1  
THERMAL  
PROTECTION  
CC  
g
DRIVER  
m
R2  
Low noise  
2.8 V to 6 V input voltage range  
BANDGAP  
REF  
−40°C to +85°C ambient temperature range  
SOT-223 package  
GND  
Figure 1.  
APPLICATIONS  
Notebooks, palmtop computers  
SCSI terminators  
Battery-powered systems  
PCMCIA regulators  
ADP3339  
V
IN  
V
OUT  
OUT  
IN  
1μF  
1μF  
GND  
Bar code scanners  
Camcorders, cameras  
Figure 2. Typical Application Circuit  
GENERAL DESCRIPTION  
The ADP3339 is a member of the ADP33xx family of precision,  
low dropout, anyCAP® voltage regulators. The ADP3339  
operates with an input voltage range of 2.8 V to 6 V and delivers  
a load current up to 1.5 A. The ADP3339 stands out from the  
conventional LDOs with a novel architecture and an enhanced  
process that enables it to offer performance advantages and  
higher output current than its competition. Its patented design  
requires only a 1.0 μF output capacitor for stability. This device  
is insensitive to output capacitor equivalent series resistance  
(ESR), and is stable with any good quality capacitor, including  
ceramic (MLCC) types for space-restricted applications. The  
ADP3339 achieves exceptional accuracy of 0.9% at room  
temperature and 1.5% over temperature, line, and load  
variations. The dropout voltage of the ADP3339 is only 230 mV  
(typical) at 1.5 A. The device also includes a safety current limit  
and thermal overload protection. The ADP3339 has ultralow  
quiescent current: 130 μA (typical) in light load situations.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2001–2011 Analog Devices, Inc. All rights reserved.  
 
ADP3339  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation .........................................................................9  
Applications Information.............................................................. 10  
Capacitor Selection .................................................................... 10  
Output Current Limit ................................................................ 10  
Thermal Overload Protection .................................................. 10  
Calculating Power Dissipation ................................................. 10  
Printed Circuit Board Layout Considerations ....................... 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
8/11—Rev. B to Rev. C  
Changes to Ordering Guide .......................................................... 11  
4/11—Rev. A to Rev. B  
Change to Features Section ............................................................. 1  
Changed IL to ILOAD Throughout..................................................... 3  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide .......................................................... 11  
6/04—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Thermal Overload Protection Section.................... 10  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
10/01—Revision 0: Initial Version  
Rev. C | Page 2 of 12  
 
Data Sheet  
ADP3339  
SPECIFICATIONS  
VIN = 6.0 V, CIN = COUT = 1 μF, TJ =–40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter1, 2  
Symbol Conditions  
Min Typ  
Max Unit  
OUTPUT  
Voltage Accuracy3  
VOUT  
VIN = VOUTNOM + 0.5 V to 6 V, ILOAD = 0.1 mA to 1.5 A, TJ = 25°C  
VIN = VOUTNOM + 0.5 V to 6 V, ILOAD = 0.1 mA to 1.5 A, TJ = –40°C to +125°C –1.5  
VIN = VOUTNOM + 0.5 V to 6 V, ILOAD = 100 mA to 1.5 A, TJ = 150°C  
VIN = VOUTNOM + 0.5 V to 6 V, TJ = 25°C  
ILOAD = 0.1 mA to 1.5 A, TJ = 25°C  
VOUT = 98% of VOUTNOM  
–0.9  
+0.9  
+1.5  
+1.9  
%
%
%
mV/V  
mV/mA  
–1.9  
Line Regulation3  
Load Regulation  
Dropout Voltage  
0.04  
0.004  
VDROP  
ILOAD = 1.5 A  
ILOAD = 1 A  
ILOAD = 500 mA  
ILOAD = 100 mA  
230  
180  
150  
100  
2.0  
480  
380  
300  
mV  
mV  
mV  
mV  
A
Peak Load Current  
Output Noise  
ILDPK  
VNOISE  
VIN = VOUTNOM + 1 V  
f = 10 Hz to 100 kHz, CL = 10 μF, ILOAD = 1.5 A  
95  
μV rms  
GROUND CURRENT  
In Regulation  
IGND  
ILOAD = 1.5 A  
ILOAD = 1 A  
ILOAD = 500 mA  
ILOAD = 100 mA  
ILOAD = 0.1 mA  
VIN = VOUTNOM − 100 mV, ILOAD = 0.1 mA  
13  
9
5
1
130  
100  
40  
25  
15  
3
200  
300  
mA  
mA  
mA  
mA  
μA  
In Dropout  
IGND  
μA  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC) methods.  
2 Application stable with no load.  
3 VIN = 2.8 V for models with VOUTNOM ≤ 2.3 V.  
Rev. C | Page 3 of 12  
 
