ADUM3480ARSZ-RL7 [ADI]

Small, 3.75 kV RMS Quad Digital Isolators (4/0 Channel Directionality);
ADUM3480ARSZ-RL7
型号: ADUM3480ARSZ-RL7
厂家: ADI    ADI
描述:

Small, 3.75 kV RMS Quad Digital Isolators (4/0 Channel Directionality)

光电二极管 接口集成电路
文件: 总20页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Small, 3.75 kV RMS Quad Digital Isolators  
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Up to 25 Mbps data rate (NRZ)  
ADuM3480  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL2  
Low propagation delay: 25 ns typical  
Low dynamic power consumption  
1.8 V to 5 V level translation  
High temperature operation: 125°C  
High common-mode transient immunity: >25 kV/µs  
Output default select  
20-lead, RoHS-compliant, SSOP package  
Safety and regulatory approvals:  
UL recognition: 3750 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE certificate of conformity  
DDL1  
GND  
GND  
2
1
IA  
IB  
IC  
ID  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
3
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
4
5
6
7
NC  
CTRL  
2
REG  
REG  
8
V
V
V
DD1  
DD2  
DDC2  
9
V
DDC1  
10  
GND  
GND  
1
2
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
Figure 1. ADuM3480  
APPLICATIONS  
ADuM3481  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL2  
DDL1  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
Industrial field bus isolation  
GND  
V
GND  
1
2
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
3
V
IA  
IB  
IC  
OA  
4
V
V
V
V
V
OB  
OC  
ID  
GENERAL DESCRIPTION  
5
The ADuM3480/ADuM3481/ADuM34821 are quad-channel  
digital isolators based on the Analog Devices, Inc., iCoupler®  
technology. Combining high speed CMOS and monolithic air  
core transformer technology, these isolation components provide  
outstanding performance characteristics superior to alternatives  
such as optocoupler devices and other integrated couplers. With  
typical propagation delay reduced to 25 ns, pulse width  
distortion is also halved.  
6
V
OD  
7
CTRL  
V
CTRL  
1
2
REG  
REG  
8
V
DD1  
DD2  
9
V
V
DDC1  
DDC2  
10  
GND  
GND  
1
2
Figure 2. ADuM3481  
ADuM3482  
The four channels of the ADuM3480/ADuM3481/ADuM3482  
are available in a variety of channel configurations with two data  
rate grades up to 25 Mbps (see the Ordering Guide section). All  
models use separate core and I/O power supplies. The core  
operates between 3.0 V and 5.5 V, whereas the I/O supply can  
range from 1.8 V to 5.5 V. If I/O operation is required within  
the range of the core supply, the two supplies can be tied together  
to allow single-supply operation. When the I/O must interface  
with logic levels that are different from the core supply voltage,  
the I/O supply operates independently of the core supply over  
its wider range. The minimum I/O supply voltage is 1.8 V, which  
allows compatibility with low voltage logic. Both core and I/O  
supplies are required for proper operation.  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL1  
DDL2  
GND  
GND  
1
IA  
IB  
2
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
3
V
V
V
V
V
V
OA  
OB  
IC  
4
5
V
V
OC  
OD  
6
ID  
7
CTRL  
V
CTRL  
1
2
REG  
REG  
8
V
DD1  
DD2  
9
V
V
DDC1  
DDC2  
10  
GND  
GND  
1
2
Figure 3. ADuM3482  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 10  
Absolute Maximum Ratings ......................................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions......................... 12  
Typical Performance Characteristics ........................................... 15  
Applications Information.............................................................. 17  
Supply Voltages........................................................................... 17  
Printed Circuit Board Layout ................................................... 17  
Propagation Delay Related Parameters ................................... 17  
DC Correctness and Magnetic Field Immunity..................... 17  
Power Consumption .................................................................. 18  
Insulation Lifetime..................................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 5  
Electrical Characteristics—1.8 V Operation ............................ 7  
Package Characteristics ............................................................... 9  
Regulatory Information............................................................... 9  
Regulatory Approvals................................................................... 9  
Insulation and Safety Related Specifications ............................ 9  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 10  
REVISION HISTORY  
6/14—Rev. 0 to Rev. A  
Changed Safety Certification Status from Pending to Approved  
(Throughout) .................................................................................... 1  
Changes to Table 12.......................................................................... 9  
Changed Highest Allowable Overvoltage from 5300 VPEAK to  
4000 VPEAK ........................................................................................ 10  
Changes to DC Correctness and Magnetic Field Immunity  
Section.............................................................................................. 17  
Changes to Ordering Guide .......................................................... 20  
7/12—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDDL1 = VDD1 = VDDL2 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 4.5 V ≤ VDDL1, VDD1 ≤ 5.5 V, 4.5 V ≤ VDDL2, VDD2 ≤ 5.5 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF, and CMOS signal levels, unless otherwise noted.  
Table 1.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Symbol Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
ns  
Within PWD limit  
Data Rate  
1
90  
6
25  
33  
3
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
Channel Matching  
Codirectional  
tPHL, tPLH  
PWD  
65  
7
25  
3
tPSK  
50  
17  
Between any two units  
tPSKCD  
tPSKOD  
19  
25  
5
7
ns  
ns  
ns  
Opposing Direction  
Jitter  
2
2
Table 2.  
