ADP3342JRMZ-REEL7 [ADI]

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, LEAD FREE, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator;
ADP3342JRMZ-REEL7
型号: ADP3342JRMZ-REEL7
厂家: ADI    ADI
描述:

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO8, LEAD FREE, MO-187AA, MSOP-8, Fixed Positive Single Output LDO Regulator

光电二极管 输出元件 调节器
文件: 总12页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Ultralow, IQ, anyCAP  
Low Dropout Regulator  
ADP3342  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Accuracy over line and load: ؎4.0% @ 25؇C,  
؎5% over temperature  
Ultralow dropout voltage: 190 mV (Typ) @ 300 mA  
Requires only CO = 1.0 F for stability  
anyCAP architecture stable with any type of capacitor  
(including MLCC)  
Current and thermal limiting  
Low shutdown current: < 2 A  
1.7 V < VIN < 6 V  
Q1  
IN  
OUT  
VCC  
THERMAL  
CC  
PROTECTION  
g
DRIVER  
m
PWRGD  
SD  
BAND GAP +  
REF –  
2.8 V < VCC < 6 V  
ADP3342  
V
OUT = 1.2 V ؎5%  
–40؇C to +100؇C ambient temperature range  
Ultrasmall thermally enhanced 8-lead MSOP package  
GND  
APPLICATIONS  
Notebook PCs  
Desktop PCs  
3.3V  
GENERAL DESCRIPTION  
The ADP3342 is a unique member of the ADP330x family of  
precision low dropout anyCAP voltage regulators. The ADP3342  
operates with an input voltage range of 1.7 V to 6 V and delivers a  
continuous load current up to 300 mA. In order to support the  
ability to regulate from such a low input voltage, the power rail to  
the IC, VCC, has been split off from the main power rail, VIN,  
from which the output is powered.  
VCC  
ADP3342  
V
1.8V  
V
1.2V  
IN  
OUT  
IN  
OUT  
+
+
1F  
1F  
SD PWRGD  
ON  
GND  
OFF  
The ADP3342 stands out from the conventional LDOs with  
the lowest thermal resistance of any MSOP-8 package and an  
enhanced process that enables it to offer performance advan-  
tages beyond its competition. Its patented design requires only a  
1.0 µF output capacitor for stability. This device is insensitive to  
output capacitor equivalent series resistance (ESR) and is stable  
with any good quality capacitor, including ceramic (MLCC)  
types for space-restricted applications. The dropout voltage of the  
ADP3342 is only 190 mV (typical) at 300 mA. This device also  
includes a safety current limit, thermal overload protection, and  
a shutdown control pin.  
Figure 1. Typical Application Circuit  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
(VCC = 3.0 V, VIN = 1.8 V, CIN = COUT = 1 F, TA = 0؇C to 100؇C, and  
ADP3342–SPECIFICATIONS1, 2 TA = –40؇C to +100؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT  
Voltage Accuracy  
VOUT  
VCC = 2.8 V to 6 V, VIN = 1.7 V to 6 V  
IL = 0.1 mA to 300 mA  
TA = 25C  
–4.0  
+4.0  
%
VCC = 2.8 V to 6 V, VIN = 1.7 V to 6 V  
IL = 0.1 mA to 300 mA  
TA = –40C to +100C  
VCC = 2.8 V to 6 V, VIN = 1.7 V to 6 V  
TA = 25C  
IL = 0.1 mA to 300 mA  
TA = 25C  
VOUT = 98% of VOUTNOM  
IL = 300 mA  
–5.0  
+5.0  
%
Line Regulation  
Load Regulation  
Dropout Voltage  
0.04  
0.12  
mV/V  
mV/mA  
VDROP  
190  
125  
70  
450  
mV  
mV  
mV  
IL = 200 mA  
IL = 100 mA  
Current Limiting  
Output Noise  
ILIM  
VNOISE  
VCC = 3 V, VIN = 1.8 V  
f = 10 Hz–100 kHz, CL = 1 mF  
IL = 300 mA  
450  
60  
mA  
mV rms  
OPERATING CURRENTS  
Ground Current in Regulation  
IGND  
IL = 300 mA, TA = –40C to +100C  