 
 
 
ADP3339  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability. Only one absolute maximum rating may be  
applied at any one time.  
Unless otherwise specified, all voltages are referenced to GND.  
Table 2.  
Parameter  
Rating  
Input Supply Voltage  
Power Dissipation  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
θJA, 4-Layer Board  
–0.3 V to +8.5 V  
Internally limited  
–40°C to +85°C  
–40°C to +150°C  
62.3°C/W  
θJC  
26.8°C/W  
–65°C to +150°C  
300°C  
ESD CAUTION  
Storage Temperature Range  
Lead Temperature (Soldering 10 sec)  
Vapor Phase (60 sec)  
215°C  
Infrared (15 sec)  
220°C  
Rev. C | Page 4 of 12  
 
Data Sheet  
ADP3339  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
3
2
1
IN  
ADP3339  
OUT  
OUT  
GND  
TOP VIEW  
(Not to Scale)  
NOTES  
1. PIN 2 AND OUT TAB ARE  
INTERNALLY CONNECTED.  
Figure 3. 3-Lead SOT-223 Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
GND  
OUT  
IN  
Ground Pin.  
Output of the Regulator. Bypass to ground with a 1 μF or larger capacitor.  
Regulator Input. Bypass to ground with a 1 μF or larger capacitor.  
Rev. C | Page 5 of 12  
 
ADP3339  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
3.301  
14  
12  
10  
8
I
= 0A  
LOAD  
V
= 6V  
IN  
V
= 3.0V  
OUT  
3.300  
3.299  
3.298  
3.297  
3.296  
3.295  
3.294  
3.293  
V
= 3.3V  
OUT  
I
= 500mA  
= 1A  
LOAD  
6
I
LOAD  
4
I
= 1.5A  
LOAD  
2
0
0
0.5  
1.0  
1.5  
6
3
4
5
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
Figure 4. Output Voltage vs. Input Voltage  
Figure 7. Ground Current vs. Load Current  
3.301  
3.300  
3.299  
3.298  
3.297  
3.296  
3.295  
3.294  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 6V  
= 3.3V  
V
= 6V  
IN  
IN  
V
OUT  
I
= 1A  
LOAD  
I
= 10mA  
LOAD  
I
= 500mA  
LOAD  
I
= 1.5A  
LOAD  
–0.2  
–40 –20  
0
20  
40  
60  
80  
100 120 140  
C)  
0
0.5  
1.0  
1.5  
JUNCTION TEMPERATURE (  
°
LOAD CURRENT (A)  
Figure 5. Output Voltage vs. Load Current  
Figure 8. Output Voltage Variation Percentage vs. Junction Temperature  
180  
160  
140  
120  
100  
80  
25  
V
= 3.3V  
V
I
= 3.3V  
= 0A  
OUT  
OUT  
LOAD  
20  
15  
10  
5
I
= 1.5A  
LOAD  
I
= 1A  
LOAD  
I
= 0.5A  
LOAD  
60  
40  
20  
I
= 1mA  
LOAD  
0
0
0
–40  
110  
JUNCTION TEMPERATURE (°C)  
160  
2
4
6
10  
60  
INPUT VOLTAGE (V)  
Figure 6. Ground Current vs. Supply Voltage  
Figure 9. Ground Current vs. Junction Temperature  
Rev. C | Page 6 of 12  
 