1 Mbps—A, B Grades  
25 Mbps—B Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM3480  
IDD1  
2.0  
0.11  
5.1  
0.2  
2.8  
0.14  
4.3  
0.18  
3.5  
0.16  
3.5  
0.16  
2.9  
0.4  
6.9  
0.7  
3.0  
0.5  
5.7  
0.6  
4.1  
0.5  
4.7  
0.65  
8.6  
0.2  
6.0  
2.1  
7.9  
0.7  
6.7  
1.6  
7.3  
1.2  
7.3  
1.2  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
0.6  
7.5  
4.8  
10  
1.4  
7.8  
3.2  
8.8  
2.4  
8.8  
2.4  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM3481  
ADuM3482  
IDDL2  
Rev. A | Page 3 of 20  
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Threshold  
Logic High  
VIH  
VIL  
0.7 VDDLx  
V
V
Logic Low  
0.3 VDDLx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDLx − 0.1  
VDDLx − 0.4  
5.0  
4.8  
0.0  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0V ≤ VIx ≤ VDDLx, 0V ≤ VCTRLx ≤ VDDLx  
Logic Low  
0.1  
0.4  
+10  
Input Current per Channel  
Supply Current per Channel  
Quiescent Supply Current  
Regulator Input Side  
I/O Input  
−10  
+0.01  
µA  
IDDI (Q)  
0.50  
0.027  
1.26  
0.60  
0.05  
1.7  
mA  
mA  
mA  
mA  
IDDIL (Q)  
IDDO (Q)  
IDDOL (Q)  
Regulator Output Side  
I/O Output  
0.031  
0.10  
Dynamic Supply Current  
Regulator Input Side  
I/O Input  
Regulator Output Side  
I/O Output  
IDDI (D)  
0.070  
0.90  
0.010  
0.020  
mA/Mbps  
µA/Mbps  
mA/Mbps  
mA/Mbps  
IDDIL (D)  
IDDO (D)  
IDDOL (D)  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDLx, VCM = 1000 V, transient  
magnitude = 800 V  
25  
Refresh Period  
tr  
1.66  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOL < 0.8 × VDDLx or VOH > 0.7 × VDDIx. The common-mode voltage slew  
rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 4 of 20  
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
All typical specifications are at TA = 25°C, VDDL1 = VDD1 = VDDL2 = VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 3.0 V ≤ VDDL1,VDD1 ≤ 3.6 V, 3.0 V ≤ VDDL2, VDD2 ≤ 3.6 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Symbol Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
ns  
Within PWD limit  
Data Rate  
1
99  
12  
25  
38  
5
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
Channel Matching  
Codirectional  
tPHL, tPLH  
PWD  
71  
2
7
28  
3
3
tPSK  
58  
20  
Between any two units  
tPSKCD  
tPSKOD  
20  
26  
6
9
ns  
ns  
ns  
Opposing Direction  
Jitter  
4
3
Table 5.  
1 Mbps—A, B Grades  
25 Mbps—B Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM3480  
IDD1  
1.4  
0.08  
4.9  
0.14  
2.3  
0.09  
4.0  
0.12  
3.2  
0.11  
3.2  
2.9  
0.4  
6.7  
0.40  
3.0  
0.4  
5.7  
0.5  
4.2  
0.5  
4.2  
0. 5  
8.1  
0.13  
5.8  
1.4  
7.5  
0.46  
6.4  
1.1  
7.0  
0.78  
7.0  
11  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
0.5  
7.2  
2.5  
9.8  
1.4  
7.5  
2.7  
8.8  
1.7  
8.8  
1.7  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM3481  
ADuM3482  
IDDL2  
0.11  
0.78  
Rev. A | Page 5 of 20  
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Threshold  
Logic High  
VIH  
VIL  
0.7 VDDLx  
V
V
Logic Low  
0.3 VDDLx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDLx − 0.1  
VDDLx − 0.4  
3.0  
2.8  
0.0  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDLx, 0 V ≤ VCTRLx ≤ VDDLx  
Logic Low  
0.1  
0.4  
+10  
Input Current per Channel  
Supply Current per Channel  
Quiescent Supply Current  
Regulator Input Side  
I/O Input  
−10  
+0.01  
µA  
IDDI (Q)  
0.36  
0.019  
1.21  
0.5  
0.050  
1.7  
mA  
mA  
mA  
mA  
IDDIL (Q)  
IDDO (Q)  
IDDOL (Q)  
Regulator Output Side  
I/O Output  
0.021  
0.050  
Dynamic Supply Current  
Regulator Input Side  
I/O Input  
Regulator Output Side  
I/O Output  
IDDI (D)  
0.070  
0.53  
0.010  
0.013  
mA/Mbps  
µA/Mbps  
mA/Mbps  
mA/Mbps  
IDDIL (D)  
IDDO (D)  
IDDOL (D)  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
3
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDLx, VCM = 1000 V,  
transient magnitude = 800 V  
25  
Refresh Period  
tr  
1.66  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOL < 0.8 × VDDLx or VOH > 0.7 × VDDIx. The common-mode voltage slew  
rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 6 of 20  
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
All typical specifications are at TA = 25°C, VDDL1 = 1.8 V, VDD1 = 3.0 V, VDDL2 = 1.8 V, VDD2 = 3.0 V. Minimum/maximum specifications  
apply over the entire recommended operation range: VDDL1 = 1.8 V, 3.0 V ≤ VDD1 ≤ 3.6 V, VDDL2 = 1.8 V, 3.0 V ≤ VDD2 ≤ 3.6 V,−40°C ≤ TA ≤  
+125°C; unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 7.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Symbol Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
1000  
40  
ns  
Within PWD limit  
Data Rate  
1
145  
32  
25  
85  
30  
Mbps Within PWD limit  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
Channel Matching  
Codirectional  
tPHL, tPLH  
PWD  
86  
6
7
43  
6
3
ns  
ns  
50% input to 50% output  
|tPLH − tPHL  
|
ps/°C  
ns  
tPSK  
93  
60  
Between any two units  
tPSKCD  
tPSKOD  
40  
55  
34  
37  
ns  
ns  
ns  
Opposing Direction  
Jitter  
4
3
Table 8.  