IL = 300 mA, TA = 0C to 100C  
IL = 300 mA, TA = 25C  
IL = 200 mA  
IL = 0.1 mA  
IL = 300 mA  
3.0  
3.0  
3.0  
2.0  
100  
100  
0.01  
8.5  
6.0  
4.0  
mA  
mA  
mA  
mA  
mA  
175  
170  
2
VCC Current in Regulation  
Ground Current in Shutdown  
IVCC  
IGNDSD  
mA  
SD = 0 V, VCC = 6 V, VIN = 1.8 V  
mA  
SHUTDOWN  
Threshold Voltage  
VTHSD  
ON  
VCC – 0.9  
V
OFF  
0 £ SD £ 6 V  
TA = 25C, VCC = 6 V, VIN = 6 V  
TA = 100C, VCC = 6 V, VIN = 6 V  
0.6  
7
1
V
SD Input Current  
Output Current in Shutdown  
ISD  
IOSD  
1.4  
0.01  
0.01  
mA  
mA  
mA  
2
PWRGD  
Output Current  
Output Low Voltage  
Output High Voltage  
On-Time Delay  
IPWRGDL  
VPWRGDL  
VPWRGD = 1.2 V, VCC = 3.0 V  
IPWRGD = 300 mA  
0.85  
1.5  
mA  
V
V
3
0.4  
300  
300  
1
3
VPWRGDH  
IPWRGD = 300 mA  
VCC – 0.4  
5
TD14  
IL = 3 mA to 300 mA,  
ms  
C
OUT = 1 mF to 10 mF  
TD25  
TD36  
IL = 3 mA to 300 mA,  
COUT = 1 mF to 10 mF  
IL = 3 mA to 300 mA,  
COUT = 1 mF to 10 mF  
50  
ms  
ms  
Off-Time Delay  
0.05  
THERMAL PROTECTION  
Shutdown Temperature  
THPROT  
IL = 100 mA  
165  
C  
NOTES  
1All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC) methods.  
2Ambient temperature of 100C corresponds to a junction temperature of 125C under typical full load test conditions.  
3VPWRGDL, VPWRGDH: Power good output voltages. Guaranteed by design and characterization.  
4TD1: Delay time from VOUT crossing 1 V to PWRGD high. Guaranteed by design.  
5TD2: Delay time from SD high to PWRGD high. Guaranteed by design.  
6TD3: Delay time between SD low to PWRGD low. Guaranteed by design.  
Specifications subject to change without notice.  
–2–  
REV. C  
ADP3342  
ABSOLUTE MAXIMUM RATINGS*  
PIN CONFIGURATION  
Input Supply Voltage . . . . . . . . . . . . . . . . . . . 0.3 V to +13 V  
Shutdown Input Voltage . . . . . . . . . . . . . . . . 0.3 V to +13 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . Internally Limited  
Operating Ambient Temperature Range . . . 40°C to +100°C  
Operating Junction Temperature Range . . . 40°C to +150°C  
NC  
1
2
3
4
8
7
6
5
NC  
IN  
ADP3342  
OUT  
TOP VIEW  
VCC  
GND  
(Not to Scale)  
SD  
PWRGD  
JA (2-Layer Board) . . . . . . . . . . . . . . . . . . . . . . . . . . 205°C/W  
JA (4-Layer Board) . . . . . . . . . . . . . . . . . . . . . . . . . . 142°C/W  
NC = NO CONNECT  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56°C/W  
JC  
Storage Temperature Range . . . . . . . . . . . . 65°C to +150°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Absolute maximum  
ratings apply individually only, not in combination. Unless otherwise specified, all  
other voltages are referenced to GND.  
ORDERING GUIDE  
Model  
Output Voltage  
Package Option  
Branding  
Temperature Range  
ADP3342JRM-REEL  
ADP3342JRM-REEL7  
ADP3342JRMZ-REEL7* 1.2 V  
1.2 V  
1.2 V  
RM-8 (MSOP-8)  
RM-8 (MSOP-8)  
RM-8 (MSOP-8)  
LJA  
LJA  
LJA  
0°C to 100°C  
0°C to 100°C  
0°C to 100°C  
*Z = Pb-free part.  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Mnemonic  
Function  
No Connection.  
1, 8  
2
NC  
OUT  
Output of the Regulator. Bypass to ground with a 1.0 µF or larger capacitor. All pins must be  
connected together for proper operation.  
3
4
5
6
VCC  
Supply Voltage.  
GND  
PWRGD  
SD  
Ground Pin.  
Power Good. Used to indicate that output is in regulation.  