Data Sheet  
ADP3339  
250  
V
C
= 3.3V  
= 10μF  
= 1.5A  
OUT  
OUT  
V
= 3.3V  
OUT  
3.31  
3.30  
3.29  
I
LOAD  
200  
150  
100  
50  
5
4
0
40  
220  
80  
120  
TIME (  
140  
180  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
μ
s)  
LOAD CURRENT (mA)  
Figure 13. Line Transient Response  
Figure 10. Dropout Voltage vs. Load Current  
V
C
= 6V  
IN  
V
= 3.3V  
= 1.5A  
OUT  
= 10μF  
OUT  
I
LOAD  
3.5  
3.3  
3.1  
1.5  
1.0  
3
2
1
0
0.5  
0
0
200  
400  
600  
s)  
800  
1000  
10  
0
1
3
4
5
6
7
8
9
2
TIME (  
μ
TIME (μs)  
Figure 14. Load Transient Response  
Figure 11. Power-Up/Power-Down  
V
C
= 6V  
IN  
V
= 3.3V  
OUT  
= 1μF  
OUT  
C
= 1μF  
= 1.5A  
3.5  
3.3  
3.31  
3.30  
3.29  
OUT  
I
LOAD  
3.1  
1.5  
1.0  
0.5  
0
5
4
0
200  
400  
600  
s)  
800  
1000  
40  
80  
120  
TIME (μs)  
140  
180  
220  
TIME (  
μ
Figure 15. Load Transient Response  
Figure 12. Line Transient Response  
Rev. C | Page 7 of 12  
ADP3339  
Data Sheet  
600  
500  
400  
300  
200  
100  
0
V
= 6V  
IN  
3.3  
0
3
2
I
= 1.5A  
LOAD  
1
0
I
= 0A  
20  
LOAD  
0
200  
400  
600  
s)  
800  
1000  
0
10  
30  
40  
50  
TIME (  
μ
C
(μF)  
L
Figure 16. Short-Circuit Current  
Figure 18. RMS Noise vs. CL (10 Hz to 100 kHz)  
100  
0
V
= 3.3V  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
1
C
= 1μF  
= 1.5A  
L
I
LOAD  
C
= 10μF  
= 1.5A  
L
C
= 1μF  
L
I
LOAD  
0.1  
C
= 10μF  
L
0.01  
C
= 10μF  
= 0  
L
I
LOAD  
C
= 1μF  
= 0  
L
I
LOAD  
0.001  
10k  
10  
100  
1k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Output Noise Density  
Figure 17. Power Supply Ripple Rejection  
Rev. C | Page 8 of 12  
 
Data Sheet  
ADP3339  
THEORY OF OPERATION  
The ADP3339 anyCAP LDO uses a single control loop for  
regulation and reference functions. The output voltage is sensed  
by a resistive voltage divider, consisting of R1 and R2, which is  
varied to provide the available output voltage option. Feedback  
is taken from this network by way of a series diode (D1) and a  
second resistor divider (R3 and R4) to the input of an amplifier.  
Most LDOs place very strict requirements on the range of ESR  
values for the output capacitor because they are difficult to  
stabilize due to the uncertainty of load capacitance and resis-  
tance. Moreover, the ESR value required to keep conventional  
LDOs stable changes depending on load and temperature.  
These ESR limitations make designing with LDOs more  
difficult because of their unclear specifications and extreme  
variations over temperature.  
A very high gain error amplifier is used to control this loop. The  
amplifier is constructed in such a way that equilibrium produces a  
large, temperature-proportional input offset voltage that is repeata-  
ble and very well controlled. The temperature-proportional  
offset voltage is combined with the complementary diode volt-  
age to form a virtual band gap voltage that is implicit in the  
network, although it never appears explicitly in the circuit.  
Ultimately, this patented design makes it possible to control the  
loop with only one amplifier. This technique also improves the  
noise characteristics of the amplifier by providing more flexibil-  
ity on the trade-off of noise sources that leads to a low noise design.  
With the ADP3339 anyCAP LDO, this is no longer true. The  
ADP3339 can be used with virtually any good quality capacitor,  
with no constraint on the minimum ESR. This innovative  
design allows the circuit to be stable with just a small 1 μF  
capacitor on the output. Additional advantages of the pole-  
splitting scheme include superior line noise rejection and very  
high regulator gain, which lead to excellent line and load  
regulation. An impressive 1.5% accuracy is guaranteed over  
line, load, and temperature.  
The R1/R2 divider is chosen in the same ratio as the band gap  
voltage to the output voltage. Although the R1/R2 resistor  
divider is loaded by Diode D1 and a second divider consisting  
of R3 and R4, the values can be chosen to produce a temperature-  
stable output. This unique arrangement specifically corrects for  
the loading of the divider, thus avoiding the error resulting from  
base current loading in conventional circuits.  
Additional features of the circuit include current limit and  
thermal shutdown.  
V
V
IN  
OUT  
C1  
C2  
1μF  
1μF  
IN  
OUT  
GND  
ADP3339  
The patented amplifier controls a new and unique noninverting  
driver that drives the pass transistor, Q1. The use of this special  
noninverting driver enables the frequency compensation to  
include the load capacitor in a pole-splitting arrangement to  
achieve reduced sensitivity to the value, type, and ESR of the  
load capacitance.  
Figure 20. Typical Application Circuit  
INPUT  
OUTPUT  
COMPENSATION  
CAPACITOR  
Q1  
ATTENUATION  
R1  
(a)  
(V  
/V  
)
BANDGAP OUT  
R3 D1  
C
R
PTAT  
LOAD  
NONINVERTING  
WIDEBAND  
DRIVER  
V
OS  
g
m
PTAT  
LOAD  
CURRENT  
R4  
R2  
ADP3339  
GND  
Figure 21. Functional Block Diagram  
Rev. C | Page 9 of 12  
 