1 Mbps—A, B Grades  
25 Mbps—B Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM3480  
IDD1  
1.4  
0.04  
4.7  
0.08  
2.3  
0.05  
3.9  
0.07  
3.1  
0.06  
3.1  
1.9  
0.3  
6.5  
0.5  
2.8  
0.35  
5.7  
0.4  
3.8  
0.4  
4.5  
0.40  
8.1  
0.07  
5.7  
0.82  
7.5  
0.25  
6.3  
0.63  
6.9  
0.44  
6.9  
11  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
IDDL2  
IDD1  
IDDL1  
IDD2  
0.4  
7.3  
1.5  
10  
0.7  
8.0  
1.3  
8.7  
1.1  
8.8  
1.1  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
CL = 0 pF  
ADuM3481  
ADuM3482  
IDDL2  
0.06  
0.44  
Rev. A | Page 7 of 20  
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
Table 9.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Threshold  
Logic High  
VIH  
VIL  
0.7 VDDLx  
V
V
Logic Low  
0.3 VDDLx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDLx − 0.1  
VDDLx − 0.4  
1.8  
1.6  
0.0  
0.2  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −2 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 2 mA, VIx = VIxL  
0V ≤ VIx ≤ VDDLx, 0V ≤ VCTRLx ≤ VDDLx  
Logic Low  
0.1  
0.4  
+10  
Input Current per Channel  
Supply Current per Channel  
Quiescent Supply Current  
Regulator Input Side  
I/O Input  
−10  
+0.01  
µA  
IDDI (Q)  
0.39  
0.010  
1.17  
0.45  
0.025  
1.5  
mA  
mA  
mA  
mA  
IDDIL (Q)  
IDDO (Q)  
IDDOL (Q)  
Regulator Output Side  
I/O Output  
0.012  
0.038  
Dynamic Supply Current  
Regulator Input Side  
I/O Input  
Regulator Output Side  
I/O Output  
IDDI (D)  
0.071  
0.25  
0.010  
0.0077  
mA/Mbps  
µA/Mbps  
mA/Mbps  
mA/Mbps  
IDDIL (D)  
IDDO (D)  
IDDOL (D)  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
3
35  
ns  
kV/µs  
10% to 90%  
VIx = VDDLx, VCM = 1000 V,  
transient magnitude = 800 V  
25  
Refresh Period  
tr  
1.66  
µs  
1 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOL < 0.8 × VDDLx or VOH > 0.7 × VDDIx. The common-mode voltage slew  
rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 8 of 20  
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
PACKAGE CHARACTERISTICS  
Table 10.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ Max  
1012  
2.2  
Unit  
pF  
Test Conditions/Comments  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
CI  
4.0  
pF  
IC Junction-to-Case Thermal Resistance  
θJC  
50.5  
°C/W  
Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces  
1 The device is considered a 2-terminal device: Pin 1 to Pin 10 are shorted together; Pin 11 to Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM3480/ADuM3481/ADuM3482 are approved by the organizations listed in Table 11. See Table 16 and the Insulation Lifetime  
section for the recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.  
REGULATORY APPROVALS  
Table 11.  
UL  
CSA  
VDE  
Recognized under the UL 1577  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
component recognition program1  
Single protection, 3750 V rms  
isolation voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 400 V rms (565 V peak)  
maximum working voltage  
Reinforced insulation, 560 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM3480/ADuM3481/ADuM3482 is proof tested by applying an insulation test voltage of ≥4500 V rms for 1 second (current  
leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each of the ADuM348x is proof tested by applying an insulation test voltage of ≥1050 V peak for 1 second (partial discharge  
detection limit = 5 pC). The asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 12.  