Active Low Shutdown Pin. Connect to ground to disable the regulator output. When shutdown  
is not used, this pin should be connected to the VCC pin.  
7
IN  
Regulator Input. All pins.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADP3342 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. C  
–3–  
ADP3342–Typical Performance Characteristics  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
120  
110  
100  
90  
V
V
= 1.8V  
IN  
V
= 1.2V  
V
= 1.2V  
= 3V  
OUT  
OUT  
= 3.0V  
CC  
V
= 3V  
V
CC  
CC  
I
= 0A  
L
I
= 0mA  
L
I
= 100mA  
L
80  
I
I
= 200mA  
= 300mA  
L
70  
L
60  
50  
1.7  
2.7  
3.7  
4.7  
5.7  
1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0  
INPUT VOLTAGE – V  
0
50  
100  
150  
200  
250  
300  
INPUTVOLTAGE V  
OUTPUT LOAD – mA  
TPC 1. Line Regulation Output  
Voltage vs. Supply Voltage  
TPC 2. Output Voltage vs.  
Load Current  
TPC 3. Ground Current vs.  
Supply Voltage  
3.5  
3.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
0
V
= 1.8V  
= 3.0V  
V
V
IN  
= 3.0V  
= 1.8V  
IN  
CC  
V
CC  
200mA  
2.5  
I
I
= 300mA  
= 200mA  
= 100mA  
L
2.0  
1.5  
1.0  
L
300mA  
I
–0.1  
–0.2  
–0.3  
–0.4  
L
0.5  
0
I
= 0mA  
L
0
50  
100  
150  
200  
250  
300  
–50 –25  
0
25  
50  
75 100 125 150  
–40 –20  
0
20  
40  
60  
80  
100  
OUTPUT LOAD – mA  
JUNCTIONTEMPERATURE – ؇C  
JUNCTION TEMPERATURE – ؇C  
TPC 4. Ground Current vs.  
Load Current  
TPC 5. Output Voltage Variation  
vs. Junction Temperature  
TPC 6. Ground Current vs.  
Junction Temperature  
0.25  
0.20  
0.15  
0.10  
7.0  
V
= 3.0V  
= 1.8V  
CC  
6.5  
6.0  
5.5  
6
5
V
IN  
V
= 1.2V  
OUT  
SD = V  
R
IN  
= 4  
4
3
2
1
0
L
5.0  
4.5  
4.0  
3.5  
MAX  
TYP  
MIN  
3.0  
2.5  
2.0  
0.05  
0
–1  
–2  
1.5  
1.0  
0
200  
400  
600  
800  
1000  
TIME – s  
0
50  
100  
150  
200  
250  
300  
–40 –25 –10  
5
20 35 50 65 80 950  
OUTPUT LOAD – mA  
TEMPERATURE – ؇C  
TPC 9. Power-Up/Power-Down  
TPC 8. Ground Current @ 300 mA  
Load vs. Ambient Temperature  
TPC 7. Dropout Voltage vs.  
Output Current  
–4–  
REV. C  
ADP3342  
0
V
C
R
= 3V  
= 1F  
= 4⍀  
V
C
R
= 3V  
= 10F  
= 4⍀  
CC  
CC  
1.3  
1.2  
1.1  
L
L
L
L
1.32  
1.22  
1.12  
3.00  
1.80  
1.32  
1.22  
1.12  
3.00  
1.80  
V
= 3V  
= 1.8V  
= 1F  
CC  
V
IN  
C
L
400  
200  
5
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
0
400  
800  
1200  
1600  
2000  
TIME – s  
TIME – s  
TIME – s  
TPC 10. Line Transient Response  
TPC 11. Line Transient Response  
TPC 12. Load Transient Response  
0
V
= 1.8V  
IN  
V
R
= 3V  
= 4⍀  
= 1.8V  
CC  
1.2  
0
1.3  
1.2  
2.0  
1.0  
0
L
V
IN  
V
= 3V  
= 1.8V  
= 10F  
CC  
1.1  
V
IN  
C
L
3.0  
0
1.0  
0.5  
0
400  
200  
5
1.8  
0
0
200  
400  
600  
800  
1000  
0
400  
800  
1200  
1600  
2000  
–200  
200  
600  
1000  
1400  
1800  
TIME – s  
TIME – s  
TIME – s  
TPC 14. Short Circuit Current  
TPC 13. Load Transient Response  
TPC 15. Power-On/Power-Off  
Response from Shutdown  
2.0  
1.0  
2.0  
V
= 1.8V  
IN  
2.0  
SD = 3.0V  
R
1.0  
0
V
= 3V  
= 1.8V  
= 4⍀  
= 4⍀  
CC  
L
1.0  
0
0
V
IN  
R
V
= 3V  
= 1.8V  
L
CC  
V
IN  
R
= 4⍀  
L
3.0  
0
3.0  
0
1.8  
0
1.8  
0
3.0  
0
0
100  
200  
300  
400  
500  
200  
600  
1000  
1400  
1800  
2
6
10  
14  
18  
TIME – s  
TIME – s  
TIME – s  
TPC 16. Turn On Delay  
TPC 18. Power-On/Power-Off  
Response from VCC  