ADP3339  
Data Sheet  
APPLICATIONS INFORMATION  
Therefore, for a junction temperature of 125°C and a maximum  
ambient temperature of 85°C, the required thermal resistance  
from junction to ambient is  
CAPACITOR SELECTION  
Output Capacitor  
The stability and transient response of the LDO is a function of  
the output capacitor. The ADP3339 is stable with a wide range  
of capacitor values, types, and ESR (anyCAP). A capacitor as low as  
1 μF is all that is needed for stability. A higher capacitance may  
be necessary if high output current surges are anticipated, or if  
the output capacitor cannot be located near the output and  
ground pins. The ADP3339 is stable with extremely low ESR  
capacitors (ESR ≈ 0) such as multilayer ceramic capacitors  
(MLCC) or OSCON. Note that the effective capacitance of  
some capacitor types falls below the minimum over tempera-  
ture or with dc voltage.  
125°C 85°C  
θJA  
=
= 32.1°C/W  
1.246 W  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
The thermal resistance, θJA, of SOT-223 is determined by the  
sum of the junction-to-case and the case-to-ambient thermal  
resistances. The junction-to-case thermal resistance, θJC, is  
determined by the package design and specified at 26.8°C/W.  
However, the case-to-ambient thermal resistance is determined  
by the printed circuit board design.  
Input Capacitor  
As shown in Figure 22, the amount of copper onto which the  
ADP3339 is mounted affects thermal performance. When  
mounted onto the minimal pads of 2 oz. copper (see Figure 22a),  
An input bypass capacitor is not strictly required but is recom-  
mended in any application involving long input wires or high  
source impedance. Connecting a 1 μF capacitor from the input  
to ground reduces the circuit’s sensitivity to PC board layout  
and input transients. If a larger output capacitor is necessary, a  
larger value input capacitor is also recommended.  
θ
JA is 126.6°C/W. Adding a small copper pad under the  
ADP3339 (see Figure 22b) reduces the θJA to 102.9°C/W.  
Increasing the copper pad to 1 square inch (see Figure 22c)  
reduces the θJA even further, to 52.8°C/W.  
OUTPUT CURRENT LIMIT  
The ADP3339 is short-circuit protected by limiting the pass  
transistors base drive current. The maximum output current is  
limited to about 3 A. See Figure 16.  
THERMAL OVERLOAD PROTECTION  
The ADP3339 is protected against damage due to excessive power  
dissipation by its thermal overload protection circuit. Thermal  
protection limits the die temperature to a maximum of 160°C.  
Under extreme conditions (that is, high ambient temperature  
and power dissipation) where the die temperature starts to rise  
above 160°C, the output current is reduced until the die tempera-  
ture has dropped to a safe level.  
a
b
c
Figure 22. PCB Layouts  
Use the following general guidelines when designing printed  
circuit boards:  
1. Keep the output capacitor as close to the output and  
ground pins as possible.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For normal  
operation, the devices power dissipation should be externally  
limited so that the junction temperature does not exceed 150°C.  
2. Keep the input capacitor as close to the input and ground  
pins as possible.  
3. PC board traces with larger cross sectional areas remove  
more heat from the ADP3339. For optimum heat transfer,  
use thick copper and use wide traces.  
4. The thermal resistance can be decreased by adding a  
copper pad under the ADP3339, as shown in Figure 22b.  
5. If possible, use the adjacent area to add more copper  
around the ADP3339. Connecting the copper area to the  
output of the ADP3339, as shown in Figure 22c, is best, but  
thermal performance is improved even if it is connected to  
other pins.  
6. Use additional copper layers or planes to reduce the  
thermal resistance. Again, connecting the other layers to  
the output of the ADP3339 is best, but is not necessary.  
When connecting the output pad to other layers, use  
multiple vias.  
CALCULATING POWER DISSIPATION  
Device power dissipation is calculated as follows:  
PD = (VIN VOUT) × ILOAD + (VIN × IGND  
)
where ILOAD and IGND are the load current and ground current,  
and VIN and VOUT are the input and output voltages, respectively.  
Assuming worst-case operating conditions are ILOAD = 1.5 A,  
I
GND = 14 mA, VIN = 3.3 V, and VOUT = 2.5 V, the device power  
dissipation is  
PD = (3.3 V – 2.5 V) × 1500 mA + (3.3 V × 14 mA) = 1246 mW  
Rev. C | Page 10 of 12  
 