Parameter  
Symbol  
Value  
3750  
>5.1  
Unit  
V rms  
mm  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
1-minute duration  
Measured from input terminals to output terminals,  
shortest distance through air, in the plane of the PCB  
Measured from input terminals to output terminals,  
shortest distance path along body  
Distance through insulation  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
>5.1  
mm  
0.017 min mm  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
>400  
II  
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. A | Page 9 of 20  
 
 
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 13.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
560  
1050  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test, tini = tm = Vpd(m)  
1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec, partial  
discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec, partial  
discharge < 5 pC  
Vpd(m)  
Vpd(m)  
840  
672  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
VIOTM  
VISO  
4000  
3750  
VPEAK  
VRMS  
1 minute withstand rating  
Surge Isolation Voltage  
Safety Limiting Values  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure  
(see Figure 4)  
VIOSM  
6000  
VPEAK  
Case Temperature  
Total Power Dissipation  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
2.47  
>109  
°C  
W
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 14.  
Parameter  
Symbol  
TA  
VDDL1, VDDL2  
VDD1, VDD2  
Min Max  
Unit  
Operating Temperature  
Supply Voltages1  
−40 +125 °C  
1.8  
3.0  
5.5  
5.5  
1.0  
V
V
ms  
Input Signal Rise and Fall  
Times  
1 See the DC Correctness and Magnetic Field Immunity section for information  
on immunity to external magnetic fields.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. A | Page 10 of 20  
 
 
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 16. Maximum Continuous Working Voltage  
Supporting 50-Year Minimum Lifetime1  
Applicable  
Table 15.  
Parameter  
Rating  
Parameter  
Max  
Unit  
Certification  
Supply Voltages (VDD1, VDD2, VDDL1  
,
−0.5 V to +7.0 V  
AC Voltage, Bipolar  
Waveform  
AC Voltage, Unipolar  
Waveform  
565  
V peak  
All certifications  
V
DDL2, VDDC1, VDDC2  
Input Voltages (VIA, VIB, VIC, VID, VCTRL1  
VCTRL2  
)
,
−0.5 V to VDDI + 0.5 V  
848  
V peak  
)
Output Voltages (VOA, VOB, VOC, VOD)  
Average Output Current per Pin1  
Common-Mode Transients2  
−0.5 V to VDDO + 0.5 V  
−10 mA to +10 mA  
−100 kV/μs to +100 kV/μs  
−65°C to +150°C  
DC Voltage  
848  
V peak  
1 Refers to the continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more information.  
Storage Temperature (TST) Range  
ESD CAUTION  
Ambient Operating Temperature  
(TA) Range  
−40°C to +125°C  
1 See Figure 4 for maximum rated current values for various temperatures.  
2 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause  
latch-up or permanent damage.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 11 of 20  
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL1  
DDL2  
2
GND *  
GND *  
2
1
3
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
4
ADuM3480  
TOP VIEW  
5
(Not to Scale)  
6
7
NC  
CTRL  
2
8
V
V
V
DD1  
DD2  
DDC2  
9
V
DDC1  
10  
GND *  
GND *  
2
1
NOTES  
1. NC = NO CONNECTION. THIS PIN IS NOT  
CONNECTED INTERNALLY AND CAN BE LEFT  
FLOATING OR CONNECTED TO V  
OR GND .  
DD1  
1
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO PCB SIDE 1 GROUND IS  
RECOMMENDED. PIN 11 AND PIN 19 ARE  
INTERNALLY CONNECTED. CONNECTING BOTH  
TO PCB SIDE 2 GROUND IS RECOMMENDED.  
Figure 5. ADuM3480 Pin Configuration  
Table 17. ADuM3480 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VDDL1  
1.8 V to 5.5 V Supply Voltage for Isolator Side 1 Input/Output Circuits. Bypass VDDL1 to GND1 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL1 can be connected directly to VDD1  
.
2
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
3
4
5
6
7
8
9
VIA  
VIB  
VIC  
VID  
NC  
VDD1  
VDDC1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
No Connection. This pin is not connected internally and can be left floating or connected to VDD1 or GND1.  
3.0 V to 5.5 V Supply Voltage for Isolator Side 1.  
Output Pin of an Internal Regulator for Side 1. Bypass VDDC1 to GND1 with a 0.01 µF to 0.1 µF ceramic capacitor. Do  
not use this pin to power external circuits.  
10  
11  
12  
GND1  
GND2  
VDDC2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Output Pin of an Internal Regulator for Side 2. Bypass VDDC2 to GND2 with a 0.01 µF to 0.1 µF ceramic capacitor. Do  
not use this pin to power external circuits.  
13  
14  
15  
16  
17  
18  
19  
VDD2  
CTRL2  
VOD  
VOC  
VOB  
3.0 V to 5.5 V Supply Voltage for Isolator Side 2.  
Select Side 2 Output Default Level. Low = default output low. High = default output high.  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOA  
GND2  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
20  
VDDL2  
1.8 V to 5.5 V Supply Voltage for Isolator Side 2 Input/Output Circuits. Bypass VDDL2 to GND2 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL2 can be connected directly to VDD2  
.