TPC 17. Turn Off Delay  
REV. C  
–5–  
ADP3342  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
70  
60  
V
= 1.2V  
OUT  
C
= 10F  
= 300mA  
L
I
L
1.2  
0
C
= 1F  
= 300mA  
L
V
= 1.8V  
IN  
SD = 3.0V  
= 4⍀  
I
L
50  
40  
30  
20  
C
= 1F  
= 50A  
R
L
L
I
L
3.0  
0
300mA  
0mA  
1.8  
0
C
= 10F  
= 50A  
L
I
L
10  
0
0
200  
400  
600  
800  
1000  
TIME – s  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
C
30  
F  
40  
50  
FREQUENCY – Hz  
L
TPC 20. Power Supply  
Ripple Rejection  
TPC 19. Power-On/Power-Off  
Response from VIN  
TPC 21. RMS Noise vs. CL  
(10 Hz to 100 Hz)  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
100  
10  
650  
600  
550  
500  
V
= 1.2V  
= 1mA  
OUT  
I
L
0mA  
50mA  
C
= 10F  
L
1
C
= 1F  
L
100mA  
200mA  
0.1  
300mA  
0.01  
0.001  
35  
55  
75  
95 115 135 155 175  
10  
100  
1k  
10k  
100k  
1M  
1.5  
1.6  
1.7  
V
1.8  
– V  
1.9  
2.0  
AMBIENT TEMPERATURE – ؇C  
FREQUENCY – Hz  
IN  
TPC 23. Thermal Protection  
TPC 22. Output Noise Density  
TPC 24. Current Limit vs. VIN  
3.6  
3.0  
V
= 1.8V  
IN  
SD = 3V  
400  
200  
0
5
15  
25  
35  
45  
TIME – ms  
TPC 25. Current Limiting from VC  
–6–  
REV. C  
ADP3342  
THEORY OF OPERATION  
APPLICATION INFORMATION  
PC Application—VCCVID  
The anyCAP LDO ADP3342 uses a single control loop for  
regulation and reference functions. The output voltage is sensed  
by a resistive voltage divider consisting of R1 and R2. Feedback  
is taken from this network by way of a series diode (D1) and a  
second resistor divider (R3 and R4) to the input of an amplifier.  
The ADP3342 has been optimized for PC applications that  
require a 1.2 V output for powering the voltage identification  
rail, VCCVID. The rail from which the output draws current,  
the IN pin, is separated from the rail that powers the IC, the  
VCC pin. This allows a higher efficiency design when, as  
recommended for IMVP-3/5 applications, the VCC pin is  
connected to a 3.3 V supply to power the IC adequately, and  
the IN pin is connected to a 1.8 V supply. The efficiency is  
nearly 60% in this case.  
VCC  
INPUT  
Q1  
OUTPUT  
COMPENSATION  
CAPACITOR  
ATTENUATION  
/V  
R1  
(a)  
(V  
)
BAND GAP OUT  
C
R
LOAD  
D1  
R3  
PTAT  
V
NONINVERTING  
WIDEBAND  
DRIVER  
OS  
g
m
PTAT  
Capacitor Selection  
LOAD  
CURRENT  
R4  
R2  
As with any voltage regulator, output transient response is a func-  
tion of the output capacitance. The ADP3342 is stable with a wide  
range of capacitor values, types, and ESR (anyCAP). A capacitor  
as low as 1 µF is all that is needed for stability; larger capacitors  
can be used if high output current surges are anticipated. The  
ADP3342 is stable with extremely low ESR capacitors (ESR ª 0),  
such as multilayer ceramic capacitors (MLCC) or OSCON. Note  
that the effective capacitance of some capacitor types may fall  
below the minimum at cold temperature. Ensure that the capacitor  
provides more than 1 µF at minimum temperature.  
ADP3342  
GND  
Figure 2. Control Loop Functional Block Diagram  
A very high gain error amplifier is used to control this loop. The  
amplifier is constructed in such a way that at equilibrium it pro-  
duces a large, temperature proportional input offset voltage that is  
repeatable and very well controlled. The temperature proportional  