 
Data Sheet  
ADP3339  
OUTLINE DIMENSIONS  
*
3.15  
3.00  
2.95  
7.30  
7.00  
6.70  
3.70  
3.50  
3.30  
1
2
3
*
0.85  
0.70  
0.65  
2.30  
BSC  
1.05  
0.85  
6.70  
6.50  
6.30  
0.35  
0.26  
0.24  
1.30  
1.10  
16°  
10°  
1.70  
1.50  
GAUGE  
PLANE  
10° MAX  
0.75 MIN  
0.10  
0.02  
16°  
10°  
0.25  
4.60 BSC  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS TO-261-AA  
WITH THE EXCEPTION TO LEAD WIDTH.  
Figure 23. 3-Lead Small Outline Transistor Package [SOT-223]  
(KC-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Output Voltage (V)  
Package Description  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
3-Lead SOT-223  
Package Option2 Branding  
ADP3339AKC-1.5-RL  
ADP3339AKCZ-1.5-RL  
ADP3339AKCZ-1.5-R7  
ADP3339AKCZ-1.8-RL  
ADP3339AKCZ-1.8-R7  
ADP3339AKCZ-2.5-RL  
ADP3339AKCZ-2.5-R7  
ADP3339AKC-2.85-RL  
ADP3339AKCZ-3-R7  
ADP3339AKC-3.3-RL  
ADP3339AKCZ-3.3-RL  
ADP3339AKCZ-3.3-R7  
ADP3339AKCZ-5-R7  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1.5  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
2.85  
3.0  
3.3  
3.3  
3.3  
5
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
KC-3  
L1C  
L1C  
L19  
L19  
L1D  
L1D  
L3F  
L1A  
L1A  
L1A  
L3G  
1 Z = RoHS Compliant Part.  
2 This package option is halide free.  
Rev. C | Page 11 of 12  
 
ADP3339  
NOTES  
Data Sheet  
©2001–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02191-0-8/11(C)  
Rev. C | Page 12 of 12  

相关型号:

ADP3342

Ultralow, IQ, anyCAP Low Dropout Regulator
ADI

ADP3342ARM-REEL7

Ultralow, IQ, anyCAP Low Dropout Regulator
ADI

ADP3342JRM-REEL

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator
ADI

ADP3342JRM-REEL

1.2V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO8, MO-187AA, MSOP-8
ROCHESTER

ADP3342JRM-REEL

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator
ONSEMI

ADP3342JRM-REEL7

Ultralow, IQ, anyCAP Low Dropout Regulator
ADI

ADP3342JRM-REEL7

1.2V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO8, MO-187AA, MSOP-8
ROCHESTER

ADP3342JRMZ-REEL

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator
ONSEMI

ADP3342JRMZ-REEL7

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, LEAD FREE, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator
ADI

ADP3342JRMZ-REEL7

1.2V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO8, LEAD FREE, MO-187AA, MSOP-8
ONSEMI

ADP3367

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367*

+5 V Fixed. Adjustable Low-Dropout Linear Voltage Regulator
ADI