Rev. A | Page 12 of 20  
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL1  
DDL2  
GND *  
GND *  
1
2
3
V
V
V
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
4
ADuM3481  
TOP VIEW  
5
(Not to Scale)  
6
V
OD  
7
CTRL  
CTRL  
2
1
8
V
V
DD1  
DD2  
DDC2  
9
V
V
DDC1  
10  
GND *  
GND *  
2
1
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO PCB SIDE 1 GROUND IS  
RECOMMENDED. PIN 11 AND PIN 19 ARE  
INTERNALLY CONNECTED. CONNECTING BOTH  
TO PCB SIDE 2 GROUND IS RECOMMENDED.  
Figure 6. ADuM3481 Pin Configuration  
Table 18. ADuM3481 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VDDL1  
1.8 V to 5.5 V Supply Voltage for Isolator Side 1 Input/Output Circuits. Bypass VDDL1 to GND1 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL1 can be connected directly to VDD1  
.
2
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
3
4
5
6
7
8
9
VIA  
VIB  
VIC  
VOD  
CTRL1  
VDD1  
VDDC1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Output D.  
Select Side 1 Output Default Level. Low = default output low. High = default output high.  
3.0 V to 5.5 V Supply Voltage for Isolator Side 1.  
Output Pin of an Internal Regulator for Side 1. Bypass VDDC1 to GND1 with a 0.01 µF to 0.1 µF ceramic capacitor. Do  
not use this pin to power external circuits.  
10  
11  
12  
GND1  
GND2  
VDDC2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Output Pin of an Internal Regulator for Side 2. Bypass VDDC2 to GND2 with a 0.01 µF to 0.1 µF ceramic capacitor. Do  
not use this pin to power external circuits.  
13  
14  
15  
16  
17  
18  
19  
VDD2  
CTRL2  
VID  
VOC  
VOB  
3.0 V to 5.5 V Supply Voltage for Isolator Side 2.  
Select Side 2 Output Default Level. Low = default output low. High = default output high.  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOA  
GND2  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
20  
VDDL2  
1.8 V to 5.5 V Supply Voltage for Isolator Side 2 Input/Output Circuits. Bypass VDDL2 to GND2 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL2 can be connected directly to VDD2  
.
Rev. A | Page 13 of 20  
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DDL2  
DDL1  
GND *  
GND *  
2
1
3
V
V
V
V
V
V
IA  
IB  
OA  
OB  
IC  
4
ADuM3482  
TOP VIEW  
5
V
OC  
OD  
(Not to Scale)  
6
V
ID  
7
CTRL  
CTRL  
2
1
8
V
V
V
DD1  
DD2  
DDC2  
9
V
DDC1  
10  
GND *  
GND *  
2
1
*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED.  
CONNECTING BOTH TO PCB SIDE 1 GROUND IS  
RECOMMENDED. PIN 11 AND PIN 19 ARE  
INTERNALLY CONNECTED. CONNECTING BOTH  
TO PCB SIDE 2 GROUND IS RECOMMENDED.  
Figure 7. ADuM3482 Pin Configuration  
Table 19. ADuM3482 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VDDL1  
1.8 V to 5.5 V Supply Voltage for Isolator Side 1 Input/Output Circuits. Bypass VDDL1 to GND1 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL1 can be connected directly to VDD1  
.
2
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
3
4
5
6
7
8
9
VIA  
VIB  
VOC  
VOD  
CTRL1  
VDD1  
VDDC1  
Logic Input A.  
Logic Input B.  
Logic Output C.  
Logic Output D.  
Select Side 1 Output Default Level. Low = default output low. High = default output high.  
3.0 V to 5.5 V Supply Voltage for Isolator Side 1.  
Output Pin of Internal Regulator for Side 1. Bypass VDDC1 to GND1 with a 0.01 µF to 0.1 µF ceramic capacitor. Do not  
use this pin to power external circuits.  
10  
11  
12  
GND1  
GND2  
VDDC2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
Output Pin of Internal Regulator for Side 2. Bypass VDDC2 to GND2 with a 0.01 µF to 0.1 µF ceramic capacitor. Do not  
use this pin to power external circuits.  
13  
14  
15  
16  
17  
18  
19  
VDD2  
CTRL2  
VID  
VIC  
VOB  
3.0 V to 5.5 V Supply Voltage for Isolator Side 2.  
Select Side 2 Output Default Level. Low = default output low. High = default output high.  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
VOA  
GND2  
Ground 2. Ground reference for Isolator Side 2. Pin 11 and Pin 19 are internally connected, and connecting both to  
the PCB ground plane as close to the part as possible is recommended.  
20  
VDDL2  
1.8 V to 5.5 V Supply Voltage for Isolator Side 2 Input/Output Circuits. Bypass VDDL2 to GND2 with a 0.01 µF to 0.1 µF  
ceramic capacitor. For 3.0 V to 5.5 V input/output operation, VDDL2 can be connected directly to VDD2  
.