offset voltage is combined with the complementary diode voltage to  
form a virtual band gap voltage, implicit in the network, although it  
never appears explicitly in the circuit. Ultimately, this patented  
design makes it possible to control the loop with only one ampli-  
fier. This technique also improves the noise characteristics of the  
amplifier by providing more flexibility on the trade-off of noise  
sources that lead to a low noise design.  
Input Bypass Capacitor  
An input bypass capacitor is not strictly required but is advis-  
able in any application involving long input wires or high source  
impedance. Connecting a 1 µF capacitor from IN to ground  
reduces the circuits sensitivity to PC board layout. If a larger  
value output capacitor is used, then a larger value input capaci-  
tor is also recommended.  
The R1, R2 divider is chosen in the same ratio as the band gap  
voltage to the output voltage. Although the R1, R2 resistor divider  
is loaded by the diode D1 and a second divider consisting of R3  
and R4, the values can be chosen to produce a temperature stable  
output. This unique arrangement specifically corrects for the  
loading of the divider so that the error resulting from base cur-  
rent loading in conventional circuits is avoided.  
Power Good Monitoring Function  
The PWRGD pin does not monitor the output voltage directly  
but rather detects whether the internal PNP pass transistor is  
being modulated by the regulation loop. This means of detecting  
PWRGD, rather than using a voltage threshold detection, provides  
an inherent and desirable delay in asserting the PWRGD sig-  
nal. During startup or overload, the regulation loop is not in  
control, so the PWRGD pin is low.  
The patented amplifier controls a new and unique noninverting  
driver that drives the pass transistor, Q1. The use of this special  
noninverting driver enables the frequency compensation to  
include the load capacitor in a pole splitting arrangement to  
achieve reduced sensitivity to the value, type, and ESR of the  
load capacitance.  
Shutdown Mode  
Applying a TTL high signal to the shutdown (SD) pin, or tying it  
to the input pin, will turn the output on. Pulling SD down to 0.4 V  
or below, or tying it to ground, will turn the output off. In shut-  
down mode, quiescent current is reduced.  
Most LDOs place very strict requirements on the range of  
ESR values for the output capacitor because they are difficult  
to stabilize due to the uncertainty of load capacitance and resis-  
tance. Moreover, the ESR value, required to keep conventional  
LDOs stable, changes depending on load and temperature.  
These ESR limitations make designing with LDOs more  
difficult because of their unclear specifications and extreme  
variations over temperature.  
Thermal Overload Protection  
The ADP3342 is protected against damage due to excessive  
power dissipation by its thermal overload protection circuit,  
which limits the die temperature to a maximum of 165°C. Under  
extreme conditions (i.e., high ambient temperature and power  
dissipation) where die temperature starts to rise above 165°C, the  
output current is reduced until the die temperature has dropped  
to a safe level. The output current is restored when the die tem-  
perature is reduced.  
With the ADP3342 anyCAP LDO, this is no longer true. It can  
be used with virtually any good quality capacitor, with no con-  
straint on the minimum ESR. This innovative design allows the  
circuit to be stable with just a small 1 µF capacitor on the out-  
put. Additional advantages of the pole splitting scheme include  
superior line noise rejection and very high regulator gain, which  
leads to excellent line and load regulation. Additional features  
of the circuit include current limit, thermal shutdown, and  
noise reduction.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For normal  
operation, device power dissipation should be limited by operating  
conditions so that junction temperatures will not exceed 150°C.  
REV. C  
–7–  
ADP3342  
Calculating Junction Temperature  
Device power dissipation is calculated as follows:  
Assuming ILOAD = 300 mA, IGND = 4 mA, VIN = 1.8 V, and VOUT  
1.2 V, device power dissipation is  
=
P = 1.8 V – 1.2 V ¥ 300 mA + 1.8 V ¥ 4 mA = 187 mW  
(
)
(
)
D
PD = V VOUT ¥ I  
+VIN ¥ IGND  
(
)
IN  
LOAD  
The ADP3342 is capable of supplying 300 mA @ VIN = 1.8 V  
in a typical notebook PC application. If a higher input voltage  
is used (such as 3.3 V), the power dissipation of the ADP3342  
will be limited by the thermal overload protection. Assuming a  
4-layer board, the junction temperature rise above ambient  
temperature will be approximately equal to  
where ILOAD and IGND are load current and ground current, and  
IN and VOUT are input and output voltages, respectively.  
V
DTJA = 193 mW ¥ 142C / W = 27.4C  
–8–  
REV. C  
ADP3342  
OUTLINE DIMENSIONS  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8؇  
0؇  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
REV. C  
–9–  
ADP3342  
Revision History  
Location  
Page  
11/04—Data Sheet Changed from REV. B to REV. C.  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3/03—Data Sheet Changed from REV. A to REV. B.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to PC ApplicationVCCVID section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Deleted Paddle under Lead Package section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to Calculating Junction Temperature section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
10/02—Data Sheet Changed from REV. 0 to REV. A.  
Changes to PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to PIN FUNCTION DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
–10–  
REV. C  
–11–  
–12–  

相关型号:

ADP3367

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367*

+5 V Fixed. Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367AR

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367AR

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO8, SOP-8
ROCHESTER

ADP3367AR-REEL

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator Package: 8 ld SOIC; No of Pins: 8; Temperature Range: Industrial; Container: 2500/Reel
ADI

ADP3367ARZ

5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367ARZ

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO8, SOP-8
ROCHESTER

ADP3367ARZ-REEL7

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator
ADI

ADP3367ARZ-REEL7

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO8, SOP-8
ROCHESTER

ADP3401

GSM Power Management System
ADI

ADP3401ARU

GSM Power Management System
ADI

ADP3402

GSM Power Management System
ADI