Rev. A | Page 14 of 20  
 
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 3.3V/V  
= 1.8V  
DD  
DDL  
2.0  
V
= 3.3V/V  
= 3.3V  
DD  
DDL  
1.5  
V
= 5V/V  
= 1.8V  
DD  
DDL  
V
= 5V/V  
= 5V  
DD  
DDL  
1.0  
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical VDDI = 5 V Supply Current per Input Channel vs. Data Rate  
for 5 V and 1.8 V I/O Operation  
Figure 11. Typical VDDO = 3.3 V Supply Current per Output Channel vs. Data  
Rate for 3.3 V and 1.8 V I/O Operation  
2.5  
2.0  
1.5  
0.06  
0.05  
0.04  
V
= 5V  
DDL  
0.03  
0.02  
0.01  
0
V
= 3.3V/V  
= 1.8V  
DD  
DDL  
V
= 3.3V  
= 1.8V  
DDL  
DDL  
1.0  
0.5  
0
V
V
= 3.3V/V  
= 3.3V  
10  
DD  
DDL  
0
5
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical VDDI = 3.3 V Supply Current per Input Channel vs. Data Rate  
for 3.3 V, and 1.8 V I/O Operation  
Figure 12. Typical VDDIL Input Supply Current vs. Data Rate for 5 V, 3.3 V, and  
1.8 V Operation  
1.6  
0.6  
0.5  
0.4  
V
= 5V/V  
= 1.8V  
DD  
DDL  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V/V  
= 5V  
DD  
DDL  
V
= 5V  
DDL  
0.3  
0.2  
0.1  
0
V
= 3.3V  
DDL  
V
= 1.8V  
DDL  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical VDDO = 5 V Supply Current per Output Channel vs. Data  
Rate for 5 V and 1.8 V I/O Operation  
Figure 13. Typical VDDOL Output Supply Current vs. Data Rate  
for 5 V, 3.3 V, and 1.8 V, CL = 0 pF Operation  
Rev. A | Page 15 of 20  
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
1.6  
1.4  
1.2  
V
= 5V  
DDL  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 3.3V  
DDL  
V
= 1.8V  
DDL  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
Figure 14. Typical VDDOL Output Supply Current vs. Data Rate  
for 5 V, 3.3 V, and 1.8 V, CL = 15 pF Operation  
Rev. A | Page 16 of 20  
 
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
APPLICATIONS INFORMATION  
In applications involving high common-mode transients, it is  
important to minimize board coupling across the isolation barrier.  
Furthermore, design the board layout so that any coupling that  
does occur equally affects all pins on a given component side.  
Failure to follow this design guideline can allow voltage differentials  
between pins that exceed the absolute maximum ratings of the  
device during high voltage transients, which can lead to latch-up or  
permanent damage.  
SUPPLY VOLTAGES  
The ADuM3480/ADuM3481/ADuM3482 devices are built  
around a fixed voltage internal data transfer core. The core  
voltage is 2.7 V, which is generated by regulating the VDD1 and  
V
DD2 voltages with an internal LDO. To ensure proper headroom  
for the LDO, the VDD1 and VDD2 inputs must be in the 3.0 V to 5.5 V  
range. Additional pins, VDDC1 and VDDC2, are provided for direct  
bypass of the LDO output, ensuring clean stable core operation.  
Bypass capacitors to ground of between 0.01 μF and 0.1 μF are  
required for each of these supply or dedicated bypass pins.  
PROPAGATION DELAY RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input-to-  
output propagation delay time for a high to low transition may  
differ from the propagation delay time of a low to high transition.  
The ADuM3480/ADuM3481/ADuM3482 provide independent  
supplies for the I/O buffers, VDDL1 and VDDL2, which have wider  
operating ranges than that required for the core. This allows the  
I/O supply voltage to range between 1.8 V and 5.5 V. The VDDLx  
supplies must also be bypassed with between 0.01 μF and 0.1 μF  
capacitors.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
Having independent power supplies for the I/O and core allows  
several power configurations depending on the I/O voltage  
required and the available power supply rails. If one power  
supply is available, the VDDx and VDDLx pins can be connected  
together and operate between 3.0 V and 5.5 V. If lower I/O  
supply voltage is required, to interface with low voltage logic,  
two supply rails are required. For example, if the I/O is 1.8 V  
logic, the VDDLx pin can be connected to a 1.8 V supply rail. The  
core supply voltage for VDDx requires an input of between 3.0 V and  
5.5 V, so an available 3.3 V or 5 V supply rail can be used. The I/O  
and core supply voltage on each side are independent and different  
configurations can be used on each side of the device.  
OUTPUT (V  
)
50%  
Ox  
Figure 16. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and an indication of how  
accurately the timing of the input signal is preserved.  
Channel to channel matching refers to the maximum amount of  
time that the propagation delay differs between channels within  
a single ADuM3480/ADuM3481/ADuM3482 component.  
Propagation delay skew refers to the maximum amount of time  
that the propagation delay differs between multiple ADuM3480/  
ADuM3481/ADuM3482 components operating under the same  
conditions.  
PRINTED CIRCUIT BOARD LAYOUT  
The ADuM3480/ADuM3481/ADuM3482 digital isolator requires  
no external interface circuitry for the logic interfaces. Power supply  
bypassing to the local ground is required at all four power supply  
pins, VDD1, VDDL1, VDD2, and VDDL2, as well as at the two internal  
regulator bypass pins: VDDC1 and VDDC2 (see Figure 15). Placement  
of the recommended bypass capacitors is shown in Figure 15. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total lead  
length between both ends of the capacitor and the input power  
supply pin should not exceed 20 mm.  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent via the transformer to the decoder.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses indicating input logic transitions. In the absence of  
logic transitions at the input for more than ~1.7 μs, the current  
dc state is sent to the output to ensure dc correctness at the output.  
If the decoder receives no pulses for more than about 5 μs, the  
input side is assumed to be unpowered or nonfunctional, in which  
case the isolator output is forced to a default state (see Table 17,  
Table 18, or Table 19) by the watchdog timer circuit.  
V
GND  
V
DDL2  
DDL1  
GND  
1
IA  
IB  
2
V
V
V
V
V
V
OA  
OB  
V
V
/V  
/V  
IC OC  
OC IC  
/V  
/V  
OD ID  
ID OD  
CTRL  
CTRL  
2
1
V
V
V
DD1  
DD2  
V
DDC1  
DDC2  
GND  
GND  
2
1
Figure 15. Recommended Printed Circuit Board (PCB) Layout  
Rev. A | Page 17 of 20  
 
 
 
 
 
 
ADuM3480/ADuM3481/ADuM3482  
Data Sheet  
The limitation on the magnetic field immunity of the device is set  
by the condition in which induced voltage in the receiving coil  
of the transformer is sufficiently large to either falsely set or  
reset the decoder. The following analysis defines such conditions.  
The ADuM3480/ADuM3481/ADuM3482 are examined in a  
3 V operating condition because it represents the most  
susceptible mode of operation of these products.  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM3480/ADuM3481/ADuM3482 transformers. Figure 18  
expresses these allowable current magnitudes as a function of  
frequency for selected distances. The ADuM3480/ADuM3481/  
ADuM3482 are very insensitive to external fields. Only extremely  
large, high frequency currents that are very close to the component  
are a concern. For the 1 MHz example noted, a 1.2 kA current would  
need to be placed 5 mm away from the ADuM3480/ADuM3481/  
ADuM3482 to affect component operation.  
The pulses at the transformer output have an amplitude of  
greater than 1.5 V. The decoder has a sensing threshold of  
approximately = 1.0 V, thereby establishing a 0.5 V margin  
within which induced voltages can be tolerated. The voltage  
induced across the receiving coil is given by  
1000  
DISTANCE = 1m  
100  
2
V = (−dβ / dt)∑πrn ; n = 1, 2, …, N  
where:  
10  
β is the magnetic flux density.  
DISTANCE = 100mm  
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
1
Given the geometry of the receiving coil in the ADuM3480/  
ADuM3481/ADuM3482 and an imposed requirement that the  
induced voltage be, at most, 50% of the 0.5 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 17.  
DISTANCE = 5mm  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
100  
Figure 18. Maximum Allowable Current for Various Current to ADuM3480  
Spacings  
10  
1
Note that at combinations of strong magnetic field and high  
frequency, or any loops formed by PCB traces, can induce  
sufficiently large error voltages to trigger the thresholds of  
succeeding circuitry. Take care to avoid PCB structures that  
form loops.  
0.1  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM3480/  
ADuM3481/ADuM3482 isolator is a function of the supply  
voltage, the data rate of the channel, and the output load of the  
channel.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Calculating IDD1 or IDD2  
Figure 17. Maximum Allowable External Magnetic Flux Density  
For each input channel, assuming worst case I/O voltage, the  
supply current is given by  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.5 kgauss induces a voltage  
of 0.25 V at the receiving coil. This is about 50% of the sensing  
threshold and does not cause a faulty output transition. If such  
an event occurs, with the worst-case polarity, during a transmitted  
pulse, it reduces the received pulse from >1.0 V to 0.75 V. This is  
still well above the 0.5 V sensing threshold of the decoder.  
I
DDI = IDDI (Q)  
RD ≤ 2.5 × RR  
RD > 2.5 × RR  
IDDI = IDDI (D) × (RD−RR) + IDDI (Q)  
For each output channel, the supply current is given by  
DDO = IDDO (D) × RD + IDDO (Q)  
I
Rev. A | Page 18 of 20  
 
 
 
Data Sheet  
ADuM3480/ADuM3481/ADuM3482  
Calculating IDDL1 or IDDL2  
Acceleration factors for several operating conditions are determined.  
These factors allow calculation of the time to failure at the actual  
working voltage. The values shown in Table 16 summarize the  
peak voltage for 50 years of service life for a bipolar ac operating  
condition and the maximum CSA/VDE approved working voltages.  
In many cases, the approved working voltage is higher than the  
50-year service life voltage. Operation at these high working  
voltages can lead to shortened insulation life in some cases.  
For each input channel, the supply current is given by  
IDDIL = IDDIL (D) × RD + IDDIL (Q)  
For each output channel, the supply current is given by  
CL ×VDDOL ×103  
IDDOL  
=
IDDOL (D)  
+
RD + IDDOL (Q)  
2
where:  
CL is the output load capacitance (pF).  
DDOL is the output supply voltage (V).  
The insulation lifetime of the  
ADuM3480/ADuM3481/ADuM3482 depends on the voltage  
waveform type imposed across the isolation barrier. The iCoupler  
insulation structure degrades at different rates depending on  
whether the waveform is bipolar ac, unipolar ac, or dc. Figure 19,  
Figure 20,and Figure 21 illustrate these different isolation  
voltage waveforms.  
V
RD is the input logic signal data rate (Mbps); it is twice the input  
frequency, expressed in units of MHz.  
RR is the input stage refresh rate (Mbps) = 1/tr (µs)  
I
DDI (Q), IDDIL (Q), IDDO (Q), IDDOL (Q) are the specified input and output  
quiescent supply currents (mA).  
DDI (D), IDDIL (D), IDDO (D), and IDDOL(D) are the input and output  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the maximum working voltage recommended by  
Analog Devices.  
I
dynamic supply currents per channel (mA/Mbps).  
As inputs and outputs can be present on each side of the device,  
the calculations refer to the current drawn from the local supply.  
For example, if an output is on Side 2 of a part, the IDDOL current  
is drawn from the VDDL2 pin of the part. The IDDL1 and IDDL2 currents  
are dependent on VDDL1 and VDDL2, the data rate, and the capacitive  
load. It is nearly independent of the value of the core supplies.  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 16 can be applied while maintaining the  
50-year minimum lifetime, provided that the voltage conforms to  
either the unipolar ac or dc voltage case. Treat any cross-insulation  
voltage waveform that does not conform to Figure 19, Figure 20,  
or Figure 21 as a bipolar ac waveform, and limit its peak voltage  
to the 50-year lifetime voltage value listed in Table 16.  
To calculate the total IDD1, IDDL1, IDD2, and IDDL2 supply current, the  
supply currents for each input and output channel corresponding to  
VDD1, VDDL1, VDD2, and VDDL2 are calculated and totaled, or read from  
Figure 8 through Figure 14.  
The input current for the regulated core power supplies is  
nearly independent of the I/O voltage, and scales with data rate.  
The IDDI current is not linear down to dc, but goes to a minimum  
value between about 2.5 × RR and dc. This is due to the refresh  
circuit establishing a minimum data rate; the values in Figure 8 and  
Figure 9 and the quiescent currents in Table 3, Table 6, and Table 9  
approximate the current in this region. VDDI, VDDO, VDDIL, and  
Note that the voltage presented in Figure 20 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The limiting  
value can be positive or negative, but the voltage cannot cross 0 V.  
RATED PEAK VOLTAGE  
0V  
V
DDOL represent the voltages on the core and I/O power supply  
Figure 19. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
pins for the input and output of a given channel. I represents an  
input, O is an output, and L denotes an I/O supply.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation depends on the characteristics of the voltage waveform  
applied across the insulation. In addition to the testing performed  
by the regulatory agencies, Analog Devices carries out an extensive  
set of evaluations to determine the lifetime of the insulation  
structure within the ADuM3480/ADuM3481/ADuM3482.  
0V  
Figure 20. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 21. DC Waveform  
Analog Devices performs accelerated life testing using voltage  
levels that are higher than the rated continuous working voltage.  
Rev. A | Page 19 of 20  
 
 
 
 
ADuM3480/ADuM3481/ADuM3482  
OUTLINE DIMENSIONS  
Data Sheet  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.65 BSC  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 22. 20-Lead Standard Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
No. of Inputs, No. of Inputs, Maximum Max Prop  
Temperature  
Range  
Package  
Model1  
VDD1 Side  
VDD2 Side  
Data Rate  
Delay, 5 V  
Package Description  
Option  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
RS-20  
ADuM3480ARSZ  
ADuM3480ARSZ-RL7  
ADuM3480BRSZ  
ADuM3480BRSZ-RL7  
ADuM3481ARSZ  
ADuM3481ARSZ-RL7  
ADuM3481BRSZ  
ADuM3481BRSZ-RL7  
EVAL-ADuM3481EBZ  
ADuM3482ARSZ  
ADuM3482ARSZ-RL7  
ADuM3482BRSZ  
4
4
4
4
3
3
3
3
0
0
0
0
1
1
1
1
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
90 ns  
90 ns  
33 ns  
33 ns  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
20-Lead SSOP  
20-Lead SSOP, 7” Reel  
20-Lead SSOP  
20-Lead SSOP, 7” Reel  
20-Lead SSOP  
20-Lead SSOP, 7” Reel  
20-Lead SSOP  
20-Lead SSOP, 7” Reel  
Evaluation Board  
20-Lead SSOP  
20-Lead SSOP, 7” Reel  
20-Lead SSOP  
90 ns  
90 ns  
33 ns  
33 ns  
2
2
2
2
2
2
2
2
1 Mbps  
1 Mbps  
25 Mbps  
25 Mbps  
90 ns  
90 ns  
33 ns  
33 ns  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RS-20  
RS-20  
RS-20  
RS-20  
ADuM3482BRSZ-RL7  
1 Z = RoHS Compliant Part.  
20-Lead SSOP, 7” Reel  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10459-0-6/14(A)  
Rev. A | Page 20 of 20  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY